Call To Arms:
A Tale of the Weaknesses

of Current Client-Side
XSS Filtering

Martin Johns, Ben Stock, Sebastian Lekies

About us

- Martin Johns, Ben Stock, Sebastian Lekies
- Security Researchers at SAP, Uni Erlangen and Google

- More and stuff at http://kittenpics.org

About this talk

- Results of a practical evaluation of client-side XSS filtering
- Technical analysis of the Chrome XSS filter

- Presentation of various techniques to bypass the filter

Cross-Site Scripting

a.k.a. XSS (duh)

The Same-Origin Policy

- Question: why can’t attacker.org read the visitors emails from
GMail?

- Answer: the Same-Origin Policy 1s “in the way”
* Only resources with matching protocol, domain and port may gain access

- That makes for a sad attacker (and his kitten)

i'm sad

-

http://andshesaidit.files.wordpress.com/2010/05/sad_kitten1.jpg

XSS — the underlying problem

- Web Apps process data
* Which was provided by the user
- POST, GET, headers,

- Data might be stored, or echoed back directly

- Data <script>alert (1)</script> 1is actually Code

- ... Interpreted by the victim’s browser, executed in the origin of vulnerable
application

- Attack method
- Find flaw in Web application that allows injection of CODE, not just DATA
- (we will elaborate in a minute)
- Make victim visit that site

= We can read your GMalils ©

XSS — what an attacker can do

- Open an alert box!

_xlarge.jpeg

s.sodahead.com/polls/003820731/

1313763967_CAT_SHOCKED

- Hijack a session
+ Oldest trick in the book: steal their cookies
+ Force victim to “click” a link (or post something about BlackHat on Twitter)

http://image

- Alter content
- Display fake content
* Spoof login forms

- .. Steal your password manager’s passwords
* See our AsiaCCS paper if you are interested ©

- Do everything with the Web app, that you could do — under your ID

Server

Client

Types of XSS

Reflected

echo "Hello “.$ GET['name'];

var name location.hash.slice(l));
document.write("Hello " name) ;

/Kitten_and_partial_reflection_in_mirror.jpg

http://www.cat-lovers-only.com/images/kittens-in-a-box.jpg

Reflected XSS

http://vulnerable.org/?a=<script>alert(1)</script>

<html>

<script>alert(1)</script>

</html>

<html>
<script>alert(1)</script>

</html>

Stopping XSS attacks

If you are the application’s owner:
- Don’t use user-provided data in an unencoded/unfiltered way

- Use secure frameworks or other magic

- Use Content Security Policy, sandboxed iframes, ...

Stopping XSS attacks

If you are the application’s user:

- Turn of JavaScript

- Client-side XSS Filters
+ NoScript
- 1E
* Chrome (the “XSS Auditor”)

Quick digression:
finding a lot of

DOMXSS vulns

Finding and exploiting DOMXSS
vulnerabilities automatically at scale

- ... using byte-level taint tracking in Chromium
- each character in a string has its source information attached to it

- ... Chrome extension to crawl given set of Web sites
- also the interface between taint engine and central server

.. and an exploit generator

 using taint information

- and HTML and JavaScript syntax rules
* to generate exploits fully automatic

Results (many many eats XSS)

- For our study, we analyzed Alexa Top 5k
- Found 480 domains with vulnerabilities

- Reran experiment against Alexa Top 10k

- Found a total of 1,602 unique vulnerabilities
* .. On 958 domains

- Auditor turned off at that point

Motivation

- So, we had this considerable amount of real-world XSS vulnerabilities
- And our prime testing platform was built onto the Chrome browser

- Hence, we got curious: How well does the Chrome Auditor protect us?
- We reran our experiment, with the Auditor turned on

- The Auditor did not catch all of our exploits

- This made us even more curious...
- Why were the exploits not blocked?
- And can we increase the number of bypasses?

Bypassing the
XSSAuditor

Reflected XSS (revisited)

http://vulnerable.org/?a=<script>alert(1)</script>

<html>

<html>

<script>alert(1)</script> .
<script>alert(1)</script>

</html> </html>

XSS Payload 1s contained the request (i.e., in the URL)!

XSS Filter Strategies

- NoScript: Check outgoing requests for JavaScript

- 1E: Use regular expression to compare HTTP requests and responses

- XSSAuditor

- Don’t look at requests
* When response comes in, invoke HTML parser (actually, tokenizer)

* When a “dangerous” element or attribute is found during parsing, check
the corresponding request’s URL

document.write

fg" /
| —— HTTP Response —»@— No

Yes

v

O

How the XSS Auditor works

Parser Engine

- An incoming HTTP response is parsed

/4

- Every time the parser encounters an HTML
construct that potentially executes JavaScript, the
Auditor 1s invoked

Yes

* Important fact one: Only during the initial parsing process

* Important fact two: This check 1s done only if certain characters are contained in
the URL: <, >, “and °

- The auditor checks the HTTP request, if the encountered HTML/JavaScript
can be found in the request’s URL (or body)

+ Important fact three: Depending on the HTML construct, the matching algorithm
differs

- If a match 1s found, the parser replaces the potential attack with a harmless
placeholder

Auditor matching rules (simplified)

- Inline scripts

<script>alert (1l)</script>

- Matching rule

* ... the Auditor checks whether content of script is contained in the
request

* ... skipping initial comments and whitespaces,
* ...only using up to 100 characters

- ...stop i1f encountering a “terminating character”:
< #2 /] ..

Auditor matching rules (simplified)

- HTML attributes

+ Event handlers

+ Attributes with JavaScript URLs
<iframe src="javascript:alert (l)"></iframe>

- For each attribute
* ... the Auditor checks whether the attribute contains a JavaScript URL
- ... or if the attribute is an event handler

- Matching rule
* Check if the complete attribute is contained in the request

Auditor matching rules (simplified)

- For HTML elements that can reference external content

<script src="//attacker.org/script.js"></script>
<embed src="//attacker.org/flash.swf"></embed>

- Matching rule
* ... the Auditor checks whether the tag name is contained in the request
- ... and whether the complete attribute is contained in the request

How the XSS Auditor works

Parser Engine

- An incoming HTTP response is parsed

/4

- Every time the parser encounters an HTML
construct that potentially executes JavaScript, the
Auditor 1s invoked

Yes

« Important fact one: This check i1s done only if certain characters are contained in
the URL: <, >, “and °

- The auditor checks the HTTP request, if the encountered HTML/JavaScript
can be found in the request’s URL (or body)

+ Important fact two: Depending on the HTML construct, the matching algorithm
differs

- If a match 1s found, the parser replaces the potential attack with a harmless
placeholder

How the XSS Auditor works
- An incoming HTTP response is parsed ﬁ

Parser Engine

Yes

tered HTML/JavaScript

the matching algorithm

attack with a harmless

How to bypass the XSS Auditor

document.write

- An incoming HTTP response is parsed ﬁ
HTML e JavaScript

Parser Engine

Yes

tered HTML/JavaScript

the matching algorithm

attack with a harmless

How to bypass the XSS Auditor

document.write

- An incoming HTTP response is parsed ﬁ
HTML e JavaScript

Parser Engine

/4

Yes

aone only if certain characters are contained in

tered HTML/JavaScript

the matching algorithm

attack with a harmless

How to bypass the XSS Auditor

document.write

- An incoming HTTP response is parsed ﬁ
HTML e JavaScript

Parser Engine

/4

Yes

aone only if certain characters are contained in

tered HTML/JavaScript

the matching algorithm

attack with a harmless

Avoilding Auditor
Invocation

document.write

Bypass 1nvocation

: 3 » [g
using eval S T > HES
Yes
- Filter works only for injected HTML @

- ... not for injected JavaScript

document.write

Bypass invocation 1n
the HTML Parser SP-HES-

I Parser . Engine

- Parsing "document fragments"
* 1.e. iInnerHTML, outerHTML, insertAdjacentHTML

+ For performance reasons, Auditor 1s off for
document fragments

- =» all vulnerabilities targeting these sinks go through

- Unquoted attribute injection

- Auditor 1s disabled if <, >, “ and ‘ are not found 1n the request

- All injections that lead to JS execution, that do not require these
characters evade the Auditor

document.write

HTML-free

. . . N HTML No JavaScript
1 nJ e C t]. O n S §- Parser S rEngine

Various injection techniques that live solely in the @
JavaScript space
+ As the HTML parser 1s not involved, the Auditor is not activated

1. DOM bindings

* e.g. assigning src attribute of existing script tag
+ No HTML parsing, as the injection affects the already parsed DOM

2. Second-order flows
* e.g. cookies or Web Storage
* Injection vector cannot be found in the request

3. Alternative data sources
- e.g. postMessages
- Attack vector enters the page through non-request channels

String-matching
1Ssues

Create situations, in which the injected vector does not match the
parsed JavaScript

document.write

: : : \ " avaScri
Partial Injections SBE—EE >
- Hijack an existing tag
- Hijack an existing attribute (e.g. script.src)

- Hijack an existing script node

document.write

Partial Injections SS—ES | X

- Hijack an existing tag

- Hijack an existing attribute (e.g. script.src)

- Hijack an existing script node

http://www.vuln.com/partial. html#_

'
4

document.write

. . \ " avaScript
Trailing content SE—8EE T
- Idea: use existing content to fool Auditor

- ... while still resulting in valid JavaScript

document.write

Trailing content SH—ED |+ EE

- Idea: use existing content to fool Auditor

- ... while still resulting in valid JavaScript

etps /1 Sezail nemik o<ing szo-//a (NN

3

<ing sre=//a GREEEOESICAt()ipX!>

document.write

Trailing content 3 e O

- Idea: use existing content to fool Auditor

- ... while still resulting in valid JavaScript

- Further trailing content-based bypasses
+ Trailing slashes (Auditor stops search for payload after second slash)
* Trailing SVG (using Semicolon)

document.write

. . . \ " avaScript
Double injections SP—EE >
- Single input, multiple injections, single sink
- Multiple inputs, multiple injections, single sink

- Multiple injection points, multiple sinks

document.write

% HTML JavaSecript

Parser Engine

Double 1njections

- Single input, multiple injections, single sink

- Multiple inputs, multiple injections, single sink

- Multiple injection points, multiple sinks

...multi.html#")</script>'><script>cat(); void("

<img height='250
")</script>'><script>cat(); void("
' src='c.jpg'><img height='250
")</script>'><script>cat(); void("
' src='c.jpg'>

document.write

Double 1injections 3§ e | O

- Single input, multiple injections, single sink

- Multiple inputs, multiple injections, single sink

- Multiple injection points, multiple sinks

c..multi.html

<img height='2

' src='c.jpg'><img height=' 250-

</script>
'><script>cat(); void(

src='c.jpg'>

document.write

Double 1njections § o W T

- Single input, multiple injections, single sink

- Multiple inputs, multiple injections, single sink

- Multiple injection points, multiple sinks
...multi.html#")</script>'><script>cat(); void("

<img height='250")</script>"'>
<script>

<!scr1pt>

'><script>cat(); void("' src='c.]jpg'>

Bypasses 1n the wild

Empirical study

- Using our existing infrastructure, we found
* ... 1,602 DOM-based XSS vulnerabilities

* ...on 958 domains

- We enhanced our exploit generator to target bypassable
vulnerabilities
* Not targeting DOM bindings, second-order flows or alternative attacks

Results of our study

- 776 out of 958 domains with bypassable vulnerabilities

Bypass type

mnerHTML 469
eval 78
srcdoc (tag hijacking) 146
Trailing content 80
Multi flows 42

Unquoted attribute
Inscript injection

Assignment to existing script src

Conclusion

What to take away?

- XSS still is a problem
- Attack potential maybe bigger than you thought

* DOM-based XSS on about 10% of the Alexa Top 10k domains

- Browsers deploy countermeasure to protect users
« IE and Chrome built-in, Firefox as a plugin

* Chrome arguably best filter

- Security analysis of the Auditor shows that
- ... there are many bypasses, related to both
* ... Invocation and
* ... string-matching issues

What else to take away?

- We built a fully-automated system to find DOMXSS

- Taint-aware browser

- Context-aware exploit generator

- We enhanced the generator to target known issues in the
Auditor

- Allowing for more exploits to bypass the Auditor

- We evaluated the impact of the issues
- Bypassing the filter on 776 out of 958 domains (81%)
... 1,162 out of 1,602 vulnerabilities (73%)

Thank you

visit us at kittenpics.org

Martin Johns Ben Stock
@datenkeller @kcotsneb

Sebastian Lekies

@sebastianlekies

