
Call To Arms:
A Tale of the Weaknesses
of Current Client-Side
XSS Filtering
Martin Johns, Ben Stock, Sebastian Lekies

About us
•  Martin Johns, Ben Stock, Sebastian Lekies

•  Security Researchers at SAP, Uni Erlangen and Google

•  More and stuff at http://kittenpics.org

About this talk
•  Results of a practical evaluation of client-side XSS filtering

•  Technical analysis of the Chrome XSS filter

•  Presentation of various techniques to bypass the filter

Cross-Site Scripting
a.k.a. XSS (duh)

The Same-Origin Policy
•  Question: why can’t attacker.org read the visitors emails from

GMail?

•  Answer: the Same-Origin Policy is “in the way”
�  Only resources with matching protocol, domain and port may gain access

•  That makes for a sad attacker (and his kitten)

http://andshesaidit.files.wordpress.com/2010/05/sad_kitten1.jpg

XSS – the underlying problem
•  Web Apps process data

�  Which was provided by the user
�  POST, GET, headers, ….

•  Data might be stored, or echoed back directly

•  Data <script>alert(1)</script> is actually Code

•  … interpreted by the victim’s browser, executed in the origin of vulnerable
application

•  Attack method
�  Find flaw in Web application that allows injection of CODE, not just DATA
�  (we will elaborate in a minute)
�  Make victim visit that site

è We can read your GMails J

XSS – what an attacker can do
• Open an alert box!

•  Hijack a session
�  Oldest trick in the book: steal their cookies
�  Force victim to “click” a link (or post something about BlackHat on Twitter)

•  Alter content
�  Display fake content
�  Spoof login forms

•  .. Steal your password manager’s passwords
�  See our AsiaCCS paper if you are interested J

•  Do everything with the Web app, that you could do – under your ID

h
tt

p:
//i

m
ag

es
.s

od
ah

ea
d.

co
m

/p
ol

ls
/0

03
82

07
31

/
13

13
76

39
67

_C
A

T
_S

H
O

C
K

E
D

_x
la

rg
e.

jp
eg

Stored

Types of XSS

<script>!
 var name = location.hash.slice(1));!
 document.write("Hello " + name); !
</script>!

<script>!
 var html= location.hash.slice(1); !
 localStorage.setItem(“message”, html); !
 […]!
 var message = localStorage.getItem(“message”); !
 document.write(message);!
</script>!

<?php!
 $res = mysql_query(”INSERT…”.$_GET['message']);!
 […]!
 $res = mysql_query(”SELECT…");!
 $row = mysql_fetch_assoc($res);!
 echo $row['message']; !
?>!

<?php!
 echo "Hello “.$_GET['name']; !
?>!

Reflected

S
er

ve
r

C
li

en
t

http://upload.wikimedia.org/wikipedia/commons/f/f1
/Kitten_and_partial_reflection_in_mirror.jpg http://www.cat-lovers-only.com/images/kittens-in-a-box.jpg

Reflected XSS
http://vulnerable.org/?a=<script>alert(1)</script>

<html>
..
<script>alert(1)</script>
…
</html>

<html>
..
<script>alert(1)</script>
…
</html>

Stopping XSS attacks
If you are the application’s owner:

•  Don’t use user-provided data in an unencoded/unfiltered way

•  Use secure frameworks or other magic

•  Use Content Security Policy, sandboxed iframes, …

Stopping XSS attacks
If you are the application’s owner:

•  Don’t use user-provided data in an unencoded/unfiltered way

•  Use secure frameworks or other magic

•  Use Content Security Policy, sandboxed iframes, …

If you are the application’s user:

•  Turn of JavaScript

•  Client-side XSS Filters
�  NoScript
�  IE
�  Chrome (the “XSS Auditor”)

Quick digression:
finding a lot of
DOMXSS vulns

Finding and exploiting DOMXSS
vulnerabilities automatically at scale
•  … using byte-level taint tracking in Chromium

�  each character in a string has its source information attached to it

•  ... Chrome extension to crawl given set of Web sites
�  also the interface between taint engine and central server

•  … and an exploit generator
�  using taint information
�  and HTML and JavaScript syntax rules
�  to generate exploits fully automatic

Results (many many cats XSS)
•  For our study, we analyzed Alexa Top 5k

�  Found 480 domains with vulnerabilities

•  Reran experiment against Alexa Top 10k
�  Found a total of 1,602 unique vulnerabilities
�  .. On 958 domains

•  Auditor turned off at that point

Motivation
•  So, we had this considerable amount of real-world XSS vulnerabilities

•  And our prime testing platform was built onto the Chrome browser

•  Hence, we got curious: How well does the Chrome Auditor protect us?

•  We reran our experiment, with the Auditor turned on

•  The Auditor did not catch all of our exploits

•  This made us even more curious…
�  Why were the exploits not blocked?
�  And can we increase the number of bypasses?

Bypassing the
XSSAuditor

Reflected XSS (revisited)
http://vulnerable.org/?a=<script>alert(1)</script>

<html>
..
<script>alert(1)</script>
…
</html>

<html>
..
<script>alert(1)</script>
…
</html>

XSS Payload is contained in the request (i.e., in the URL)!

XSS Filter Strategies
•  NoScript: Check outgoing requests for JavaScript

•  IE: Use regular expression to compare HTTP requests and responses

•  XSSAuditor
�  Don’t look at requests
�  When response comes in, invoke HTML parser (actually, tokenizer)
�  When a “dangerous” element or attribute is found during parsing, check

the corresponding request’s URL

How the XSS Auditor works
•  An incoming HTTP response is parsed

•  Every time the parser encounters an HTML
construct that potentially executes JavaScript, the
Auditor is invoked
�  Important fact one: Only during the initial parsing process
�  Important fact two: This check is done only if certain characters are contained in

the URL: <, >, “ and ‘

•  The auditor checks the HTTP request, if the encountered HTML/JavaScript
can be found in the request’s URL (or body)
�  Important fact three: Depending on the HTML construct, the matching algorithm

differs

•  If a match is found, the parser replaces the potential attack with a harmless
placeholder

Auditor matching rules (simplified)
•  Inline scripts

<script>alert(1)</script>

•  Matching rule
�  … the Auditor checks whether content of script is contained in the

request
�  … skipping initial comments and whitespaces,
�  …only using up to 100 characters
�  …stop if encountering a “terminating character”:

�  # ? // …

Auditor matching rules (simplified)
•  HTML attributes

�  Event handlers

�  Attributes with JavaScript URLs

 <iframe src="javascript:alert(1)"></iframe>

•  For each attribute
�  … the Auditor checks whether the attribute contains a JavaScript URL
�  … or if the attribute is an event handler

•  Matching rule
�  Check if the complete attribute is contained in the request

Auditor matching rules (simplified)
•  For HTML elements that can reference external content

<script src="//attacker.org/script.js"></script>

<embed src="//attacker.org/flash.swf"></embed>

•  Matching rule
�  … the Auditor checks whether the tag name is contained in the request
�  … and whether the complete attribute is contained in the request

How the XSS Auditor works
•  An incoming HTTP response is parsed

•  Every time the parser encounters an HTML
construct that potentially executes JavaScript, the
Auditor is invoked
�  Important fact one: This check is done only if certain characters are contained in

the URL: <, >, “ and ‘

•  The auditor checks the HTTP request, if the encountered HTML/JavaScript
can be found in the request’s URL (or body)
�  Important fact two: Depending on the HTML construct, the matching algorithm

differs

•  If a match is found, the parser replaces the potential attack with a harmless
placeholder

How the XSS Auditor works
•  An incoming HTTP response is parsed

•  Every time the parser encounters an HTML
construct that potentially executes JavaScript, the
Auditor is invoked
�  Important fact one: This check is done only if certain characters are contained in

the URL: <, >, “ and ‘

•  The auditor checks the HTTP request, if the encountered HTML/JavaScript
can be found in the request’s URL (or body)
�  Important fact two: Depending on the HTML construct, the matching algorithm

differs

•  If a match is found, the parser replaces the potential attack with a harmless
placeholder

Invocation

Matching

Blocking

How to bypass the XSS Auditor
•  An incoming HTTP response is parsed

•  Every time the parser encounters an HTML
construct that potentially executes JavaScript, the
Auditor is invoked
�  Important fact one: This check is done only if certain characters are contained in

the URL: <, >, “ and ‘

•  The auditor checks the HTTP request, if the encountered HTML/JavaScript
can be found in the request’s URL (or body)
�  Important fact two: Depending on the HTML construct, the matching algorithm

differs

•  If a match is found, the parser replaces the potential attack with a harmless
placeholder

Invocation

Matching

Blocking

How to bypass the XSS Auditor
•  An incoming HTTP response is parsed

•  Every time the parser encounters an HTML
construct that potentially executes JavaScript, the
Auditor is invoked
�  Important fact one: This check is done only if certain characters are contained in

the URL: <, >, “ and ‘

•  The auditor checks the HTTP request, if the encountered HTML/JavaScript
can be found in the request’s URL (or body)
�  Important fact two: Depending on the HTML construct, the matching algorithm

differs

•  If a match is found, the parser replaces the potential attack with a harmless
placeholder

Invocation

Matching

Blocking

How to bypass the XSS Auditor
•  An incoming HTTP response is parsed

•  Every time the parser encounters an HTML
construct that potentially executes JavaScript, the
Auditor is invoked
�  Important fact one: This check is done only if certain characters are contained in

the URL: <, >, “ and ‘

•  The auditor checks the HTTP request, if the encountered HTML/JavaScript
can be found in the request’s URL (or body)
�  Important fact two: Depending on the HTML construct, the matching algorithm

differs

•  If a match is found, the parser replaces the potential attack with a harmless
placeholder

Invocation

Matching

Blocking

Avoiding Auditor
Invocation

Bypass invocation
using eval
•  Filter works only for injected HTML

•  … not for injected JavaScript

Bypass invocation in
the HTML Parser
•  Parsing "document fragments"

�  i.e. innerHTML, outerHTML, insertAdjacentHTML
�  For performance reasons, Auditor is off for

document fragments

�  è all vulnerabilities targeting these sinks go through

•  Unquoted attribute injection
�  Auditor is disabled if <, >, “ and ‘ are not found in the request
�  All injections that lead to JS execution, that do not require these

characters evade the Auditor

HTML-free
injections
Various injection techniques that live solely in the
JavaScript space

�  As the HTML parser is not involved, the Auditor is not activated

1. DOM bindings
�  e.g. assigning src attribute of existing script tag
�  No HTML parsing, as the injection affects the already parsed DOM

2. Second-order flows
�  e.g. cookies or Web Storage
�  Injection vector cannot be found in the request

3. Alternative data sources
�  e.g. postMessages
�  Attack vector enters the page through non-request channels

String-matching
issues
Create situations, in which the injected vector does not match the
parsed JavaScript

Partial Injections
•  Hijack an existing tag

•  Hijack an existing attribute (e.g. script.src)

•  Hijack an existing script node

Partial Injections
•  Hijack an existing tag

•  Hijack an existing attribute (e.g. script.src)

•  Hijack an existing script node

http://www.vuln.com/partial.html#someValue'; cat();//!

 !

! ! ! var x = 'someValue'; cat();//';!

Trailing content
•  Idea: use existing content to fool Auditor

•  ... while still resulting in valid JavaScript

Trailing content
•  Idea: use existing content to fool Auditor

•  ... while still resulting in valid JavaScript

http://../trail.html#'><img src=//a onerror='cat();!

 !

Trailing content
•  Idea: use existing content to fool Auditor

•  ... while still resulting in valid JavaScript

•  Further trailing content-based bypasses
�  Trailing slashes (Auditor stops search for payload after second slash)
�  Trailing SVG (using Semicolon)

Double injections
•  Single input, multiple injections, single sink

•  Multiple inputs, multiple injections, single sink

•  Multiple injection points, multiple sinks

Double injections
•  Single input, multiple injections, single sink

•  Multiple inputs, multiple injections, single sink

•  Multiple injection points, multiple sinks

...multi.html#")</script>'><script>cat(); void("!

!

<img height='250  
")</script>'><script>cat(); void("  
' src='c.jpg'><img height='250  
")</script>'><script>cat(); void("  
' src='c.jpg'>!

Double injections
•  Single input, multiple injections, single sink

•  Multiple inputs, multiple injections, single sink

•  Multiple injection points, multiple sinks

...multi.html#")</script>'><script>cat(); void("!

!

<img height='250")</script>'>  
<script>  
cat(); void("' src='c.jpg'><img height='250")  
</script>  
'><script>cat(); void("' src='c.jpg'>!

Double injections
•  Single input, multiple injections, single sink

•  Multiple inputs, multiple injections, single sink

•  Multiple injection points, multiple sinks

...multi.html#")</script>'><script>cat(); void("!

!

<img height='250")</script>'>  
<script>  
cat(); void("' src='c.jpg'><img height='250")  
</script>  
'><script>cat(); void("' src='c.jpg'>!

Bypasses in the wild

Empirical study
•  Using our existing infrastructure, we found

�  … 1,602 DOM-based XSS vulnerabilities
�  … on 958 domains

•  We enhanced our exploit generator to target bypassable
vulnerabilities
�  Not targeting DOM bindings, second-order flows or alternative attacks

Results of our study
•  776 out of 958 domains with bypassable vulnerabilities

Bypass type Domain count

innerHTML 469

eval 78

srcdoc (tag hijacking) 146

Trailing content 80

Multi flows 42

Unquoted attribute 7

Inscript injection 7

Assignment to existing script src 7

Conclusion

What to take away?
•  XSS still is a problem

�  Attack potential maybe bigger than you thought
�  DOM-based XSS on about 10% of the Alexa Top 10k domains

•  Browsers deploy countermeasure to protect users
�  IE and Chrome built-in, Firefox as a plugin
�  Chrome arguably best filter

•  Security analysis of the Auditor shows that
�  … there are many bypasses, related to both
�  ... invocation and
�  … string-matching issues

What else to take away?
•  We built a fully-automated system to find DOMXSS

�  Taint-aware browser
�  Context-aware exploit generator

•  We enhanced the generator to target known issues in the
Auditor
�  Allowing for more exploits to bypass the Auditor

•  We evaluated the impact of the issues
�  Bypassing the filter on 776 out of 958 domains (81%)
�  ... 1,162 out of 1,602 vulnerabilities (73%)

Thank you
visit us at kittenpics.org

Martin Johns Ben Stock Sebastian Lekies

@datenkeller @kcotsneb @sebastianlekies

PLACE CATPIC FROM
TWITTER HERE

