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Abstract—Despite Alice’s best efforts, her long-term secret
keys may be revealed to an adversary. Possible reasons include
weakly generated keys, compromised key storage, subpoena,
and coercion. However, Alice may still be able to communicate
securely with other parties, depending on the protocol used.
We call the associated property resilience against Actor Key
Compromise (AKC). We formalise this property in a symbolic
model and identify conditions under which it can and cannot be
achieved. In case studies that include TLS and SSH, we find that
many protocols are not resilient against AKC. We implement a
concrete AKC attack on the mutually authenticated TLS protocol.

Key words: Security protocols, security properties, Key Com-
promise Impersonation, adversary models, TLS, SSH

I. INTRODUCTION

If a government agency obtains the long-term secret key of a
service provider [1,2], it is clear that the agency can impersonate
the service provider to its users. But can the agency also
impersonate an arbitrary user to the service provider? Whether
this is possible depends on the security protocol in question. In
this paper we study the property that formalises this behaviour,
which we call resilience against Actor Key Compromise (AKC).

To illustrate AKC, consider a setting with a public-key
infrastructure: each party X has a long-term key pair for
asymmetric encryption or signing, where pk(X) denotes the
public key and sk(X) denotes the corresponding secret key. We
write {m}k to denote the encryption of m with k and h(m) for
the hash of m. In this setting, Alice can use certain protocols
to establish unilateral security guarantees. For example, Alice
is guaranteed the secrecy of the nonce na and agreement on
its value when sending it encrypted to Bob and receiving a
hash of it as follows:

1. A→ B : {na,A}pk(B)

2. B → A : h(na,A,B)

Here, as in many unilateral protocols, the protocol’s security
relies only on the secrecy of Bob’s long-term secret key.

Most modern protocols offer bilateral guarantees, established
through mutual authentication protocols or authenticated key
exchange protocols. As a standard example, consider the

Needham-Schroeder-Lowe protocol [3]:

1. A→ B : {na,A}pk(B)

2. B → A : {na, nb,B}pk(A)

3. A→ B : {nb}pk(B)

Such bilateral protocols can be viewed as combining two
unilateral protocols: if Alice’s long-term secret key is compro-
mised, Bob’s half of the bilateral guarantees is lost because the
adversary can impersonate Alice. But what about Alice’s half?
Since Bob’s key is not compromised, Alice might expect to
obtain the guarantees she would have when using an appropriate
unilateral protocol.

It turns out that not every bilateral protocol has this property.
For example, if Alice’s secret key is compromised in the
Needham-Schroeder-Lowe protocol, she then no longer obtains
secrecy of the nonces nor achieves agreement on nb. Consider
the following attack, in which AAlice denotes that the adversary
A sends or receives a message as Alice:

1. Alice→ Bob : {na,Alice}pk(Bob)

2. Bob→ AAlice : {na, nb,Bob}pk(Alice)

3. A decrypts message using sk(Alice) and learns na, nb
4. A chooses nb′ and constructs {na, nb′, Bob}pk(Alice)

5. ABob → Alice : {na, nb′, Bob}pk(Alice)

6. Alice→ ABob : {nb′}pk(Bob)

We say that such protocols are vulnerable to AKC attacks: if
the long-term secret key of a party (the actor) is compromised,
the party can no longer obtain unilateral guarantees when
communicating with another party (the peer) even when the
peer’s key is still secret. From the actor’s local perspective,
protocols that are vulnerable to AKC attacks offer weaker
security guarantees than many unilateral protocols, because the
vulnerable protocols only achieve the unilateral guarantees if
both the long-term keys of the actor and the peer are secret.

This phenomenon has been largely ignored by the security
protocol community. A notable exception is in the research
literature on authenticated key exchange protocols, where a
limited instance of this problem has been studied. Namely,
there are so-called Key Compromise Impersonation (KCI)
attacks [4,5], where the actor’s key is revealed and used by the
adversary to impersonate another party communicating with
the actor. Of course, one could also consider such an adversary



when ensuring the non-repudiation of online payments, or for
secrecy of votes in an e-voting protocol. We conclude that the
core issue is neither limited to key exchange protocols nor
to authentication. The loss of a party’s long-term secret key
may impact any security properties of that party in any type
of security protocol.

Contributions. We provide the first systematic analysis of
the consequences of compromising the actor’s secret key,
and propose countermeasures. First, we introduce actor key
compromise and define the related notions of actor key
compromise security, actor key compromise resilience, and
actor key compromise attack. Our definitions are independent
of the choice of protocol, adversary, and property. We show
that key compromise impersonation is a specific instance of
actor key compromise. Second, we provide constructive results
showing how some actor key compromise vulnerabilities can be
avoided in protocol design by using asymmetric encryption and
signatures. Third, we prove impossibility results showing that a
large class of authentication properties cannot be achieved under
actor key compromise by protocols that only use symmetric
cryptography and hashing.

Finally, we look at actor key compromise in practice. We
analyse a set of protocols, including TLS and SSH, for their
resilience against actor key compromise. We find attacks on sev-
eral protocols, including AKC attacks on mutually authenticated
TLS-RSA as well as the combinations of unilateral TLS-RSA
with authorisation protocols such as Apache’s mod auth basic,
OAUTH, and SAML. For mutually authenticated TLS, we
implement and carry out our AKC attack against a fully patched
Apache webserver running TLS v1.2. We provide and verify
concrete fixes for the vulnerable protocols.

Organisation. We describe our modelling framework in
Section II and use it to formalise actor key compromise in
Section III. We show how to achieve actor key compromise
security by protocol transformation in Section IV and prove
impossibility results in Section V. We present case studies in
Section VI, examine related work in Section VII, and draw
conclusions in Section VIII. We provide full proofs in the
appendix.

II. MODELLING FRAMEWORK

We first give an informal definition of an AKC attack to
provide the context for our model. In the next section, we
formally define this concept.

Definition 1 (Actor key compromise attack, informal): We
say that an attack on a security property of an agent A is an
actor key compromise attack if the attack requires that the
adversary obtains and uses a long-term private key of A.
Before we describe our formal framework, we give the notation
we use for functions and sequences. For f a partial function
from X to Y , we write f : X 7→ Y . For every partial
function f , we denote its domain by dom(f) and its range by
ran(f). We write f ∪ f ′ for the union of two partial functions
with disjoint domains. If S ⊆ dom(f), we write f |S for
the restriction of f to S. We write f [a 7→ b] to denote f ’s

update, i. e., f ′ where f ′(a) = b and for all x ∈ dom(f)\{a},
f ′(x) = f(x). If f is also a (total) function, i.e. it is defined
for each element of X , we write f : X → Y . Let S∗ denote
the set of all finite sequences of elements from S. We write
〈s1, . . . , sn〉 to denote the sequence of s1 to sn and define
last(〈s1, . . . , sn〉) = sn. We write e ∈ s if there exists an
i ∈ {1, . . . , n} such that e = si. Finally, we write s.s′ for the
concatenation of the sequences s and s′.

A. Protocol specification

Our framework is based on [6,7], where the main building
blocks for protocol specifications are roles. A protocol can
have any finite number of roles, and is run by agents who
execute those roles. Agents may execute each role multiple
times, and every role can be executed by any agent. Concrete
role instances that occur during protocol execution are called
runs. While roles are built out of role events, runs consist of
their instantiated counterpart, run events. Role and run events
contain role and run terms, respectively. We assume, prior to
protocol execution, that every agent has generated or securely
received a long-term asymmetric key pair consisting of a public
and a secret key, and has authentic copies of his long-term
symmetric keys and the public keys of all other agents.

We assume given the pairwise disjoint, infinite sets Role,
Agent, Fresh, RID, Var, and Func of roles, agent names,
freshly generated terms (nonces, coin flips, etc.), run identifiers,
variables, and function names (hash functions, constants, etc.).
We also assume that for all n ∈ N0, there is an infinite number
of function names of arity n. We denote by Const ⊆ Func
the set of all constants, i.e., the function names of arity 0. We
assume that RID contains two distinguished run identifiers,
Test and ridA, which are respectively used to identify the test
run and the adversary run. In the computational setting, the
test run is the run under attack. We refer to it to define the
adversary’s capabilities to perform different types of key reveal
queries. Such queries can be executed by the adversary run.

Definition 2 (Terms):

Term :: = Role | Agent | Fresh | Fresh#RID | Var

| (Term,Term) | {Term}Term | Func(Termn)

| k(Role,Role) | pk(Role) | sk(Role)

| k(Agent,Agent) | pk(Agent) | sk(Agent)

The superscript n in Func(Termn) denotes that the arity n ∈
N0 depends on the function name. We omit the brackets if
n = 0. By k(X,X ′) we denote the symmetric long-term secret
key shared between X and X ′, pk(X) denotes X’s asymmetric
long-term public key, and sk(X) denotes the corresponding
secret key. By {t1}t2 we denote either signature, asymmetric
encryption, or symmetric encryption, depending on whether
t2 is an asymmetric secret key, public key, or any other term,
respectively. Pairing is not associative, and we write (a, b, c)
to denote ((a, b), c).

We define substitutions as partial functions in the usual way,
except that they are defined on Role ∪ Var. A substitution
σ : Role ∪ Var 7→ Term such that dom(σ) = {x1, . . . , xn},



ran(σ) = {t1, . . . , tn}, and σ(xi) = ti for all i ∈ {1 . . . , n}
is written as σ = [t1, . . . , tn/x1, . . . , xn]. When applying
a substitution to terms, we extend the substitution to an
endomorphism on Term in the standard way. By {t/t′} we
denote the function that replaces every occurrence of the
subterm t′ with the term t. We call such functions replacements.

We define two subterm relations: the syntactic subterm
relation, which does not take into account the position of
a subterm within a term, and the accessible subterm relation,
which only identifies potentially retrievable subterms, given
knowledge of appropriate keys.

Definition 3 (Syntactic subterm relation): The syntactic
subterm relation v is the reflexive, transitive closure of
the smallest relation v on terms such that for all n ∈ N,
t1, . . . , tn ∈ Term, and f ∈ Func of arity n:
tj v (t1, t2) tj v {t1}t2 tj v k(t1, t2) (j ∈ {1, 2})
t1 v pk(t1) t1 v sk(t1) ti v f(t1, . . . , tn) (i ∈ {1, . . . , n})

Definition 4 (Accessible subterm relation): The accessible
subterm relation vacc is the reflexive, transitive closure of
the smallest relation on terms where for all t1, t2 ∈ Term,
t1 vacc (t1, t2), t2 vacc (t1, t2), and t1 vacc {t1}t2 .

We extend both subterm relations to sets: for a term t and set
S, t v S (t vacc S) means that there exists a term t′ ∈ S such
that t v t′ (t vacc t

′). We write vars(t) for {x ∈ Var : x v t}.
We assume the existence of an inverse function on terms such
that for all t ∈ Term, if t = pk(t′) or t = sk(t′) for some
t′, then t−1 = sk(t′) or t−1 = pk(t′), respectively; otherwise,
t−1 = t.

We now define which terms can be inferred from a given set
of terms. We denote by ` the smallest relation such that for all
n ∈ N0, f ∈ Func of arity n, and S ∪ {t1, . . . , tn} ⊆ Term,
` respects the following rules:

S ` t1
(t1 ∈ S)

S ` t1 S ` t2
S ` (t1, t2)

S ` t1 S ` t2
S ` {t1}t2

S ` t1 . . . S ` tn
S ` f(t1, . . . , tn)

S ` (t1, t2)

S ` t1
S ` (t1, t2)

S ` t2
S ` {t1}t2 S ` t−1

2

S ` t1

We call the rules in the second row composition rules and
those in the third row decomposition rules. If a term t can
be derived from a set S in finitely many applications of the
above rules with every branch of the derivation closed, we
write S ` t and say that S infers t. We call such derivation a
`-derivation tree for t from S. If there exists a `-derivation
tree for t from S of height at most n, we write S `n t.

We define RoleTerm as the set of terms that have no
subterms in Agent ∪ {n#rid : n ∈ Fresh, rid ∈ RID}. We
define RunTerm as the set of terms that have no subterms
in Role ∪ Fresh. We call Role ∪ Agent ∪ {x, x#rid : x ∈
Fresh, rid ∈ RID} ∪Var ∪ Const the set of atomic terms.

Next we define role and run events. We assume two infinite,
disjoint sets are given, both pairwise disjoint from Term, Func
and RID. They are Claim, the set of all claim names, which
we use to specify claims of various security properties, and

Label, which we use to label events. We additionally assume
that {alive, commit, running, secret} ⊆ Claim.

Definition 5 (Role and run events): For all R ∈ Role and
a ∈ Agent, we define:

RoleEventR :: = sendLabel(R,Role,RoleTerm)

| recvLabel(Role, R,RoleTerm)

| claimLabel(R,Claim[ , Role][ , RoleTerm])

RunEventa :: = sendLabel(a,Agent,RunTerm)

| recvLabel(Agent, a,RunTerm)

| claimLabel(a,Claim[ , Agent][ , RunTerm])

Additionally, we define RoleEvent =
⋃
R∈Role RoleEventR

and RunEvent =
⋃
a∈Agent RunEventa.

For example, the event sendl0(Alice,Bob, {n#rid}pk(Bob))
signifies that Alice sends Bob a nonce n#rid, which is
generated in the run rid and encrypted with Bob’s public
key.

Two other events can occur during execution: create

and LKR. They respectively denote creating a run of some
role and revealing the long-term keys of an agent to the
adversary. We denote the set RunEvent ∪ {create(R) : R ∈
Role} ∪ {LKR(a) : a ∈ Agent} by TraceEvent, and the
set RoleEvent ∪ TraceEvent of all events by Event. We
homomorphically extend all replacements and substitutions
to events and sequences of terms and events. For every
ev ∈ {send, recv, claim}, l ∈ Label, and event e = evl(·),
we let evtype(e) = ev and label(e) = l. We call ev the event
type of e, and l the label of e. Additionally, if e is of the
form evl(·, ·,m) or evl(·, ·, ·,m), where m ∈ Term, we write
cont(e) = m and call m the contents of e.

We require every sequence of role events that occurs
in a protocol specification to satisfy some well-formedness
conditions. Before specifying them, for all S ∈ {Role,Agent},
we define the set LTK(x) of all long-term secret keys of
x ∈ S as {sk(x)} ∪

⋃
x′∈S{k(x, x′), k(x′, x)}. We also define

the operator � that selects the set of terms that are the contents
of events of a particular type: for all e ∈ Event, s ∈ Event∗,
and ev ∈ {send, recv, claim}, let 〈〉 � ev = ∅ and

(〈e〉.s) � ev =

{
{cont(e)} ∪ (s � ev), if evtype(e) = ev,

s � ev, otherwise.

For all s ∈ Event∗ and l ∈ Label such that l occurs in s, we
define upto(s, l) as the prefix of s, up to and including the
first event labelled l.

Definition 6 (Well-formed sequence of role events for R):
Let R ∈ Role. A sequence s ∈ RoleEvent∗R is well-formed
for R if:
• all event labels in s are unique,
• for all x ∈ Var, if e ∈ s is the first event in s such that
x v cont(e), then evtype(e) = recv and x vacc cont(e)
(every variable occurring in an event must be initialised in
an accessible position in a recv), and

• for all l ∈ Label, R′ ∈ Role, and t ∈ RoleTerm such that
sendl(R,R

′, t) ∈ s, we have that LTK(R) ∪ {S, pk(S) :
S ∈ Role} ∪ {n ∈ Fresh : n v (upto(s, l) � send)} ∪



R R′

{R, n}pk(R′)

secret(n)

Fig. 1. Example protocol 1.

R R′

{R, n}pk(R′), {h(R, n)}sk(R)

secret(n)

Fig. 2. Example protocol 2.

(upto(s, l) �recv) ` t (role R must be able to construct the
contents of each of its send events).
When a message is received during protocol execution

(defined in the next section), some terms may be stored in
variables. A type function formalises which terms can be stored
in which variable. A recv step can be executed only if each
variable stores a term of its type.

Definition 7 (Protocol): Let Π : Role 7→ RoleEvent∗ be a
partial function and typeΠ : Var → P(RunTerm) a function.
If for all R ∈ dom(Π), Π(R) is well-formed for R, we say
that (Π, typeΠ) is a protocol.
We introduce two protocols that we use as running examples in
Figure 1 and 2. Both protocols are two-role protocols, depicted
as message sequence charts. In the first one, R sends to R′ its
identity and a freshly generated nonce n, encrypted with the
public key of R′. In the second protocol, a signed hash of the
payload is additionally transmitted. In both protocols, role R′

claims the secrecy of n upon successful completion, i.e. that
the adversary cannot infer it.

Note that while we are usually most interested in one or
two roles relevant to the security property we are considering,
and only draw those roles in message sequence charts, there
is no finite bound on the number of roles in our protocols.

Let us assume that the protocol from Figure 1 is a key
transport protocol, and that n is a fresh session key. If
n is secret, R′ has the following guarantee: any messages
symetrically encrypted with n that R′ later receives are secret
and are sent by R. If the adversary, however, knows sk(R′),
he can learn n and use it to encrypt any message for R′.

Example 1: One possible formal specification of the proto-
col in Figure 1 is as follows: let R,R′ ∈ Role, {1, 2, 3} ⊆
Label, n ∈ Fresh, xn ∈ Var, and define

Π(x) =


〈send1(R,R′, {R,n}pk(R′))〉, if x = R,

〈recv2(R,R′, {R, xn}pk(R′)),

claim3(R′, secret, xn)〉, if x = R′.

Moreover, let typeΠ assign RunTerm to every variable.

We can extend any typeΠ function to Term by assigning
to each term the set of all its possible instantiations: for all
R ∈ Role, n ∈ Fresh, and y ∈ Agent∪Fresh#RID, we define
typeΠ(R) = Agent, typeΠ(n) = {n#rid : rid ∈ RID}, and
typeΠ(y) = {y}. We homomorphically extend typeΠ to Term.

B. Execution model and security properties

We model protocol execution as a transition system. The set
of all states of our system is State = Trace×P(RunTerm)×
(RID 7→ RunEvent∗)× (RID 7→ (Role∪Var) 7→ RunTerm),
where Trace = (RID × TraceEvent)∗ represents all pos-
sible execution histories or traces. Every execution state
s = (trs, AKs, ths, σs) consists of (1) a trace trs, (2) the
adversary’s knowledge AKs, (3) a partial function ths mapping
the run identifiers of initiated runs to sequences of run events,
and (4) the role and variable instantiations σs of all runs. To
keep the notation compact, we write σs(rid) as σs,rid.

To define initial states, for each rid ∈ RID, we define
a replacement (·)#rid to distinguish between local freshly
generated terms of each run by assigning unique names to the
terms: (·)#rid =

⋃
n∈Fresh{n]rid / n}. We define the set of all

test substitutions TS(Π, typeΠ) as the set of all substitutions
σ : Role ∪Var→ RunTerm such that vars(ran(σ)) = ∅ and
for all x ∈ dom(σ), σ(x) ∈ typeΠ(x).

Definition 8 (Initial states): Let (Π, typeΠ) be a protocol.
For all R ∈ dom(Π), the set of initial states IS(Π, typeΠ, R)
is defined as⋃
σ∈TS(Π,typeΠ)

{
(〈〉, AK0, T est 7→ σ(Π(R)#Test), T est 7→ σ)

}
,

where AK0 = {a,pk(a) : a ∈ Agent} ∪ {n#ridA : n ∈
Fresh} is the initial adversary knowledge.

Example 2: We consider the following initial state for the
protocol in Example 1:

(〈〉, AK0, T est 7→ 〈recv2(Alice,Bob, {Alice, n#rid}pk(Bob)),

claim3(Bob, secret, n#rid)〉,
T est 7→ [Alice,Bob, n#rid, . . . /R,R′, xn, . . .])

The operational semantics of a protocol (Π, typeΠ) is
defined by a transition system that combines the execution-
model rules from Figure 3 with a set of adversary-compromise
rules or capabilities [6], chosen from those in Figure 4. We
identify adversaries with the set of their capabilities. We
normally omit the subscripted parameters from the rule names.

The create rule starts a new run of a protocol role R. The
rule is parametrised by the function Π. A fresh run identifier rid
is assigned to the run, thereby distinguishing it from previously
created runs, the adversary run, and the test run. The role names
of Π(R) are replaced with agent names by a substitution σ′,
which is saved in the state. The send rule sends a message m
to the network, thereby adding it to the adversary knowledge.
In contrast, the recv rule, which is parametrised by typeΠ,
accepts messages from the network that match the pattern pt,
where pt is a term that may contain variables. Each variable
must be instantiated with an element of its type. The resulting



R ∈ dom(Π) rid 6∈ (dom(th) ∪ {ridA,Test}) σ′ : Role→ Agent

(tr, AK, th, σ) −→ (tr.〈(rid, create(R))〉, AK, th[rid 7→ σ′(Π(R)#rid)], σ[rid 7→ σ′])
[createΠ]

th(rid) = 〈sendl(a, b,m)〉.seq
(tr, AK, th, σ) −→ (tr.〈(rid, sendl(a, b,m))〉, AK ∪ {m}, th[rid 7→ seq], σ)

[send]

th(rid) = 〈recvl(a, b, pt)〉.seq dom(σ′) = vars(pt) (∀x ∈ dom(σ′))(σ′(x) ∈ typeΠ(x)) AK ` σ′(pt)

(tr, AK, th, σ) −→ (tr.〈(rid, recvl(a, b, σ′(pt)))〉, AK, th[rid 7→ σ′(seq)], σ[rid 7→ σrid ∪ σ′])
[recvtypeΠ ]

th(rid) = 〈e〉.seq evtype(e) = claim

(tr, AK, th, σ) −→ (tr.〈(rid, e)〉, AK, th[rid 7→ seq], σ)
[claim]

Fig. 3. Execution-model rules

a = σTest(R) a 6∈ {σTest(R
′) : R′ ∈ dom(Π) \ {R}}

(tr, AK, th, σ) −→ (tr.〈(ridA, LKR(a))〉, AK ∪ LTK(a), th, σ)
[LKRactorΠ,R]

a 6∈ {σTest(R) : R ∈ dom(Π)}
(tr, AK, th, σ) −→ (tr.〈(ridA, LKR(a))〉, AK ∪ LTK(a), th, σ)

[LKRothersΠ]

Fig. 4. Adversary-compromise rules

substitution σ′ is applied to the remaining steps of rid and
saved in the state. The claim rule is used simply to log the
statements that runs make about the security properties they
expect to hold. We explain the connection between claims and
security properties in detail later in this section.

The LKRactor rule allows the adversary to learn the long-term
keys of the agent executing the test run (also called the actor).
The rule takes Π and R as parameters. The rule’s second
premise is needed since we allow agents to communicate
with themselves. Since LKRactor is the core component of
AKC, we discuss it in detail in Section III. The LKRothers rule,
which is parametrised by Π, formalises the standard Dolev-Yao
adversary’s capability to reveal the keys of any agent a that is
not an intended partner (or peer) of the test run.

Definition 9 (Transition relation and reachable states):
Let (Π, typeΠ) be a protocol, R ∈ dom(Π) a role, and A
an adversary. We define a transition relation →Π,typeΠ,R,A

from the execution-model rules in Figure 3 and the rules
in A. For states s and s′, s →Π,typeΠ,R,A s′ iff there exists
a rule in either A or the execution-model rules with the
conclusion s → s′ such that all of the premises hold. We
define the set of reachable states RS(Π, typeΠ, R,A) by
{s : (∃s0 ∈ IS(Π, typeΠ, R))(s0 →∗Π,typeΠ,R,A

s)}.
Example 3: The state (〈(rid, create(R))〉, AK0, th, σ)

where

th(x) =


〈send1(Alice,Bob, {Alice, n#rid}pk(Bob))〉, if x = rid,

〈recv2(Alice,Bob, {Alice, n#rid}pk(Bob)),

claim3(Bob, secret, n#rid)〉, if x = Test
and

σx =

{
[Alice,Bob, . . . /R,R′, . . .], if x = rid,

[Alice,Bob, n#rid, . . . /R,R′, xn, . . .], if x = Test

is reached from the initial state in Example 2 by a single
application of the create rule, regardless of the adversary A.
In this state, Alice is running the newly created run rid of the

role R with whom she believes to be Bob in role R′. Alice
has not yet executed any protocol steps in run rid.

We model security properties as reachability properties. To
keep our definitions independent of the protocol, we use the
claim events to declare that a protocol is meant to satisfy a
certain property. We will define three security properties for
role R: secrecy, aliveness, and non-injective data agreement [8].
First we introduce an auxiliary function: for all rid ∈ RID,
R′ ∈ Role, and reachable states s (for any instantiation of
Π, typeΠ, R and A) such that (rid, create(R′)) ∈ trs, we
define roles(rid) = R′, and we let roles(Test) = R.

Definition 10 (Security claims, |=): Given a label l ∈
Label, roles R,R′ ∈ Role, and t ∈ RoleTerm, we call every

γ ∈ {claiml(R, secret, t),

claiml(R, alive, R′),

claiml(R, commit, R′, t)}

a security claim for R. For all states s ∈ State,
s |= γ denotes that the following implication is true: if
(Test, σs,Test(γ

#Test)) ∈ trs, then
• AKs 0 σs,Test(t#Test) for γ = claiml(R, secret, t)

(secrecy of t for R)
• (∃rid ∈ RID)(σs,rid(roles(rid)) = σs,Test(R

′)) for
γ = claiml(R, alive, R′) (aliveness of R′ for R)

• (∃rid ∈ RID)(roles(rid) = R′∧
(rid, σs,Test(claiml(R

′, running, R, t#Test))) ∈ trs)
for γ = claiml(R, commit, R′, t)
(non-injective agreement for R with R′ on t)

Let (Π, typeΠ) be a protocol, R ∈ dom(Π), A an adversary,
and γ ∈ Π(R) a security claim. By (Π, typeΠ) |=A γ we
denote that for all s ∈ RS(Π, typeΠ, R,A), s |= γ.
Note that we do not consider a running claim to be a security
claim and simply use it to define non-injective agreement.
Namely, if in a particular state a commit claim executed by



Test matches a running claim previously executed by rid, and
rid was run in the correct role, then Test and rid agree on
the claims’ contents.

Example 4: Let P be the protocol in Example 1 and A
an adversary. We have P 6|=A claim3(R′, secret, xn). If we
change P to P ′ by adding claim4(R, secret, n) in any position
to the R role, we have P ′ |=A claim4(R, secret, n). We will
prove the generalisation of this fact in Section IV.

III. FORMALISING ACTOR KEY COMPROMISE

In this section we formalise actor key compromise and related
notions. This enables us to reason about the security guarantees
of agents whose long-term secret keys are compromised. We
define these notions independently of the choice of protocol,
adversary, and property.

Definition 11 (Actor key compromise security): Let
(Π, typeΠ) be a protocol, R ∈ dom(Π), A an adversary such
that LKRactor ∈ A, and γ ∈ Π(R) a security claim. We say
that γ is actor key compromise secure in (Π, typeΠ) with
respect to A if (Π, typeΠ) |=A γ.

For example, the secrecy of the nonce n in the protocols
in Figure 1 and 2 is not AKC secure. Consider the trace of
a regular execution of either protocol, where Alice performs
R and Bob performs R′. We can extend this trace using the
LKRactor rule on Bob, which is allowed since Bob is not an
element of the set {σTest(R)} = {Alice}. The adversary can
then use sk(Bob) to decrypt the nonce, violating the claim.

In contrast, the informal notion of a KCI attack suggests
that the secret keys of the actor are not only available to
the adversary, but are integral in performing the attack. We
formalise this as follows: if an adversary without LKRactor

cannot violate a property, but can violate it using LKRactor,
only then do we call the attacks that arise AKC attacks. We
term the absence of such attacks AKC resilience.

Definition 12 (AKC resilience and AKC attack): Let
(Π, typeΠ) be a protocol, R ∈ dom(Π), A an adversary such
that LKRactor ∈ A, and γ ∈ Π(R) a security claim. We say
that γ is actor key compromise resilient in (Π, typeΠ) with
respect to A if

(Π, typeΠ) |=A\{LKRactor} γ =⇒ (Π, typeΠ) |=A γ.

Otherwise, each s ∈ RS(Π, typeΠ, R,A) where s 6|= γ is an
actor key compromise attack by A on γ in (Π, typeΠ).
Note that a claim γ is trivially AKC resilient if there is an
attack on γ without the LKRactor capability. We say that a
protocol is AKC resilient or AKC secure with respect to an
adversary if all security claims in it are. If there is an AKC
attack by an adversary on a protocol’s security claim, we say
the protocol is vulnerable to AKC attacks.

We now revisit our examples. The KCI attack on the
protocol in Figure 1, which is described just before Example
1, represents an attack on secrecy by {LKRactor}. It does not
however represent an AKC attack on secrecy by {LKRactor}
because there already exist attacks on secrecy by the empty
adversary, i.e. one with no capabilities beyond the execution-
model rules. The adversary can generate and encrypt a nonce

himself. Hence the protocol is trivially AKC resilient with
respect to {LKRactor}. We see that, in general, AKC resilience
does not imply AKC security, which is the absence of attacks
on secrecy by an adversary who has the LKRactor capability.

The protocol from Figure 2, however, is not AKC resilient
with respect to {LKRactor}. The empty adversary cannot
generate the nonce himself because he cannot forge the
signature. In fact, the nonce is secret with respect to the empty
adversary. Therefore, decrypting a sent, encrypted nonce as in
the KCI attack described just before Example 1 gives rise to
an AKC attack by {LKRactor} on the secrecy of the nonce.

When AKC resilience is non-trivially satisfied, it coincides
with AKC security (AKCS). This is the reason we will primarily
focus on AKCS: after all, we want to use protocols with no
vulnerabilities, regardless if they are AKC-related. Another
reason is that we can represent KCI resilience (KCIR) as an
instance of AKCS.

KCIR as an instance of AKCS. KCIR key establishment
protocols provide an important security guarantee to their
users: even if the users’ own long-term keys are compromised,
they can still authenticate messages encrypted with established
session keys. Although the notion of a KCI attack has remained
informal and subjective, KCI resilience has been incorporated
into different formal models based on a recurring idea: if an
adversary capable of getting the actor’s keys cannot perform any
attack on session-key secrecy in a key establishment protocol,
then he cannot perform a KCI attack.

In the following proposition, we prove that session-key
secrecy during a key establishment handshake coincides with
key agreement after a particular key confirmation step, even
under AKC. The step requires a peer to apply any hash function
unused in the handshake to the key and the relevant identities,
and send the hash value to the actor as depicted in Figure 5.
This shows how the standard notion of KCIR can be recast in
our terms as both AKCS of secrecy and authentication.

One of the lemmas we use in the proof concerns terms t
that have no proper accessible subterms. For certain sets S, t
is unnecessary for inferring terms from S that do not contain
t as a subterm. The second lemma helps us understand the
options available to an adversary for inferring a given term: the
term has been sent as an accessible subterm and the adversary
managed to retrieve it, or he composed it himself. The proofs
of both lemmas can be found in the appendix.

Lemma 5 (Inference-irrelevant sets): Let S ∪ T ⊆ Term
where T is finite and for all t ∈ T , t 6v S \ T , t−1 = t and t
has no proper accessible subterms. Let t′ ∈ Term such that
for all t ∈ T , t 6v t′. Then S ` t′ if and only if S \ T ` t′.

Lemma 6 (Composition lemma): Let S ∪ {t} ⊆ Term and
S ` t. Then t vacc S, or every minimal-height derivation of t
from S ends in a composition rule.

We now define the transformation in Figure 5, and prove
that the adversary can violate agreement on the session key
in the transformed protocol if and only if he knows the key
in the initial one. We will instantiate all the parameters just
before using the transformation.
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Fig. 5. KCIR as AKCS of secrecy and non-injective agreement

KC (Π)(x) =



Π(x).〈claiml1(R′, running, R,K ′),

sendl2(R′, R, h(R,R′,K ′))〉, if x = R′,

Π(x).〈recvl2(R′, R, h(R,R′,K)),

claiml1(R, commit, R′,K)〉, if x = R,

Π(x), otherwise.
The term K ′ corresponds to the view from R′ on the key K;
usually, one of them is a variable and the other is a fresh
value, but some protocols use compound terms. We want the
transformation to work on any key establishment protocol, so
we choose a symbol h that does not occur in the protocol
specification. With the help of some typing assumptions, this
prevents messages from the confirmation step from being
accepted in the receive events of the handshake.

Proposition 7 (KCIR as an instance of AKCS): Let
(Π, typeΠ) be a protocol, R,R′ ∈ dom(Π) such that R 6= R′,
and last(Π(R)) = claiml0(R, secret,K) where l0 ∈ Label
and K ∈ RoleTerm. Let l1, l2 ∈ Label and h ∈ Func all be
unused in Π, where l1 6= l2 and h does not occur in the set
ran(typeΠ)∪ ran(typeKC (Π)(K

′)). Let A be an adversary. If
typeKC (Π) = typeΠ and (KC (Π), typeKC (Π)) is a protocol,

(Π, typeΠ) |=A claiml0(R, secret,K) ⇐⇒
(KC (Π), typeKC (Π)) |=A claiml1(R, commit, R′,K).

IV. ACHIEVING AKCS BY TRANSFORMATION

In this section, we show how to avoid AKC vulnerabilities
during the protocol design stage. We achieve this by exploiting
unilateral protocols whose security only depends on the long-
term secret keys of the peers. To ensure that such keys are
unavailable to the adversary, we restrict ourselves to protocols
where no role sends out accessible asymmetric long-term secret
keys.

A. Achieving AKCS of secrecy

We first present a transformation that ensures the AKCS of
secrecy. The transformation, shown in Figure 6, adds a single
message exchange containing an asymmetrically encrypted
message. The message stays secret due to encryption, typing
assumptions and tagging, where the last two prevent the
message from being rerouted to the old part of the protocol.

Definition 13 (Tagging function τc): Let c ∈ Const. We
define τc : Term→ Term for all t, t1, . . . , tn ∈ Term by

τc(t) =


t, if t atomic or long-term key,
(τc(t1), τc(t2)), if t = (t1, t2),

{τc(t1), c}τc(t2), if t = {t1}t2 ,
f(τc(t1), . . . , τc(tn), c), if t = f(t1, . . . , tn).

We usually restrict the domain of τc to some set S of terms if
tagging more than the terms in S is unnecessary.

The following lemma tells us that if some term t that the
adversary cannot construct only occurs in his knowledge within
a term t′, then every term the adversary can infer only contains
t within t′. Its proof is given in Appendix A.

Lemma 8: Let S∪{t, t′} ⊆ Term and ⊥ ∈ Const such that
⊥ does not occur in S ∪ {t, t′}, S 0 t and t 6vacc {⊥ / t′}(S).
Then for all t′′ such that S ` t′′, t 6vacc {⊥ / t′}(t′′).

We require that no role is instructed to send its asymmetric
long-term secret key in an accessible position. Therefore, since
no adversary can reveal asymmetric long-term secret keys of
peers, they can also never infer those keys. The lemma in which
we prove this statement must be restricted if more powerful
adversaries such as the ones in [6] are allowed.

Lemma 9 (Peers’ asymmetric secret keys not inferable):
Let (Π, typeΠ) be a protocol where no asymmetric long-term
secret keys appear in accessible positions in send events. Let
R ∈ dom(Π), A an adversary, s ∈ RS(Π, typeΠ, R,A) a
state, and a ∈ {σs,Test(R′) : R′ ∈ dom(Π) \ {R}} an agent.
Then AKs 0 sk(a) holds.

For the transformation in Figure 6, we use the function:

TS (Π)(x) =


τc1 |S(Π(R)).〈sendl(R,R′, {m, c2}pk(R′)),

claiml′(R, secret,m)〉, if x = R,

τc1 |S(Π(x)), otherwise.

The transformation TS will only be useful if the protocol
designer ensures that R can indeed send the added message.
In other words, (TS (Π), typeTS(Π)) must be a protocol, i.e.
TS (Π)(R) must be well-formed for R.

Proposition 10 (Secrecy by asymmetric encryption): Let
(Π, typeΠ) be a protocol where no asymmetric long-term
secret keys appear in accessible positions in send events.
Let R,R′ ∈ dom(Π) where R 6= R′. Let c1, c2 ∈ Const,
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Fig. 6. Transforming Π for secrecy of m

l, l′ ∈ Label and n ∈ Fresh all be unused in Π such that
c1 6= c2 and l 6= l′. Let m ∈ RoleTerm such that n vacc m. Let
S = {{t}t′ : typeΠ({t}t′) ∩ typeTS(Π)({m, c2}pk(R′)) 6= ∅},
and A an adversary. If (TS (Π), typeTS(Π)) is a protocol
and typeTS(Π) = typeΠ, then (TS (Π), typeTS(Π)) |=A

claiml′(R, secret,m).

B. Achieving AKCS of agreement

We now define a function TA that transforms a protocol
into one that achieves non-injective agreement, as depicted in
Figure 7. A message signed by a peer convinces the test run
that at least one of the peer’s runs agrees on the message:

TA(Π)(x) =



τc1 |S(Π(x)).〈claiml(R′, running, R,m′),

sendl′(R
′, R, {R,m′, c2}sk(R′))〉, if x = R′,

τc1 |S(Π(x)).〈recvl′(R′, R, {R,m, c2}sk(R′)),

claiml(R, commit, R′,m)〉, if x = R,

τc1 |S(Π(x)), otherwise.
As before, m′ is an arbitrary term meant to unify with the
term m, and the transformation TA assumes that R′ can
indeed send the required signature. Therefore, we require that
(TA(Π), typeTA(Π)) is a protocol, i.e. that TA(Π)(R′) is a
well-formed sequence of role events for R′.

The following proposition states that data agreement can
be achieved by exchanging an additional signed message. The
proof uses the fact that the adversary cannot forge the signature
in (TA(Π), typeTA(Π)), because by Lemma 9 he cannot get
the required key. Through the signature, the peer confirms to
the actor that he agrees on the identities and the data.

Proposition 11 (Agreement by signing): Let (Π, typeΠ) be
a protocol where no asymmetric long-term secret keys appear
in accessible positions in send events. Let R,R′ ∈ dom(Π)
such that R 6= R′. Let l, l′ ∈ Label and c1, c2 ∈ Const
all be different and unused in Π, m,m′ ∈ RoleTerm, S =
{{t′}t′′ : typeΠ({t′}t′′) ∩ typeTA(Π)({R,m, c2}sk(R′)) 6= ∅},
and A an adversary. If (TA(Π), typeTA(Π)) is a protocol and
typeTA(Π) = typeΠ, then we have (TA(Π), typeTA(Π)) |=A

claiml(R, commit, R′,m).

V. IMPOSSIBILITY RESULTS

It is conjectured in [9] that KCIR requires the use of
asymmetric cryptography. We give a partial confirmation of

R R′

(Π, typeΠ), tagged by c1

running(R,m)

{R,m, c2}sk(R′)

commit(R′,m)

Fig. 7. Transforming Π for non-injective agreement on m

this conjecture: under weak assumptions on the protocol
specification and the adversary model, the use of just symmetric
cryptography and hashing cannot ensure AKCR for a large
class of security properties. This class includes, for example,
all authentication properties in Lowe’s hierarchy [8]. We prove
the result for aliveness and generalise it to all stronger claims.

Proposition 12 (Impossibility of aliveness): Let (Π, typeΠ)
be a protocol, R,R′ ∈ dom(Π) such that R 6= R′, l ∈ Label,
and claiml(R, alive, R′) ∈ Π(R). If for all S, T ∈ Role,
x ∈ Var, and n ∈ Fresh,

• pk(S) 6v Π(R) and sk(S) 6v Π(R),
• if k(S, T ) v Π(R), then S = R or T = R,
• there exists nx ∈ Fresh such that n#ridA

x ∈ typeΠ(x), and
• if n v Π(R), n in Π(R) appears first in a send, in accessible

positions only,

then (Π, typeΠ) 6|={LKRactor} claiml(R, alive, R′).
Definition 14 (At least as strong security claim): Let γ

and γ′ be security claims for R ∈ Role. We say that γ is at
least as strong as γ′ if for all protocols (Π, typeΠ) such that
R ∈ dom(Π) and γ, γ′ ∈ Π(R), adversaries A, and reachable
states s ∈ RS(Π, typeΠ, R,A), whenever instances of both γ
and γ′ are executed by Test in trs and s |= γ, then s |= γ′.
For example, claiml(R, commit, R′, t) is at least as strong as
claiml′(R, alive, R′).

Corollary 13 (Impossibility of authentication): Under the
assumptions of Proposition 12, for every security claim γ that
is at least as strong as claiml(R, alive, R′) and occurs before
it in Π(R), if (Π, typeΠ) |=∅ γ, then γ is not AKC resilient
in (Π, typeΠ) with respect to the {LKRactor} adversary.

Proof: Let γ′ = claiml(R, alive, R′). From Proposition
12, we have (Π, typeΠ) 6|={LKRactor} γ

′. Therefore, we know
there exists a state s ∈ RS(Π, typeΠ, R, {LKRactor}) such that
Test executed an instance of γ′ in trs, but s 6|= γ′. Since γ
appears before γ′ in Π(R), we know Test also executed an
instance of γ in trs. Since γ is at least as strong as γ′, s 6|= γ.
This implies (Π, typeΠ) 6|={LKRactor} γ. Since (Π, typeΠ) |=∅ γ
holds by assumption, we are done.



VI. CASE STUDIES

We have used the Scyther tool [10] to analyse the NSL
protocol, the CCITT X.509 family of protocols, the SSH
Transport Layer protocol, and the TLS protocol. Our findings
include an AKC attack on mutually authenticated TLS-RSA,
for which we provide a concrete implementation against an
Apache web server running TLS v1.2. All of the protocol
specifications needed to reproduce the tests in this section, as
well as the scripts for the attack, are available at [11].

There are several ways to fix a vulnerable protocol, depend-
ing on its requirements and deployment status: (1) switch to a
different mode of the protocol within its protocol suite, (2) use
generic Propositions 10 and 11 verbatim, or (3) use a modified
version of the transformations described in these propositions,
perhaps to achieve slightly different security requirements, and
prove the resulting protocol secure, e.g., with tool support. The
approach listed as (2) is best suited for use in the protocol
design stage. We give an application of (1) in the sections
on TLS, and examples of (3) when discussing NSL and the
CCITT X.509 protocols.

Note that Proposition 12 tells us what kind of changes are
insufficient to ensure AKCS: we cannot achieve authentication
under actor key compromise by employing just hashing and
symmetric keys. However, adding one or both to a protocol
that utilises other mechanisms may suffice. With this in mind,
we propose practical fixes for each of the vulnerable protocols.

A. Needham-Schroeder-Lowe

In the presence of a Dolev-Yao adversary, the Needham-
Schroeder-Lowe (NSL) protocol [3] achieves mutual authenti-
cation and secrecy of both nonces. However, as explained in the
introduction, it is vulnerable to AKC attacks on non-injective
agreement on the nonces for the initiator, and secrecy of both
nonces for both roles. We can fix the AKC vulnerabilities
by hashing the nonces in the response messages, which
prevents leaking the actor’s nonces after learning the actor’s
key. However, this is insufficient to achieve agreement on both
nonces because the claim of an actor in the A role could be
violated by the adversary replacing nb by nb′. We remedy
this problem by linking the nonces in the hash of the second
message, resulting in the protocol we call NSL-AKC:

1. A→ B : {na,A}pk(B)

2. B → A : {h(na, nb), nb,B}pk(A)

3. A→ B : {h(nb)}pk(B)

This protocol is not vulnerable to the attack from the introduc-
tion because the adversary does not learn na from decrypting
the second message. Therefore, he cannot produce a hash of
h(na, nb′), and agreement on both nonces is achieved even
under AKC. In NSL-AKC, AKC leads to the adversary learning
the peer’s nonce nb. However, the combination of both nonces
under a different hash, e.g. h′(na, nb), can still act as a shared
secret. We used Scyther to verify that NSL-AKC achieves
synchronisation (a strong authentication property that implies
agreement, cf. [7]) and secrecy of h′(na, nb), with respect to
{LKRactor} and for both roles.

TABLE I
AUTOMATIC ANALYSIS RESULTS

Protocol AKC attack

1. Needham-Schroeder-Lowe Yes
2 NSL-AKC No
3. CCITT X.509 three-message BAN Yes
4. CCITT X.509 three-message BAN fixed No
5. CCITT X.509 one-message Yes
6. CCITT X.509 one-message fixed No
7. SSH Transport Layer No
8. Mutual TLS-RSA Yes
9. Mutual TLS-DHE RSA No
10. Unilateral TLS-RSA with mod auth basic Yes

B. CCITT X.509 family

We consider a family of protocols from the recommendations
for the CCITT X.509 standard as modelled in the SPORE
library [12]. The protocols are meant to enable secure and
(mutually) authenticated access to a certificate directory. There
are AKC attacks on the secrecy of yb for the A role (likewise,
ya for the B role) in the BAN modified version of the CCITT
X.509 three-message protocol:

1. A→ B : {na,B, xa, {ya}pk(B)}sk(A)

2. B → A : {nb,A, na, xb, {yb}pk(A)}sk(B)

3. A→ B : {B,nb}sk(A)

To obtain secrecy of ya for B under AKC, we must encrypt
it with something other than pk(B). We normally have two
sources of secrecy to choose from (long-term secret keys and
freshly generated values), but under AKC we cannot depend
on the actor’s long-term secret keys. Therefore, we postpone
the transmission of ya to the third message and encrypt it with
yb, which is generated in the second message. The encryption
with pk(A) in message 2 makes yb secret for B, analogous to
the transformation in Proposition 10. We make xa secret for
A under AKC by encrypting it with pk(B). We also encrypt
yb by xa so that it is secret for A. We put xb inside of the
encryption with pk(A) to achieve agreement on xb for B,
which leads to synchronisation [7] under AKC for both roles.
The repaired protocol is successfully verified by Scyther:

1. A→ B : {na,B, {xa}pk(B)}sk(A)

2. B → A : {nb,A, na, {xb, {yb}xa}pk(A)}sk(B)

3. A→ B : {B,nb, {ya}yb}sk(A)

The CCITT X.509 one-message protocol is also vulnerable
to an AKC attack. Even though it is unilateral, its properties
depend on the keys of both parties.

1. A→ B : {ta, na,B, xa, {ya}pk(B)}sk(A)

There is an AKC attack on the secrecy of ya for the responder,
similar to the three-message protocol. The protocol can be
made AKC resilient by prepending a message {nb}pk(A) from
B to A, and replacing ya by {ya}nb in message 1.



C. SSH

The Secure Shell (SSH) protocol is used to establish a
secure channel between two endpoints, mainly for remote login
and command execution purposes. The mutually authenticated
public-key version of the SSH Transport Layer protocol [13]
is essentially a signed Diffie-Hellman key exchange. We used
Scyther to verify the AKC security of session-key secrecy
and synchronisation in the SSH Transport Layer protocol with
respect to {LKRactor, LKRothers}.

D. Mutually authenticated TLS

The TLS protocol [14] is the most widely deployed protocol
for secure communications on the Internet. It can be used
to unilaterally authenticate a server to a client and also
supports mutually authenticated modes. We first analyse mutual
authentication before returning to unilateral authentication in
the next section.

The mutually authenticated modes of TLS are typically used
in, for example, specialised banking applications [15] and VPN
access. The most commonly deployed mode of TLS is the
RSA mode. Abstractly (omitting, e.g., the explicit certificate
exchange), TLS-RSA proceeds as follows:

1. Client C and server S exchange nonces nc and ns and
parameters; C picks a random pre-master secret PMS .

2. C → S : {PMS}pk(S)

3. C → S : {h(msgs so far)}sk(C)

4. Both C and S compute CLIENTMK ,SERVERMK ,
CLIENTK ,SERVERK , and F , using only PMS and
public information.

5. C → S : CFIN = {F}CLIENTK

6. S computes F ′ from the keys derived from PMS and
public information.

7. S → C : SFIN = {F ′}SERVERK

The four computed session keys are used to encrypt and
authenticate the application data in subsequent communications.

We observe that the only secret information involved in the
computation of all session keys is the pre-master secret PMS .
Therefore, the secrecy of the session keys critically depends
on the secrecy of PMS , which in turn is based on the secrecy
of the server’s long-term secret key sk(S) (see message 2).

Scyther finds a server-side AKC attack by {LKRactor} on
session-key secrecy. In the attack, the adversary essentially
eavesdrops on a regular handshake. Then, by using sk(S), he
decrypts {PMS}pk(S) to get PMS , enabling him to compute
the session keys. Hence he can intercept any subsequently
transmitted messages, or inject his own, thereby rendering the
established communication channel completely insecure.

We implemented this attack against an Apache web server
running TLS v1.2 [14], using a man-in-the-middle attack script
written in Python. The script connects to an OpenSSL integrated
client program (s client) on one end, and the Apache web server
on the other. For the AKC attack we provide our script with
the long-term secret key of the web server. The attack script
eavesdrops on a regular handshake between the server and the

client, and uses the messages and the long-term key to compute
the session keys. The script can then decrypt all sent application
data and is able to insert or modify all received application
data, both to and from the web server. While the attack does
not depend on the concrete hash algorithms, ciphers, and their
modes of operation, we used SHA–256 and AES–256 in CBC
mode in our experiments. The required files and instructions
to run the attack can be downloaded from [11].

The simplest way to prevent the AKC attack is to switch to the
mutually authenticated DHE RSA mode of TLS. This mode
is not vulnerable to AKC attacks, because it uses temporary
Diffie-Hellman public keys of the form gx, where x is a freshly
generated value. The client’s temporary key gx is combined
with the server’s temporary secret key y, and vice versa, to
obtain gxy. The adversary learns both temporary public keys
gx and gy, but does not learn x or y, and therefore cannot
construct the session key. In this case, we use the Tamarin
prover [16] (for its more precise modelling of Diffie-Hellman
exponentiation) to successfully verify that session key secrecy
is AKC secure in the DHE RSA mode of our TLS model.

Until now, the reason put forward for using the DHE modes
of TLS instead of the RSA mode has been that they offer
Perfect Forward Secrecy (PFS): even if all long-term keys are
compromised at some point, previously sent application data
is still secure. Our analysis reveals that there is an additional
advantage to TLS-DHE RSA over TLS-RSA. Namely, the
AKC security implies that a server running TLS-DHE RSA
can still securely communicate with clients even if the server’s
key is compromised. Our attack proves that this is not the case
for the RSA mode.

E. Unilateral TLS combined with authorisation protocols

The most common use of TLS involves the unilateral modes,
in which only the server has a certificate. In these modes,
the client authenticates the server, but the server does not
authenticate the client. The message exchanges are similar to
mutually authenticated TLS, except that the client does not send
a certificate and does not send the so-called CertificateVerify
message (message 3 in the earlier TLS description). Because
the only security requirements stem from the client, who uses
no secret key or has no secret key to reveal, the unilateral
modes are resilient against AKC attacks.

However, many applications such as e-banking and online
e-mail services require mutual authentication even when
the client has no certificate. For such applications, mutual
authentication is usually achieved by combining (unilateral)
TLS with an authorisation protocol in the following way.
First, the client establishes a unilateral TLS session with the
server, authenticating the server based on the server’s certificate.
Then the server performs an authorisation protocol inside
the TLS connection. Typical examples of such protocols are
Apache’s password-based mod auth basic [17], or single sign-
on protocols such as OAUTH [18] or SAML [19]. Abstractly,
these examples all take the following approach, where the
last three communications are encrypted using the previously



established TLS session keys:

1. C ←→ S : C authenticates S by means of unilateral
TLS and they establish CLIENTK
and SERVERK .

2. C ←→
TLS

S : S authenticates C using an
authorisation protocol.

3. C −→
TLS

S : Communicate or request resource.

4. S −→
TLS

C : Communicate or provide resource.

We modelled the above setup for unilateral TLS-RSA followed
by the default Apache password authentication mod auth basic.
Scyther finds an AKC attack on the server that, upon inspection,
is straightforward: the adversary eavesdrops on the TLS
handshake and the following authentication, which correspond
to step 1 and 2 above. As in the mutually authenticated case,
he can decrypt PMS and compute the session keys. He can
then arbitrarily eavesdrop, modify, or inject messages in steps
3 and 4, regardless of the authorisation protocol used. Thus,
the mutual authentication protocols obtained by combining
unilateral TLS-RSA with either mod auth basic, OAUTH, or
SAML, are all vulnerable to AKC attacks on the server.

Because Apache’s mod auth basic relies on a secret that
is known to both the server and the client, compromising the
server compromises the secret, which enables AKC attacks
against the above setup even when no clients are present.
This is not the case in a weaker threat model, where the
adversary learns the long-term secret key of the server through
cryptanalysis but does not have access to the server’s password
store. In both of the above situations, switching to the mutually
authenticated DHE RSA mode of the TLS handshake provides
the guarantee of AKCS of session-key secrecy to the server.

VII. RELATED WORK

The vast majority of related work has been on Key Com-
promise Impersonation in the domain of key establishment
protocols. The first key compromise impersonation attack was
described by Just and Vaudenay [5] in 1996. The first explicit,
but informal definition of this notion, due to Blake-Wilson,
Johnson and Menezes [4], dates back to 1997. Both of these
papers consider an adversary who obtains long-term secret
keys of a party, usually referred to as the actor, running a
key establishment protocol. The adversary uses the keys to
establish a session key as another protocol participant with
the actor, without being detected. This results in a session key
known to the adversary, which is therefore useless for securing
subsequent communication.

Following [4,5], researchers have examined concrete pro-
tocols or small classes of protocols, and classified KCI
attacks [20,21,22,23,24,25]. This has lead to a partial un-
derstanding of KCI. However, determining if an attack is a
KCI attack is still done on a per-case basis, guided by minor
variations in the early informal definitions.

Starting with [26], researchers have considered the compro-
mise of the actor’s keys in computational [24,26,27] models and

proved KCI resilience for concrete protocols. The underlying
idea is that resilience to KCI attacks can be proved without
formally stating what constitutes a KCI attack, as long as it
is informally argued that KCI resilience is implied by the
monolithic computational security model. Conversely, attacks
are informally argued to be KCI attacks on a case-by-case
basis.

Examples of KCI attacks on one–pass key establishment
protocols can be found in [21,22], where they are classified
as one of two types, depending on whether the responder
authenticates the initiator. In [24], KCI attacks are either
“insider” or “outsider”, depending on whether the adversary
actively participates in the execution of a protocol on behalf of
a party whose long-term keys have been revealed. We assume
that every AKC-capable adversary can actively use any keys he
reveals and make no distinction between the two types of KCI
attacks. A third classification is outlined in [25], where KCI
attacks by adversaries with a session-key reveal capability are
classified according to how that capability is used in the attack.
These attacks would be captured in our model by adding the
session-key reveal capability from [6].

In [28], the fact that derivability of session keys from the
secret keys and public values of just one party can be a source
of insecurity is demonstrated by KCI attacks on four protocols.
It is argued that the session keys should be derived from the
secret keys and, ideally, run-specific data of another party.

A KCI attack by an adversary with a randomness reveal
capability against the 3-pass HMQV protocol is shown in [23].
The protocol is fixed by adding a confirmation message
consisting of a signed hash of both ephemeral and long-
term public values. However, since the adversary can get the
actor’s randomness and his long-term secret key, the adversary
can compute all session keys. Therefore, their fixed protocol
does not provide any security guarantees for the subsequent
communications with respect to their adversary model.

In [29], it is proven that the DHE modes of TLS satisfy a
monolithic security notion that implies KCI resilience. This
is in line with our findings. In contrast, it is proven in [30]
that all modes of TLS are secure in a weaker security model.
This weaker security model does not capture AKC attacks;
these proofs therefore do not contradict our AKC attacks on
TLS. Note that Paulson’s simplified model of TLS [31] is
vulnerable to an additional AKC attack on authentication where
the adversary can replace the client’s nonce by an arbitrary
value to make the client’s and server’s views of all session
keys diverge. The reason for this is that in Paulson’s simplified
version, the hash in the client’s CertificateVerify message does
not contain all previously transmitted data. However, this is
not an actual attack on the TLS protocol.

In April 2014, a critical vulnerability [2] (CVE-2014-0160,
also known as Heartbleed) was discovered in OpenSSL,
versions 1.0.1–1.0.1f. The vulnerability allows an attacker
to retrieve parts of an affected server’s memory, potentially
including the server’s long-term secret keys. If the attacker
obtains the keys, he can impersonate the compromised server.
As we have shown, the attacker can additionally perform an



AKC attack on the server using TLS-RSA. Until the server
changes its key pair and prevents further key leakage (by
upgrading to a Heartbleed-unaffected implementation of TLS-
RSA, e. g., OpenSSL 1.0.1g), it can avoid AKC attacks by
switching to TLS-DHE RSA.

VIII. CONCLUSIONS

One of the guiding principles of modern information security
is containment: given that security mechanisms may be
compromised, it is prudent to design systems that limit the
resulting damage as much as possible. In the domain of security
protocols, AKC resilience and security are desirable features
because they help contain the effects of key compromise
[1,2]. We have provided the first systematic analysis of this
phenomenon and have given conditions under which it can and
cannot be achieved.

Our transformations show how to construct protocols that are
resilient against AKC. Our work thereby facilitates incremental
protocol design, and enables protocol designers to provide
strong security guarantees to the users of their protocols, even
under actor key compromise.

For existing, widely deployed protocols, we have introduced
fixes that use the underlying structure of the protocols at hand.
In comparison with using the generic transformations developed
in this paper, this approach enables less intrusive fixes and
more efficient results. For TLS-RSA, the most efficient fix is
to use the Diffie-Hellman mode. We showed that asymmetric
cryptography is needed to obtain authentication guarantees,
which has direct consequences for improving existing protocols
and developing new protocols.

Our AKC attacks on protocols such as mutually authenticated
and unilateral TLS-RSA show that there is still room for
improvement in practice, and reveal that perfect forward secrecy
is not the only advantage of using TLS-DHE RSA.
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APPENDIX A
PROOFS

A. Proof of Lemma 5

We first prove a lemma:
Lemma 14 (Inference-irrelevant terms): Let S ∪ {t} ⊆

Term where t 6v S\{t}, t−1 = t and t has no proper accessible
subterms. Let t′ ∈ Term such that t 6v t′. Then S ` t′ if and
only if S \ {t} ` t′.

Proof: ⇐ Trivial.
⇒ Let t′ ∈ Term such that t 6v t′. We prove by induction

on n that for all n ∈ N0, if S `n t′, then S \ {t} `n t′. First
we consider the case n = 0, so we have t′ ∈ S. From t 6v t′
we get t 6= t′, so t′ ∈ S \ {t}, i.e. S \ {t} `0 t

′. Now we
assume that up to some n ∈ N0, the statement holds and that a
`-derivation tree for t′ from S of height at most n+1 is given.
We proceed with a case split on the last rule applied in that



tree. If the last rule infers t′ from t1, . . . , tm by composition,
assuming t v ti for some i ∈ {1, . . . ,m}, we would have
t v t′, which is a contradiction. Therefore, we can apply the
inductive hypothesis and infer each of t1, . . . , tm from S \ {t}
with trees of height at most n each. Note that we needed t 6v t′
precisely for this and the base cases. In the remaining cases,
the last rule to derive t′ is a decomposition rule:
• S `n (t′, t′′) or S `n (t′′, t′): Without loss of generality, we

assume the former and do a case split on the accessibility
of (t′, t′′) in S.
– (t′, t′′) vacc S: The term t has no proper accessible

subterms, so from (t′, t′′) vacc S we get (t′, t′′) vacc
S \ {t}. Suppose t v (t′, t′′). By transitivity of v, we
get t v S \ {t}, which contradicts our assumptions.
We can now apply the inductive hypothesis to infer
S \ {t} `n (t, t′). Hence S \ {t} `n+1 t

′.
– (t′, t′′) 6vacc S: We can replace the derivation of (t′, t′′)

with one of a minimal height, which is of height at most
n. By Lemma 6, that derivation ends in a composition
rule from t′ and t′′. Therefore, S `n−1 t

′, so the inductive
hypothesis implies S \ {t} `n−1 t

′.
• S ` {t′}t′′ and S ` t′′−1:

– {t′}t′′ vacc S: As above, we conclude t 6v {t′}t′′ . The
inductive hypothesis then gives us S \ {t} `n {t′}t′′ .
From t 6v {t′}t′′ we also get t 6v t′′.
We have two cases: if t′′−1 = t′′, then t 6v t′′−1 is
immediate. Otherwise, if t′′−1 6= t′′, from t−1 = t we get
t 6= t′′−1. Without loss of generality, let u ∈ Term such
that t′′ = pk(u) and t′′−1 = sk(u). From t 6v t′′ we get
t 6v u. Hence t 6= t′′−1 implies t 6v t′′−1.
In both cases we get t 6v t′′−1, so we can apply the
inductive hypothesis to infer S \ {t} `n t′′−1.

– {t′}t′′ 6vacc S: As above.

We can now prove Lemma 5, where we use that a finite
number of terms can be removed from a set by applying the
previous lemma, provided that it is done in the right order.

Proof of Lemma 5: Assume S ` t′. Since T is finite and
partially ordered by v, it has a maximal element t. But then
t 6v T \ {t}, which with t 6v S \ T implies t 6v S \ {t}. We
can now apply Lemma 14 and get S \ {t} ` t′. The set T is
finite, so by induction we get S \ T ` t′.

B. Proof of Lemma 6

The next auxiliary lemma states that accessible subterms of
terms inferable from a set are either inferable themselves or
accessible in the set.

Lemma 15 (Inference of accessible subterms): Let
S ∪ {t} ⊆ Term and n ∈ N0 such that S `n t. Then
for all t′ ∈ Term such that t′ vacc t, S `n t′ or t′ vacc S.

Proof: We prove the lemma by induction on n. For n = 0,
we have t ∈ S, so t′ vacc t implies t′ vacc S. Assuming that
the statement holds for all natural numbers less than some n, we
prove the statement for n. All decomposition cases immediately
follow from the inductive hypothesis. The composition cases

are similar, so we only provide a proof for one. If the last
step of a derivation of t from S of height n infers S ` (t1, t2)
from S ` t1 and S ` t2, then either t′ = t (and thus S `n t′),
or it is the case that t′ vacc t1 or t′ vacc t2. Without loss of
generality, assume the former. Then the inductive hypothesis
gives us S `n−1 t

′ or t′ vacc S.
Proof of Lemma 6: Assume S ` t. Then there is a

derivation of t from S, so there is one of minimal height n.
We are done if n = 0, because then t ∈ S, which implies
t vacc S. Assume now that n > 0 and that some derivation
of t from S of height n ends in a decomposition rule. The
premises of that rule then imply that there is a term t′ such that
S `n−1 t

′ and t vacc t
′. However, S 0n−1 t by the minimality

of n, so from Lemma 15 we conclude t vacc S.

C. Proof of Proposition 7

Proof: ⇒ We prove the contrapositive. Suppose that
(KC (Π), typeKC (Π)) 6|=A claiml1(R, commit, R′,K). Then
there is a state s ∈ RS(KC (Π), typeKC (Π), R,A) such that

(Test, σs,Test(claiml1(R, commit, R′,K#Test))) ∈ trs

and there is no rid ∈ RID where both roles(rid) = R′ and

(rid, σs,Test(claiml1(R′, running, R,K#Test))) ∈ trs.

For all L ⊆ Label, we define δL(〈〉) = 〈〉 and

δL(〈(rid, e)〉.u) =

{
δ(u), if label(e) ∈ L,
〈(rid, e)〉.δ(u), otherwise.

We want to construct an attack s′ ∈ RS(Π, typeΠ, A,R) on
the secrecy of K where trs′ = δ{l1,l2}(trs).

First we prove that h does not appear in δ{l1,l2}(trs). Assume
that the opposite is true, i.e. that for T = {h(t0, . . . , tm) :
t0, . . . , tm ∈ Term,m ∈ N}, there exist τ ∈ T , rid ∈ RID
and e′ ∈ RunEvent such that (rid, e′) ∈ trs, τ v cont(e′)
and label(e′) /∈ {l1, l2}. Then either there exists e′′ ∈
Π(roles(rid)) such that x vacc cont(e′′) and τ v σs′,rid(x),
or there is a τ ′ ∈ T such that τ ′ ∈ Π(roles(rid)) and
σs,rid(τ

′) = τ . Both cases contradict the assumptions on h.
The construction of s′ proceeds inductively, by following

δ{l1,l2}(trs). For prefix length 0, we know the state

s0 = (〈〉, AK0, T est 7→ σs,Test(Π(R)#Test),Test 7→ σs,Test)

is reachable. The only interesting case in the induction step
involves checking if recv transitions are still enabled. Let sn be
a state reached after n transitions from s0 and e ∈ RunEvent
with evtype(e) = recv the next event. All we need to prove
is AKsn ` cont(e). Since e is also an event in trs, let s′n be
any state such that s′n →∗ s, just after e is executed. The only
send events deleted by δ{l1,l2} are the ones labelled l2. Hence
there exists a finite set T ′ ⊆ T such that AKsn = AKs′n

\ T ′.
We know that cont(e) does not contain h. Since for all τ ∈ T ′,
τ 6v AKsn , we can apply Lemma 5 to get AKsn ` cont(e).

Let τ = σs,Test(h(R,R′,K)#Test) for the rest of this
proof. We still need to prove AKs′ ` σs′,Test(K

#Test),
where the discussed instance of K, i.e. σs′,Test(K#Test) =



σs,Test(K
#Test), is a subterm of τ . To that end, we prove

that no send event in trs contains τ as a syntactic subterm.
Let rid ∈ RID and e′ ∈ RunEvent such that (rid, e′) ∈ trs,
evtype(e′) = send, and τ v cont(e′). Since τ ∈ T , we know
that label(e′) = l2 and roles(rid) = R′. By the definition of
v, the set {t : t v cont(e′)} is the same as the set

{cont(e′)}∪{σs,rid(R), σs,rid(R
′)}∪{t : t v σs,rid(K ′#rid)}.

Because of the running claim which precedes the sendl2
role event in KC (Π), τ = cont(e′) would contradict our
assumptions that no such claim occurs in trs. Since τ /∈
Agent, we get τ v σs,rid(K

′#rid), which contradicts the
typing assumptions on K ′. Therefore, no send event in trs
contains τ as a syntactic subterm, so τ 6v AKs holds.

From AKs ` τ and Lemma 6, we get that the adversary
constructed the hash τ himself, i.e. AKs ` σs′,Test(K#Test).
We have AKs′ = AKs \ T ′, for some finite T ′ ⊆ T . For all
τ ′ ∈ T ′, we have τ ′ 6v σs′,Test(K#Test) because h does not
occur in trs′ , so Lemma 5 gives us AKs′ ` σs′,Test(K#Test).
⇐ Let s ∈ RS(Π, typeΠ, R,A) such that

(Test, σs,Test(claiml0(R, secret,K#Test))) ∈ trs

and AKs ` σs,Test(K
#Test). We now construct s′ ∈

RS(KC (Π), typeKC (Π), A,R) such that

(Test, σs′,Test(claiml1(R, commit, R′,K)#Test)) ∈ trs′

and there is no rid ∈ RID such that roles′(rid) = R′ and

(rid, σs′,Test(claiml1(R′, running, R,K)#Test))

is in trs′ . We know ths(Test) = 〈〉, because claiml0 is the
role’s last step. For all rid ∈ dom(ths), we define ths′(rid):

ths(rid).σs,rid(〈recvl2(R′, R, h(R,R′,K)),

claiml1(R, commit, R′,K)〉#rid)

if roles(rid) = R and rid 6= Test,

ths(rid).σs,rid(〈claiml1(R′, running, R,K ′),

sendl2(R′, R, h(R,R′,K ′))〉#rid)

if roles(rid) = R′, and ths(rid) otherwise. Then for

s′ = (trs.σs,Test(〈(Test, recvl2(R′, R, h(R,R′,K))),

(Test, claiml1(R, commit, R′,K))〉#Test), AKs, ths′ , σs),

we have s′ ∈ RS(KC (Π), typeKC (Π), R,A). Therefore,
(KC (Π), typeKC (Π)) 6|=A claiml1(R, commit, R′,K).

D. Proof of Lemma 8

Proof: We prove the lemma by induction on the derivation
height n for t′′ from S. If n = 0, then t′′ ∈ S, so the statement
is trivial. Assume n 6= 0 and fix any derivation of height n.
The inductive hypothesis tells us that t 6vacc {⊥/ t′}(ti) for all
ti appearing in the premises of the last rule in the derivation. If
the rule is a decomposition rule, we are done. Otherwise, due
to S 0 t we have t 6= t′′, which implies t 6vacc {⊥ / t′}(t′′).

E. Proof of Lemma 9

Proof: We prove the statement by contradiction. As-
sume AKs ` sk(a). Then Lemma 6 implies sk(a) vacc
AKs, because no derivation of sk(a) can end in a com-
position rule. Since sk(a) 6vacc AK0, there exist s′, s′′ ∈
RS(Π, typeΠ, R,A) where s′′ → s′ →∗ s, sk(a) 6vacc AKs′′

and sk(a) vacc AKs′ . Therefore, for rid ∈ RID and
e ∈ Event such that last(trs′) = (rid, e), either (rid, e) =
(ridA, LKR(a)), which contradicts the fact that adversaries
cannot reveal peers’ keys, or (rid, e) is the first send of sk(a)
in an accessible position in trs.

For e′ ∈ Π(roles′(rid)) such that label(e′) = label(e),
the existence of t ∈ RoleTerm such that sk(t) vacc cont(e′)
would contradict our assumption on (Π, typeΠ). Hence we
conclude that there exists x vacc cont(e′) such that sk(a) vacc
σs′,rid(x).

Assume e′′ is the role event of the recv where rid initialised
the variable x, in s′′ or a reachable state before s′′. Let t =
cont(σs′′,rid(e

′′#rid)). We have AKs′′ ` t, sk(a) vacc t and
sk(a) 6vacc AKs′′ . Lemma 15 then gives us AKs′′ ` sk(a).
From Lemma 6 we deduce that there is a derivation of sk(a)
from AKs′′ that ends in a composition rule, contradiction.

F. Proof of Proposition 10

Proof: Let s ∈ RS(TS (Π), typeTS(Π), R,A) such
that (Test, σs,Test(claiml′(R, secret,m#Test)) ∈ trs. We
want to prove that AKs 0 σs,Test(m

#Test). First we
use induction over the prefix length of trs to prove that
n#Test only appears accessible in send events in trs
as a subterm of σs,Test({m#Test, c2}pk(R′)). Let s′ ∈
RS(TS (Π), typeTS(Π), R,A), rid ∈ RID and e ∈ Event
such that s′ →∗ s, (rid, e) = last(trs′), evtype(e) = send

and n#Test vacc cont(e). If rid = Test, the statement is true,
because the only time Test sends n#Test is when n#Test is
generated in the claim labelled l.

Otherwise, if rid 6= Test, let ⊥ ∈ Const be any constant
unused in TS (Π). From the inductive hypothesis and the defi-
nition of AK0, we know that n#Test only appears accessible
inside σs,Test({m#Test, c2}pk(R′)) in AKs′ \ {cont(e)}, i.e.

n#Test 6vacc {⊥/σs,Test({m#Test, c2}pk(R′))}(AKs′\{cont(e)}).

For that reason, Lemma 8 tells us that for all t ∈ Term such
that AKs′ \ {cont(e)} ` t,

n#Test 6vacc {⊥ / σs,Test({m#Test, c2}pk(R′))}(t).

Hence n#Test is accessible in recv events in trs′ only inside
σs,Test({m#Test, c2}pk(R′)).

Assume that n#Test occurs accessible outside the term
σs,Test({m#Test, c2}pk(R′)) in cont(e). But then there exist
{t}t′ ∈ S, x ∈ Var and rid ∈ RID such that {t}t′ v
TS (Π)(roles′(rid)), x vacc t and n#Test vacc σs′,rid(x). We
then have

σs,rid(τc1(({t}t′)#rid)) = σs,Test({m#Test, c2}pk(R′)),

which contradicts c1 6= c2. Hence n#Test is only ac-
cessible in the set AKs as a subterm of the term



σs,Test({m#Test, c2}pk(R′)). However, from Lemma 9 we get
sk(σs,Test(R

′)) /∈ AKs. Therefore, AKs 0 n#Test. From
Lemma 8, we get AKs 0 σs,Test(m#Test).

G. Proof of Proposition 11

Proof: Let s ∈ RS(TA(Π), typeTA(Π), R,A) and
(Test, σs,Test(claiml(R, commit, R′,m#Test))) ∈ trs. We
now prove that a run executed the corresponding running
claim. Denote t = σs,Test({R,m#Test, c2}sk(R′)). From the
above, there exists s′ ∈ RS(TA(Π), typeTA(Π), R,A) such
that s′ →∗ s and

(Test, recvl′(σs,Test(R
′), σs,Test(R), t)) = last(trs′).

From this, we have AKs′ ` t. We know from Lemma 9 that
AKs′ 0 sk(σs,Test(R

′)) holds. That means no derivation of
t from AKs′ can end in a composition step, so Lemma 6
now implies t vacc AKs′ . Thus, there exist rid ∈ RID and
e ∈ RunEvent such that evtype(e) = send, (rid, e) ∈ trs′
and t vacc cont(e).

Without loss of generality, let (rid, e) be the first send with
the above properties in trs′ . Assume first that label(e) 6= l′.
Then e is an instance of a tagged step of Π, i.e. there is a
unique t′ ∈ RoleTerm such that σs′,rid(t′#rid) = cont(e)
and send label(e)(·, ·, t′) ∈ τc1 |S(Π(roles′(rid))). We know
that t cannot occur in cont(e) as a subterm of any instantiated
variables of t′, since Lemma 15 would contradict the minimality
of (rid, e). That means there must be a {t0}t1 ∈ S such
that σs′,rid(({t0, c1}t1)#rid) = t. However, that implies
c1 = c2, contradiction. Therefore, label(e) = l′. Hence
roles′(rid) = R′, σs′,rid(claiml(R′, running, R,m′)#rid) ∈
trs′ and σs′,rid((R,R′,m′)#rid) = σs,Test((R,R

′,m)#Test).

H. Proof of Proposition 12

For the proof, we need a lemma that states that we can infer
a term from all its subterms that are atomic or long-term keys.

Lemma 16 (Composition from atomic subterms): Let S ∪
{t} ⊆ Term. If for all x v t where x is atomic or x is a
long-term key, S ` x, then S ` t.

Proof: We prove the statement by structural induction on
t. If t is atomic or a long-term key, since t v t, the assumption
gives us S ` t. If for some t1, . . . , tn, the term t is equal to
(t1, t2), {t1}t2 or f(t1, . . . , tn), then the inductive hypothesis
implies S ` t1, . . . , tn. We can then use the corresponding
composition rule to get t.

Proof of Proposition 12: Let a, b ∈ Agent such that
a 6= b and define the substitution τ as follows:

τ(x) =


a, if x = R,

b, if x ∈ Role \ {R},
n#ridA
x , if x ∈ Var.

By the third assumption in the proposition statement, τ ∈
TS(Π, typeΠ). If the length of Π(R) is k for some k ∈ N,

we define:

seq = 〈(Test, τ(Π(R)#Test)1), . . . , (Test, τ(Π(R)#Test)k)〉
s = (〈(ridA, LKR(a))〉.seq, AK0 ∪ LTK(a)∪
(τ(Π(R)#Test) � send), T est→ 〈〉, T est 7→ τ).

The proof of reachability proceeds by induction on the
prefix length of the sequence 〈(ridA, LKR(a))〉.seq. More
specifically, we prove two statements within the induction:
• the adversary can infer all sent nonces just after they are

first sent, and
• the adversary can infer the contents of all recv events just

before they occur.
For lengths 0 and 1, we know that the states

s0 = (〈〉, AK0, Test 7→ τ(Π(R)
#Test

),Test 7→ τ) and s1 =

(〈(ridA, LKR(a))〉, AK0 ∪ LTK(a), Test 7→ τ(Π(R)
#Test

),Test 7→ τ)

are reachable and that no nonces have yet been sent. Let m ∈ N
such that m > 1, sm a state reached after m transitions from
s0, and e ∈ RunEvent the next event. Let K be any long-term
key such that K v cont(e). We want to prove that K ∈ AKsm .
Since τ assigned nonces local to ridA to variables in Π(R),
we know that K does not occur inside a variable instance in
cont(e). Therefore, there is a t in Π(R) of the form k(·, ·), pk(·)
or sk(·) such that K = σsm,Test(t

#Test) = τ(t#Test). The
first assumption in the proposition statement now gives us that
K = k(c, d) for some c, d ∈ Agent, and the second one implies
that c = a or d = a. Hence K ∈ LTK(a), which implies
K ∈ AKs1 . Since AKs1 ⊆ AKsm , we get K ∈ AKsm .

Suppose now that (Test, e) is the first send for n#Test

where n ∈ Fresh. By the inductive hypothesis, we know
that for all n′#Test sent strictly before (Test, e) in trsm ,
we have AKsm ` n′#Test. By the fourth assumption in the
proposition statement, we know all other nonces local to Test,
i.e. those that appear for the first time in (Test, e), appear in
cont(e) in accessible positions only. Therefore, AKsm infers all
inaccessible atomic subterms and long-term keys in cont(e). By
induction on n#Test vacc cont(e), we prove AKsm ` n#Test.
The basis, where n#Test = cont(e), is trivial. Assume now
that n#Test 6= cont(e), and let cont(e) = {t1}t2 first. We want
to conclude AKsm ` t−1

2 . We know that all atomic subterms
and long-term keys in t2 are inferable by AKsm , so by Lemma
16 we have S ` t2. By construction of seq, we have t2 = t−1

2 ,
so S ` t−1

2 . We can therefore apply the decryption rule to get
S ` t1. Finally, if t = (t1, t2), without loss of generality we
can assume that n#Test vacc t1 and use the unpairing rule
to get AKsm ` t1. In any case, the inductive hypothesis for
AKsm ` t1 gives us AKsm ` n#Test, which proves the first
statement.

Now assume evtype(e) = recv. We need to check that e is
enabled, i.e. that AKsm ` cont(e) holds. All nonces local to
Test to be received in cont(e) have been sent previously by
Test, so we know they are inferable by AKsm . Additionally,
AKsm already contains all long-term keys in cont(e) and
AKs0 contains all nonces local to ridA and the names of all
agents, so we can apply Lemma 16 to get AKsm ` cont(e).


