
1

Design, Analysis, and Implementation of ARPKI:
an Attack-Resilient Public-Key Infrastructure
David Basin, Cas Cremers, Tiffany Hyun-Jin Kim, Adrian Perrig, Ralf Sasse, Pawel Szalachowski

Abstract—The current Transport Layer Security (TLS) Public-Key Infrastructure (PKI) is based on a weakest-link security model that
depends on over a thousand trust roots. The recent history of malicious and compromised Certification Authorities has fueled the desire
for alternatives. Creating a new, secure infrastructure is, however, a surprisingly challenging task due to the large number of parties
involved and the many ways that they can interact. A principled approach to its design is therefore mandatory, as humans cannot feasibly
consider all the cases that can occur due to the multitude of interleavings of actions by legitimate parties and attackers, such as private
key compromises (e.g., domain, Certification Authority, log server, other trusted entities), key revocations, key updates, etc.
We present ARPKI, a PKI architecture that ensures that certificate-related operations, such as certificate issuance, update, revocation,
and validation, are transparent and accountable. ARPKI efficiently supports these operations, and gracefully handles catastrophic events
such as domain key loss or compromise. Moreover ARPKI is the first PKI architecture that is co-designed with a formal model, and we
verify its core security property using the TAMARIN prover. We prove that ARPKI offers extremely strong security guarantees, where
compromising even n � 1 trusted signing and verifying entities is insufficient to launch a man-in-the-middle attack. Moreover, ARPKI’s use
deters misbehavior as all operations are publicly visible. Finally, we present a proof-of-concept implementation that provides all the
features required for deployment. Our experiments indicate that ARPKI efficiently handles the certification process with low overhead. It
does not incur additional latency to TLS, since no additional round trips are required.

F

1 INTRODUCTION

Transport Layer Security (TLS) has been a tremendous
success and is globally used to secure web-based communi-
cation. Given that the security of the majority of network-
based financial and commercial transactions relies on TLS,
one would hope that its security is commensurate with its
widespread acceptance and use.

Unfortunately, many TLS attack vectors exist and recently
several high-profile attacks have demonstrated its vulnera-
bility in practice. In particular, in the current trust model of
TLS PKI, a single compromised (or malicious) Certification
Authority (CA) can issue a certificate for any domain [1]–[4],
i.e., a realm of administrative autonomy with an associated
unique identification string, called domain name. Moreover,
such bogus certificates can go unnoticed over long time
periods. These glaring weaknesses are widely recognized.

Unfortunately, designing a secure and viable PKI archi-
tecture is more involved than one may imagine, as complex
corner cases must be handled. On the one hand, adversarial
events such as CA private key compromise or domain private
key compromise must be addressed. On the other hand,
legitimate events such as switching to different CAs or
key replacement after private key loss must be supported.
For example, the legitimate replacement of a key pair
and certificate after private-key loss may appear to be an
impersonation attempt. Also, legitimately switching to a new
CA to cease using a compromised CA that signs fraudulent
certificates may also appear to be a malicious event. Hence, a

Y D. Basin, A. Perrig, R. Sasse, and P. Szalachowski are with the Dept. of
Computer Science, ETH Zurich, Switzerland.

Y C. Cremers is with the Dept. of Computer Science, University of Oxford.
Y T. Kim is with HRL Laboratories LLC.

PKI architecture must prevent attacks, yet gracefully handle
legitimate key and certificate management events.

The research community has proposed new PKI archi-
tectures to address these issues. Recent proposals include
Certificate Transparency (CT) [5] and Sovereign Keys [6],
which add accountability by using log servers to make
compromises visible, and the Accountable Key Infrastructure
(AKI) [7] that prevents attacks by using checks-and-balances
to prevent a compromised CA from impersonating domains.
Although such proposals provide good starting points and
building blocks, they require many interacting entities and
thus are inherently highly complex. History has shown that
humans will miss cases when considering the security of
such complex systems. Moreover, a PKI architecture must
satisfy efficiency requirements and fit with existing business
models, as well as offer improved security. Finally, even
advanced proposals such as CT and AKI are still incomplete
(as they do not handle all corner cases in the certificate life
cycle) and have been designed in an ad-hoc fashion, without
a formal proof of correctness. We will discuss the limitations
of the existing state-of-the-art further in Section 3.

We now need to take the next step and gain assurance
about both the completeness of the features used as well
as correctness of the security claims, which can only be
achieved by using a principled approach. We present the
Attack-Resilient Public-Key Infrastructure (ARPKI), the first
co-designed PKI model, verification, and implementation
that provides accountability and security for public-key
infrastructures. ARPKI integrates an architecture for key
revocation for all entities (e.g., CAs and domains) with an
architecture for accountability of all infrastructure parties
through checks-and-balances. ARPKI efficiently handles
common certification operations and gracefully handles
catastrophic events such as domain key loss or compromise.

To reduce trust in any single entity, we leverage globally
visible directories (i.e., public log servers) that enable public
integrity validation for certificate information. Such public
validation provides accountability for CA actions, and thus
creates deterrence against fraudulent CA activities. To reduce
the number of trusted CAs, as well as the trust placed in any
single CA, a domain can define which and how many CAs
are required to update its certificate. To enable recovery from
unanticipated events, certificates can be updated through
another set of CAs; however, the certificates become active
only after a domain-specified hold time. In case of fraudulent
updates, legitimate domains can react during the hold time
to have the fraudulent certificate removed.

Contributions. In contrast to other proposals, ARPKI offers:
Y substantially stronger security guarantees, by providing

security against a strong adversary capable of compromis-
ing n � 1 entities at any time, where n C 3 is a system
parameter that can be set depending on the desired level
of security;

Y the formal machine-checked verification of its core secu-
rity property using the TAMARIN prover; and

Y a complete implementation that provides all the fea-
tures required for deployment, and the demonstration
of ARPKI’s efficient operation.

The full implementation, formal model and security prop-
erties, and the analysis tools are available [8] and this work
substantially extends the conference publication [9].

Scope. Details on the economic aspects of the CA ecosys-
tem (business models, business relationships, commercial
strategies, and operational issues) are out of scope for this
paper, although, we do discuss some aspects of the digital
certificates market in Section 7.2. Also out of scope are
PKI governing aspects such as formal and legal procedures
involved when adding or removing a CA, and interactions
between browser vendors and CAs.

Organization. In Section 2 we motivate the properties that
PKI architectures should have and in Section 3 we review
the state-of-the-art for PKIs. We present ARPKI in detail
in Section 4 and describe its modeling and formal analysis
in Section 5. We present its implementation and evaluation
in Section 6 and discuss additional practical concerns in
Section 7 before drawing conclusions in Section 8.

2 DESIRED PROPERTIES

In this section we present the adversary model and main
security properties that PKIs should ideally provide.

2.1 Adversary Model
Ideally, PKIs achieve security with respect to the strongest
possible adversary (threat) model. Since PKIs operate over
a possibly untrusted network, the adversary, in the worst
case, can control the network. We therefore assume that the
adversary can eavesdrop, modify, and insert messages.

We also assume that the adversary can compromise
some entities, effectively obtaining their long-term secrets.
However, for a PKI to satisfy any nontrivial security property,
the adversary must not be able to compromise all entities.
We therefore assume that the adversary can compromise the
long-term secrets of some, but not all, parties.

2.2 Security Properties
In general, PKIs should provide security, availability, and
be efficient when clients authenticate domains. Moreover,
these properties should hold even under the threat model
described above.

Core security property. We first highlight the core security
property that any PKI must satisfy, which prevents imper-
sonation attacks.
Y Connection integrity. If a client establishes a connection
based on a certificate, the client must be communicating
with the legitimate owner of the associated domain.

Other security properties. Besides the core property, PKIs
should also satisfy the following security properties.
Y Legitimate initial certificate registration. The infrastruc-
ture should accept or register a domain’s certificate only
if the certificate satisfies the requirements specified by the
infrastructure’s policy. For example, CA-centric infrastruc-
tures allow the use of a certificate as long as it is signed
by a non-revoked CA in the client browser’s root CA
list. As a second example, domain-centric infrastructures
accept an initial certificate that is signed by (a set of)
designated entities that the domain owner explicitly states
to be trustworthy. Note that some PKIs, e.g., X.509, do not
have a notion of certificate registration.

Y Legitimate certificate updates. The infrastructure should
invalidate a domain’s certificate and replace it by a new
one only if the new certificate satisfies the requirements
specified in the previously registered certificate.

Y Visibility of attacks. If an adversary successfully
launches an attack against the infrastructure by compro-
mising entities, the attack should become publicly visible,
thereby allowing it to be detected.

2.3 Performance Properties
PKIs should have the following performance properties.
Y Low overhead. The infrastructure should not substan-

tially increase the TLS handshake message size and should
have negligible impact on processing time.

Y Minimal additional latency over TLS. The infrastructure
should induce minimal (ideally zero) additional round trip
latencies, possibly due to extra network requests, to the
TLS handshake.

3 RELATED WORK

Numerous proposals have been addressing the security and
trust issues in the standard X.509 PKIs. As shown in Figure 1,
existing approaches can be classified as client-, CA-, or
domain-centric. We first survey this landscape and then
focus on AKI, which is closest to our work.

3.1 Alternative Approaches

Client-centric approaches. Proposals in this class empower
clients to select dedicated entities to evaluate a certificate’s
correctness before accepting it. Policy engine [10] analysis
supports clients in defining local policies (e.g., cryptographic
requirements, consistency of certificates based on an ob-
served history, etc.) for trust decisions.

2

PKI

CA-centricClient-centric Domain-centric

SLC OCSPPolicy engine Repositories

Perspectives Convergence

Pinning DNS/DNSSEC Log server

PKP TACK DANE SK CT/
CIRT

AKI/
PoliCert

CRL

DNSChain
CAA

DTKISSL
observatory

Fig. 1. Classification of PKI proposals.

Several proposals create public repositories that con-
tinuously observe domain certificates and enable clients
to compare the domain’s key with the version stored in
the repositories. This approach requires using an integrity-
protected connection between repositories and browsers.
Perspectives [11] and Convergence [12] allow specific requests
for each visited domain. While Perspectives repositories
learn to which domains the clients are connecting, Conver-
gence provides anonymity in this regard. The EFF’s SSL
Observatory [13] also collects global certificate information.
However, the information is infrequently updated and no
online queries are supported.

Client-centric approaches require the clients to make
additional connections to query the repositories. This mod-
ification increases latency when establishing an HTTPS
connection. On the positive side, servers do not need to
be modified or to be aware of clients’ extra checks. Moreover,
these approaches can be used to increase confidence in self-
signed certificates.

CA-centric approaches. The PKI standards for X.509 include
Certificate Revocation Lists (CRL) [14] that are issued by CAs
to prevent clients from establishing a TLS connection with
domains with revoked certificates. Unfortunately, clients
must be able to access the current CRLs online; otherwise
a window of opportunity for attacks stays open even after
revocation. The CRLs themselves are also quite large. To
resolve this burden on network and client resources, Online
Certificate Status Protocol (OCSP) [15] allows clients to check
domains’ certificate status by querying CAs’ OCSP servers,
and enables real-time status checks. However, OCSP has
security, privacy, and performance concerns. Short-lived
certificate (SLC) [16] enables domains to acquire certificates
with short validity lifetimes and to update the certificates
daily. SLC provides security benefits similar to OCSP without
the online validation process. The major drawback with CA-
centric approaches is their heavy reliance on browser vendors
to detect and to blacklist certificates issued by compromised
CAs.

Domain-centric approaches. Three approaches allow do-
main owners to actively control and to protect their public
keys despite the CAs’ potential vulnerabilities. They are
based on (1) pinning, (2) DNS/DNSSEC, and (3) log servers.

Pinning-based approaches, such as Public Key Pin-
ning (PKP) [17,18] and Trust Assertions for Certificate Keys
(TACK) [19], allow a domain to declare the valid keys for
that domain such that clients “pin” the keys. However,
these approaches have security vulnerabilities, such as no
protection on the first visit to domains.

The DNSSEC-based proposal called DNS-based Authenti-
cation of Named Entities (DANE) [20] enables domain owners
to assert certificate-specific fields on DNSSEC entries, such
as a list of acceptable CAs for issuing their domain’s

certificates, specific acceptable certificates, or specific trust
anchors to validate certificates. Similarly, DNS Certificate
Authority Authentication (CAA) [21] enables domain owners
to assert acceptable or unacceptable CAs for issuing their
domain’s certificates, and DNSChain [22] combines DNS
with Namecoin (a decentralized key/value registration and
transfer system based on Bitcoin technology) to authenticate
domain names. However, the security of DANE, CAA, and
DNSChain relies heavily on the security of DNS servers.

Log server-based approaches allow domain owners to
record their certificates on public log servers, creating ac-
countability for CAs’ actions. For example, Sovereign Key
(SK) [6] requires domain owners to generate a sovereign key
pair to sign their TLS public key and to log the sovereign
key pair to read- and append-only timeline servers. After
registering a sovereign key, any certificate for a domain must
be signed by the associated sovereign key. Consequently,
CAs need the key holder to create certificates, increasing
the difficulty to create fraudulent certificates. Unfortunately
SK requires clients to query servers, increasing latency and
sacrificing privacy.

Certificate Transparency (CT) [5] proposes that each domain
owner registers the CA-issued certificate to an append-
only log with a Merkle hash tree structure maintained
by log servers. The servers return a non-repudiable audit
proof to the domain such that the domain can provide its
certificate along with the audit proof to clients for a TLS
connection setup. However, as CT’s goal is only to make
used certificates visible, it is still vulnerable to attacks when
an adversary compromises a CA to create and register
fraudulent certificates, and CT does not prevent clients
from accepting these certificates. Because CT itself is not
designed to address certificate revocation, a supplementary
system called Revocation Transparency was proposed [23]. Also
Certificate Issuance and Revocation Transparency (CIRT) [24]
proposes efficient revocation for CT, but it requires a client
to create a new identity once its key is lost.

Distributed Transparent Key Infrastructure (DTKI) [25]
combines techniques in SK, CT, and Accountable Key
Infrastructure (AKI) discussed in Section 3.2, to manage
certificates without trusted validators. Similar to SK, domains
in DTKI maintain a master signing key to validate/revoke
the domain’s certificate, and similar to CT and AKI, domains
register the CA-signed and master-key-signed TLS certificate
to public logs. Consequently, clients only accept a certificate
that has been issued by a CA and validated by the domain
owner, and that is currently in the log. DTKI removes the
reliance on trusted parties by requiring clients to verify
the integrity of the log. Unfortunately, DTKI relies heavily
on gossiping protocols to synchronize the log status from
other clients and does not provide details on how the log
misbehavior evidence is disseminated. Furthermore, DTKI
requires the use of a single global root, called a mapping log
maintainer, that everyone must trust. DTKI also increases
latency for connections , since clients must contact log servers
before every connection. Hence, the log servers know with
which domains the clients communicate, violating clients’
privacy.

The main objective of PoliCert [26] is to give the domains
a way to describe their own certificates and properties of
TLS connections. PoliCert relies on a log-based scheme

3

(like AKI) to publish, manage, and enforce such policies.
It also includes a revocation system and a new certificate
validation model. However, in this approach (as well as in the
previously mentioned ones), the mechanisms for detecting
and disseminating log misbehavior are unspecified.

3.2 Accountable Key Infrastructure
We review the Accountable Key Infrastructure (AKI) [7] in
detail for two reasons: (1) ARPKI is inspired by AKI’s design
and employs some of its concepts; (2) ARPKI addresses
several shortcomings that we identified in AKI. However,
throughout this paper we focus on explaining ARPKI and
refer to the conference paper [9] for more details on the
differences of the two systems.

AKI proposes to protect domains and clients from vul-
nerabilities caused by single points of failure, such as a
CA’s root key compromise [1]–[4]. Through checks-and-
balances among independent entities, AKI distributes trust
over multiple parties and detects misbehaving entities while
efficiently handling certificate operations.

AKI operates with the following three entities:
1. A Certification Authority authenticates domains and
issues X.509 certificates.

2. To make CA-issued certificates publicly visible, an In-
tegrity Log Server (ILS) maintains an Integrity Tree that
logs certificates. Each ILS updates its Integrity Tree at a
given interval, called ILS_UP.

3. Along with CAs, validators monitor ILS operations and
detect misbehavior, e.g., the (dis)appearance of certificates.

With these entities, the owner of a domain A defines X.509
certificate extension fields, including:
Y CA_LIST: List of trusted CAs to sign the certificate;
Y ILS_LIST: List of trusted ILSes to register the certificate;
Y ILS_TIMEOUT: Timeout of an ILS’s registration confirma-
tion; and

Y CA_MIN: Minimum number of CA signatures needed to
initially register and update the certificate to ILSes.

The domain owner then contacts at least CA_MIN trusted CAs
to acquire certificates, the combination of which becomes an
AKICert. After receiving a confirmation (i.e., signature) from
a trusted ILS that promises to add this AKICert to its log and
another confirmation from at least one validator that verifies
the correct operation of the trusted CAs and ILSes, A uses
two confirmations along with the AKICert to establish TLS
connections with clients.

Integrity Trees. Figure 2 illustrates the Integrity Tree
maintained by ILSes. Integrity Trees ensure that the ILS
cannot make false claims about any certificate it has or has
not stored. It is implemented as a Merkle hash tree, whose

rooti

h14

h12

h8

Z

h7

S

h11

h6

P

h5

K

h13

h10

h4

F

h3

D

h9

h2

A

h1

rooti�1

Fig. 2. Integrity Tree in i-th ILS_UP period. Leaves represent domain
names in a lexicographic order.

leaves are lexicographically sorted by domain names and
each parent node is computed as the hash of its two child
nodes. Every leaf stores the AKICert corresponding to the
given domain. At each ILS_UP period, the ILS updates the
tree by (1) adding new entries, (2) replacing updated entries,
(3) deleting revoked and expired entries, and (4) computing
the new root hash for the tree’s current version.

This structure enables the ILS to create efficient proofs
about its own content, including presence and absence proofs.
To prove that an AKICert exists for A, the ILS provides
h1,AKICertA, h10, and h14. To prove that E does not have any
registered AKICerts, the ILS provides the presence proofs for
the immediate neighbors D and F: h9,AKICertD,AKICertF,
and h14. Along with presence and absence proofs, the ILS
provides a signature on the combination of the current root
hash rooti and the timestamp Ti, i.e., the last time the tree
was updated.

AKI weaknesses. AKI leaves several questions unanswered.
First, AKI’s setup suggests that validators can be non-profit
organizations whose only incentive is to check the correctness
of ILS operations. However, AKI’s design implies that if
validators are not continuously online or have low band-
width, delays will occur during the certificate registration and
validation processes, contradicting AKI’s claimed efficiency.

Second, AKI’s security properties have not been proven in
detail, and additional validation would help gain assurance
with respect to AKI’s security claims. In particular, with
no mature implementation, certain edge cases are likely to
have been missed which impact the security claims. For
instance, without synchronizing ILSes, an adversary can
register malicious AKICerts, and to attribute misbehavior, all
ILSes and CAs must include the triggering requests (which
are signed by the sender) for any action they perform.

Finally, AKI fails to prevent clients from accepting a
compromised AKICert when an adversary successfully
compromises two out of three signing entities because CAs
are not actively involved in monitoring ILS or validator
misbehavior. Consequently, if an adversary compromises an
ILS and a validator, the compromised AKICert stays valid
until it expires, even if the domain updates its key and
acquires new certificates from trusted CAs.

3.3 Comparison
In Table 1 we compare different log-based public-key valida-
tion infrastructures based on security, availability, deploya-
bility, and usability metrics.

For security we analyze how long an attacker must suc-
cessfully impersonate a sufficient number of trusted parties
to launch an attack, and for how long this attack persists
even after trusted parties have recovered. For example, when
a trusted CA issues a bogus domain certificate after the CA’s
key becomes compromised, such an action has no effect in SK
since SK requires the compromised key to be cross-validated
by the domain’s sovereign key. However, once CT logs a
bogus certificate, it stays valid until the certificate expires,
which may take up to a few years. For all other schemes, the
logged bogus certificate remains valid until the log servers
invalidate it.

When a trusted log server’s key becomes compromised,
SK requires several days until the client learns the updated

4

TABLE 1
Comparison of different log-based public-key validation infrastructures based on security, availability, and efficiency metrics. Entries in red indicate

major disadvantages of the corresponding scheme.

SK CT CIRT DTKI AKI ARPKI
Security
MitM attack mitigation Y N Y Y Y Y
Duration of trusted CA key compromise 0 months LUP LUP LUP LUP
Duration of untrusted CA key compromise 0 months LUP LUP 0 0
Duration of trusted log server key compromise days days 0 0 0 0
Duration of domain key(s) compromise mins-hours ª LUP LUP LUP LUP
Multiple valid certificates supported for a domain Y Y N Y N N
Built-in revocation mechanism Y N Y Y Y Y
Proof of domain certificate absence N N Y Y Y Y
Security correctness guaranteed by formal proof N N Y Y N Y
Number of parties that must be compromised for successful 1/1 1/1 1/1 1/1 2/3 n/nattack out of total external parties that the scheme requires
Availability
Initial registration duration of unavailability (DoU) 0 0 LUP LUP 0 0
Certificate update DoU 0 0 LUP LUP 0 0
Recovery from key(s) loss DoU 0 0 LUP LUP HT HT
CA compromise DoU 0 0 0 0 0 0
Log server compromise DoU days days days days 0 0
Deployability
Domain-side changes required Y N N N Y Y
CA-side changes required N Y N N N Y
Extra communication required for clients Y N Y Y N N
Additional bandwidth requirement for TLS setup kbytes bytes - - kbytes kbytes
Synchronization between parties required Y N N N Y Y
Usability
Privacy-preserving connection N Y N N Y Y
Flexibility to meet domain’s security concern N N N N Y Y
Additional end-user action required Y Y N N N N
Legend for table values:
’LUP’ denotes log server’s update period
’HT’ denotes hold time set by the domain owner to inactivate the certificate
’n’ is a system parameter

key through a software update, resulting in a window of
vulnerability; for other proposals, however, compromising
only the log server itself is insufficient to launch an attack.
When the domain key becomes compromised, SK may
require in the range of hours to days until the compromised
key is revoked. CT logs do not, however, support any means
to prevent attackers from using stale information in the
absence of Revocation Transparency, which has not yet
been fully specified. All other schemes support revoking
the compromised entry after some given update period.

We analyze the scale of compromise required for attacks.
While compromising a log server’s key suffices to launch an
attack in SK, CT, CIRT, and DTKI, AKI requires compromis-
ing both a trusted log server and a validator (but no trusted
CAs) to launch an attack. ARPKI requires that all trusted log
servers and CAs are compromised for a successful attack.

We also compare availability, measured by the Duration
of Unavailability (DoU), which is the period during which
clients cannot establish a secure connection with a domain
after the occurrence of some event. We investigate availability
with respect to the following certificate management opera-
tions: a) Initial registration of a certificate (some schemes are
designed to serve the domains or CAs immediately, without
waiting for the next log update period or other event); b)
certificate update (as a standard operation, this operation
should not introduce any unavailability period); c) recovery
from key loss (although such an event should be infrequent,
a scheme should support a recovery mechanism). We further
investigate DoU in terms of CA and log compromise. While
CA compromise does not prohibit clients from establishing a
secure connection with a domain for any log-based schemes,
log server compromise results in days of DoU for SK, CT,

CIRT, and DTKI until a new software version is pushed out
with a new key. In contrast, AKI and ARPKI support the
registration of the log server’s new key without delay.

We also consider the deployability of the different
schemes. First we indicate whether the domains or the
CAs need to change their configurations or operations to
deploy a given scheme. For example, SK requires domains to
generate SK key pairs, and AKI and ARPKI require domains
to contact multiple trusted CAs and append their certificates.
For the changes required on the CA side, CT requires
CAs to append the log proof (called Signed Certificate
Timestamp) to the logged certificate. On the other hand,
ARPKI requires (selected) CAs to: a) relay communications
on behalf of the domain owners, and b) verify correctness of
the certificate registration and update processes. The table
further indicates whether the scheme requires additional
communication on the client side. Such communication
is usually a request to a log, which allows one to deploy
a scheme without reconfiguring the domain servers. This
communication, however, introduces latency for every TLS
connection and it exposes clients to blocking attacks, where
a response from a server blocks connection setup. We
also investigate the schemes in terms of the additional
bandwidth required for a TLS connection setup. Finally
we check whether the schemes, during their deployment,
require a synchronization or consensus protocol for frequent
operations such as certificate update.

The last aspect we investigate is usability. Regarding
privacy, any scheme that requires a client-log connection for
every connection violates privacy as the log server learns
which domains clients are contacting. We also consider the
flexibility (i.e., trust agility) to meet the domain’s security

5

needs. For example, AKI and ARPKI provide support for
domains to specify the trusted CAs as well as the number
of entities required to satisfy the domains’ security needs.
Finally, we indicate whether end-users are required to
perform additional actions after each TLS connection. More
specifically, SK requires end-users to review results from
timeline servers for the consistent observation of sovereign
keys, and CT assigns special roles on clients to monitor and
validate the log behavior and exchange observed log tree
information to maintain a consistent view.

4 ARPKI: ATTACK-RESILIENT PKI
To construct a PKI that can withstand the compromise of
several trusted parties and can gracefully handle catastrophic
events (such as domain key loss and compromise), we base
ARPKI on publicly verifiable logs and extend the AKI system
described in Section 3.2. We now present ARPKI in detail,
which is the end result of our co-design of model, verification,
and implementation. We return to the modeling, verification
and co-design aspects in Section 5 and the implementation
aspects in Section 6.

ARPKI achieves strong security guarantees using n
entities for the certificate operations: n � 1 CAs and one
ILS (Integrity Log Server, see Section 3.2 for details, also on
CAs and Integrity Trees). In particular, ARPKI’s CAs conduct
active on-line confirmations and cross-check each other’s
actions. We design ARPKI to prevent attacks such that even
when n � 1 trusted entities are compromised, the security
guarantees still hold.

We assume that some data is initially known to all ARPKI
participants (the clients, CAs, and ILSes). In particular, the
number n and the parameter ILS_UP (the time interval
between ILSes signing their log) are system-wide parameters.
Furthermore, every participant has a list of all CAs and ILSes
with their corresponding public keys.

Due to space limitations, the full specification of ARPKI
and its formal verification model are available online at [8].
We start with a high-level summary of the actors and their
responsibilities.

1) A domain with identity A registers an ARPKI certificate
(ARCert) for itself with the ARPKI infrastructure (CAs
and ILSes). Afterwards it can use the resulting ARCert
to setup secure connections with clients.

2) The CAs have multiple responsibilities.
Y They check the identity of the domain owner on

registration before signing an X.509 certificate.
Y When n certificates from different CAs are combined

into an ARCert, each CA checks the actions of the
other CAs.

Y Throughout the lifetime of the ARCert, the CAs are
responsible for checking the logs for this ARCert.

Y The CAs check the ILSes’ behavior by downloading
all accepted requests from the ILSes, checking their
correctness, and comparing them to the published
Integrity Trees.

This choice of CAs’ responsibilities is driven by (1)
the unique knowledge that the honest CAs possess
about the certificates that they have produced, (2) the
possibility of compromising one or more CAs, and (3)

the CAs’ business model that incentivizes them to invest
in infrastructure that offers increased levels of security.

3) The ILSes keep a log of all ARCerts registered with
them, in a publicly verifiable append-only Integrity Tree,
and provide proofs of existence for ARCerts that are
then used by CAs and domains. The ILSes synchronize
with each other in a publicly accountable manner.
Whereas the CAs have knowledge about the certificates
they produced, they do not have a global view of all
certificates, even for a single domain. Furthermore, even
though the CAs’ responsibilities necessarily increase,
we aim to minimize the increase in their traffic. This
motivates the introduction of ILSes: these parties see all
the certificates globally and can therefore offer global
consistency checks. Maintaining a consistent global view
requires a form of synchronization. Because we consider
that ILSes can also be compromised, their actions must
also be checked.

To simplify our presentation, we first describe ARPKI’s
design for n � 3. We explain its extension to arbitrarily
many trusted entities in Section 4.5.

We give an overview of the main message flows in
Figure 3. In the protocol descriptions, we denote that entityE
signed messageM by �M�K�1

E
. We require that all signatures

include timestamps and unique tags such that they cannot
be mistaken for one another. To simplify the presentation,
we often leave these timestamps and tags implicit. We write
H��� to denote a cryptographic hash function.

We explain the main ARPKI processes in the following
subsections. In Section 4.1 we explain the initial registration
process and, in Section 4.2, how the resulting ARCert is
used. We describe the processes of confirmation renewal
and validation in Section 4.3 and certificate management in
Section 4.4. In Section 4.5, we show how to increase security
by choosing a larger n, thereby involving more CAs.

We assume that each participant follows the given proto-
col. In case of any deviation (e.g., an incorrectly formatted
message), the message is discarded and the participant stops
this protocol run.

4.1 Initial ARCert Registration Process

To start using ARPKI, a domain must first obtain a valid
ARCert. We refer to this as the initial registration. We now
consider the owner of domain A registering her domain. The
messages for A’s initial registration are given in Figure 4,
where the message numbers refer to Figure 3.

ARCert generation (Initialization step). ARPKI supports
trust agility, meaning that the domain owners can select their
roots of trust and modify their trust decisions using X.509
extension parameters. The parameters available are:
Y CA_LIST, i.e., all CAs that the domain trusts,
Y ILS_LIST, i.e., all the ILSes that the domain trusts, and
Y ILS_TIMEOUT, which denotes the duration that ILS’s
confirmations are valid for.

Additionally, the domain specifies hold times that must be
applied by the logs during the ARCert update. This happens
in two cases: (1) when an update request for a new ARCert
is not signed by the previous private key of the domain, (2)
and when a new ARCert is signed by CAs outside CA_LIST.

6

Client (C)

ILSes

1
2

7

8

9

5
6

10 11
ILS1

3
4

CA2

CA1

TLS

Domain (A)

Fig. 3. Basic communication flow of ARPKI. Dashed lines represent
the initial X.509 certificate request and delivery. Solid numbered lines
represent the message flows to register an ARCert. Lines 10 and 11
represent a TLS connection setup after registration is complete.

A domain owner creates an ARPKI certificate (ARCert)
by combining multiple X.509 certificates from trusted CAs.
Note that each CA checks the identity of the domain owner
to authenticate domains correctly when issuing an X.509
certificate. Each of these X.509 certificates contains the
extended information.

ARCert registration request (Steps 1–2). In ARPKI, three
designated entities are actively involved in monitoring each
other’s operations. The core idea behind a “Registration
Request” (REGREQ) message is to let the domain owner
explicitly designate which entities she trusts, namely two
CAs and one ILS. These are CA1, CA2, and ILS1 in Figure 3.

After each of the initial X.509 certificates has been received
from the respective CAs, which have checked the domain
owner’s identity, ARPKI requires the domain owner to
contact just one CA, here CA1. The main responsibilities
of CA1 are to validate the correctness of the other two
entities’ operations and act as a messenger between the
domain owner, ILS1, and CA2.

The domain owner also designates ILS1 to ensure that
ARCertA is synchronized among all ILSes. CA2 mainly serves
as a monitor and ensures that ILS1, as well as other ILSes,
operate accordingly, e.g., they add ARCertA to their Integrity
Trees as promised.

ILS synchronization (Steps 3–6). Ideally the same ARCertA
should be publicly visible among all ILSes. However, syn-
chronizing all ILSes may be inefficient, incurring significant
time delay, and would be unrealistic in practice. Instead, in
ARPKI, ILS1 takes responsibility on behalf of the domain
owner to synchronize ARCertA among at least a quorum of
all existing ILSes to ensure that at least one non-compromised
ILS is part of each quorum.1 This ensures that only one
ARCertA is registered for the domain A, and the majority
of the world maintains a consistent certificate entry for the
domain A in order to prevent impersonation attacks.

Registration confirmation (Steps 7–9). When the majority
of ILSes agree to add ARCertA to their public Integrity Trees,
ILS1 schedules domain A’s ARCert to appear in its Integrity
Tree during its next update (i.e., at the end of the current
ILS_UP time interval), which is stated and signed in an

1. The required quorum is one ILS more than 50% of all ILSes to allow
detection, and n ILSes more than 50% of all ILSes to prevent inconsistent
states. Here the security parameter n � 3 is used, which is generalized
to an arbitrary n in Section 4.5.

ARCert Generation

A : Set X.509 extensions
: Contact trusted CAs, get authenticated
: Receive signed X.509 certificate
: Combine multiple certificates into ARCertA

ARCert Registration Request

1. A� CA1 : REGREQ � �ARCertA,CA1 , ILS1 ,CA2 �K�1
A

2. CA1 : Verify signatures in REGREQ

: Ensure CA1 > ARCertA’s CA_LIST
: Add ARCertA into a pending request list

CA1 � ILS1 : REGREQ

ILS Synchronization

3. ILS1 : Verify signatures in REGREQ

: Ensure ILS1 > ARCertA’s ILS_LIST
: Ensure ILS1,CA1, and CA2 are different entities
: Ensure no ARCert was registered for A’s domain

ILS1 � ILSn: SYNREQ � �REGREQ�K�1
ILS1

4. ILSn : Verify signatures in REGREQ

: Ensure no ARCert was registered for A’s domain
ILSn � ILS1: SYNRESP � �H �REGREQ��K�1

ILSn

5. ILS1 : Collect SYNRESP from at least a quorum of ILSes
ILS1 � ILSn: SYNCOMMIT � �H �REGREQ��K�1

ILS1

6. ILSn � ILS1: SYNACK � �H �REGREQ��K�1
ILSn

Registration Confirmation

7. ILS1 : Collect SYNACK from at least a quorum of ILSes
: ACCEPT � �H �ARCertA��K�1

ILS1

ILS1 � CA2 : REGRESP �

�ACCEPT,REGREQ,List�SYNACK��K�1
ILS1

8. CA2 : Verify signatures in REGRESP

: Ensure CA2 > ARCertA’s CA_LIST
: Ensure ILS1,CA1, and CA2 are different entities

CA2 � CA1 : REGCONF �

��ACCEPT�K�1
CA2

,List�SYNACK��K�1
CA2

9. CA1 : Verify signatures in REGCONF

: Ensure ILS1,CA1, and CA2 are different entities
: Remove ARCertA from the pending request list

CA1 � A : ��ACCEPT�K�1
CA2

�K�1
CA1

A : Ensure ILS1,CA1, and CA2 are different entities

TLS Connection

10. C � A : TLS connection request
11. A� C : ARCertA, ��ACCEPT�K�1

CA2

�K�1
CA1

Fig. 4. Message flows for the initial ARCert registration process in
Figure 3.

“Acceptance Confirmation” (ACCEPT) message. ILS1 then
sends to CA2 a “Registration Response” (REGRESP) message,
which serves as a proof to CA2 that ILS1 (and a quorum of
ILSes) indeed accepted domain A’s REGREQ message.

CA2 now monitors and ensures that ILS1 actually made
the majority of ILSes agree to accept ARCertA for their next
update time. CA1 monitors that CA2 correctly monitors ILS1.
The next time the ILSes publish a signed log, both CAs check
the presence of the expected entries in the log.

4.2 Clients Visiting a Domain using ARCert
After completing the initial registration process, the domain
A has a confirmation message (ACCEPT) that is signed by
three trusted entities.

7

ILS Confirmation Request

1. A� CA1 : CCREQ � �A,CA1 , ILS1 ,CA2 �K�1
A

2. CA1 � ILS1 : CCREQ

Proof Generation

7. ILS1 � CA2 : PROOF � �List�HashVal��K�1
ILS1

,�Root�K�1
ILS1

8. CA2 � CA1 : ��Root�K�1
ILS1

�K�1
CA2

, PROOF

9. CA1 � A : ���Root�K�1
ILS1

�K�1
CA2

�K�1
CA1

, PROOF

TLS Connection

10. C � A : TLS connection request
11. A� C : ARCert, ���Root�K�1

ILS1

�K�1
CA2

�K�1
CA1

, PROOF

Fig. 5. Message flows for obtaining ARCert’s log proof. Upon receiving
any signed message, all entities verify the signatures (we omit these
steps, focusing on the message flows).

TLS connection (Steps 10–11). When the clients connect
to domain A, they receive ACCEPT along with ARCertA,
which enables them to verify that they are establishing a
TLS connection with domain A. In particular, the clients
can validate an ARCert against an ACCEPT message by
verifying that the confirmation (1) is authentic, meaning the
confirmation is signed by trusted entities in ILS_LIST and
CA_LIST, (2) has not expired, and (3) is correct. The browsers
also perform the standard validation [27,28] of every X.509
certificate in the ARCert. If the validation succeeds, the clients
accept the TLS connection to the domain A.

4.3 Confirmation Renewal and Validation

Before ILS1’s REGRESP expires (before ILS_TIMEOUT) or
after ILS1 updates its tree (i.e., at the start of every ILS_UP
interval), the domain owner must obtain a new proof that
its ARCert is indeed logged at the ILSes. We illustrate the
renewal process in Figure 5.

ILS confirmation request (Steps 1–2). The domain owner
previously defined the trusted entities in her ARCertA.
Unless one or more of these entities is compromised, the
domain owner renews the ILS proof by contacting them.

Proof generation (Steps 7–9). At each ILS1 update, CA1 and
CA2 download all requests accepted by ILS1 (during the last
ILS_UP period), process it to maintain the local copy of the
tree, and monitor that the root hash of each CA’s local copy
matches what ILS1 publishes. If all the steps succeed, the
domain owner receives the ILS proof that is validated by
both CAs, as well as the root hash that is signed by all three
entities, making them accountable for their actions.

TLS connection (Steps 10–11). Instead of the ACCEPT mes-
sage, the domain owner now provides the PROOF message
together with the Integrity Tree root (signed by all three
entities) to TLS connection requests.

The clients can validate an ARCert against a confirmation,
be it an ACCEPT message or a PROOF message with a signed
root, by following the steps outlined in Section 4.2. For
example, the correctness validation of a PROOF takes the
form of the browser re-computing the root of the Integrity
Tree, using the intermediate hash values as specified in the
PROOF and comparing with the signed root.

Update ARCert Generation

A : Set extensions for new key, contact trusted CAs
: Combine multiple certificates into an ARCertA�

ILS ARCert Request

1. A� CA1 : UPDATEREQ � �ARCertA
�,CA1 , ILS1 ,CA2 �K�1

A

2. CA1 � ILS1 : UPDATEREQ

ILS Synchronization

3. ILS1 � ILSn: SYNREQ � �UPDATEREQ�K�1
ILS1

4. ILSn � ILS1: SYNRESP � �H �UPDATEREQ��K�1
ILSn

Update Confirmation

7. ILS1 : ACCEPT � �H �ARCertA
��,T�K�1

ILS1

ILS1 � CA2 : UPDATERESP �

�ACCEPT,UPDATEREQ,List�SYNACK��K�1
ILS1

8. CA2 � CA1 : UPDATECONF �

�ACCEPTK�1
CA2

,List�SYNRESP��K�1
CA2

9. CA1 � A : ��ACCEPT�K�1
CA2

�K�1
CA1

TLS Connection

C � A : TLS connection request
A� C : ARCertA�, ��ACCEPT�K�1

CA2

�K�1
CA1

Fig. 6. Message flows for updating domain A’s ARCert.

4.4 Certificate Management

Figure 6 illustrates how ARPKI supports certificate update,
which can be used to renew ARCertA, or to recover from
the loss or compromise of a private key. Note that ARPKI’s
update procedure differs from certificate revocation known
from X.509 PKI. In ARPKI, certificates are revoked by
replacing them by new ones.

Update ARCert generation. For a proper update, the
domain owner must satisfy the trust requirements that were
defined in the previously registered ARCertA in ILS1. For
example, the domain owner’s new ARCertA� must be signed
by CA_MIN number of CAs in CA_LIST as specified in the
old ARCertA. Furthermore, the three designated entities for
updating the certificate must be in CA_LIST and ILS_LIST
of both the old ARCertA and the new ARCertA�; otherwise,
the update process is delayed by hold times and the log
makes this update visible.

ARPKI’s update procedure gracefully handles catas-
trophic events like (1) recovery from a domain’s key com-
promise or key loss, (2) it can protect an ARCert from being
updated by untrusted parties, and (3) it gives the domain
owner time to react when an ARCert’s update violates the
domain’s update policy.

ILS request and synchronization (Steps 1–4). To update
the ARCert, ILS1 proceeds with the update only if an old
ARCertA exists for the domain A.

Update confirmation (Steps 7–9). ILS1 confirms the replace-
ment of ARCertA with ARCertA� only when a quorum of all
existing ILSes agree. This ensures that the world continues
to have a consistent view of domain A’s ARCert.

The mutual checks in Steps 2, 7, and 8 in Figures 4–6 are
needed to detect the misbehavior of CA1, CA2, and ILS1

8

during the initial ARCert registration and subsequent ARCert
updates. An attack therefore requires all three of them to be
compromised, since a single non-compromised entity detects
and blocks the attack.

4.5 Security Considerations
We have just described the process for n � 3, which prevents
attacks based on the compromise of at most two parties. To
get stronger security guarantees, the process can be extended
for larger n: instead of the message sent directly from CA2

to CA1 in Step 8 in Figure 3, additional CAs in-between
CA2 and CA1 receive, check, sign, and send the message to
the next CA in line. The resulting system provides better
security guarantees as it tolerates n � 1 compromised parties.
The downside is that n entities must be involved in the
registration, confirmation, and update operations, which
may cause inefficiency in the subsequent client connection.

Note that if an adversary can compromise n entities (CAs
or ILSes) in the overall system, the following attack is possible:
Given two disjoint sets of CAs, where one set is honest
and the other is compromised, if a domain successfully
registered a certificate for itself using the honest CAs, we
would like to guarantee that no bogus certificate can be
registered for that domain by the adversary. But, if all the
ILSes are compromised and willing to keep two separate logs,
then the adversary can register an ARCert for the domain
using the disjoint set of compromised CAs. ARPKI would
not prevent this attack. However, this attack is very likely to
be quickly detected, and all the dishonest ILSes and CAs can
be held accountable. This requires use of gossiping protocols
to spread information; see the discussion on this in Section 7.

In case of catastrophic failure, for example, when all
trusted entities of a domain are compromised, then action
outside of the described system must be taken to remove all
(or at least some) of those compromised entities.

5 MODEL AND ANALYSIS

To establish high assurance guarantees, we formally ana-
lyze ARPKI’s core security property using the TAMARIN
Prover [29,30]. We chose TAMARIN because it is a state-of-
the-art protocol verification tool that supports unbounded
verification, mutable global state, induction, and loops.

In TAMARIN, protocols are modeled using multiset rewrit-
ing rules and properties are specified using a fragment of
first-order logic that supports quantification over timepoints.
TAMARIN is capable of automatic verification in many cases,
and it also supports interactive verification by manual
construction of the proof tree. When used as an automatic
procedure, if the tool terminates without finding a proof,
it then returns a counter-example. Counter-examples can
be used to refine the model, and give feedback to the
implementer and designer.

We now recall some TAMARIN details.

States. A state models a snapshot of a protocol’s execution:
the protocol participants’ local states, information about fresh
values, the adversary’s knowledge, and the messages on the
network. States are formalized as a finite multiset of terms
called facts. There is a special fact symbol Fr with a fixed
semantics, where Fr�n� models that n is freshly generated.

The semantics of all other fact symbols is given by the
multiset rewriting rules.

Rules. Labeled multiset rewriting rules model the possible
actions of protocol participants and the adversary, who
controls and may modify messages on the network. Rules
are triples written as l --[a]-> r, where l, a, r are
all finite sequences of facts. We call l the premises, r the
conclusions, and a the actions.

We employ various modeling conventions. For example,
the protocol participants send messages using the Out fact,
which the adversary adds to its knowledge K fact, and then
can send to the protocol participants using the In fact. The
adversary can also combine knowledge, using any operator,
for example, given K�x� and K�y� and a binary operator f ,
the adversary deduces K�f�x, y��.

Labeled multiset rewriting. For a given state s, for each
rule l --[a]-> r, if there exists a substitution σ such
that σ�l� > s, then the rule can be triggered, resulting in a
new state s� � �s�σ�l��8σ�r�. Each time a rule is triggered,
σ�a� is appended to the trace, which acts like a log.

An execution is an alternating sequence of states and
multiset rewriting rules, where the initial state is empty, and
a state is followed by its successor state using the rule in-
between them. The trace of the execution is then the list of the
actions of the rules used in the sequence. Actions are ordered
sequentially and timestamped by the timepoint when they
occur. Properties are defined in a fragment of first order logic
and can refer to the actions in the trace and their order. For
more details, see papers on TAMARIN [29,30].

5.1 Tamarin Extensions
The size and complexity of ARPKI substantially surpassed all
protocols previously modeled with TAMARIN. This required
several improvements to the TAMARIN tool chain.

First, protocols can now be specified using macros for
terms, which are used for large or repeating terms. These
macros, which may be nested, are expanded using the C
preprocessor. This change increased modeler productivity
and model maintainability. On the output side, we added
functionality to TAMARIN’s GUI that allows a compact
representation of the huge output graphs that result from the
ARPKI model when displaying counterexamples. This makes
it easier to understand attacks found by the tool. Finally, we
introduced additional means for the user to guide the proof
search by annotating rules with a measure of their relevance
for the proof to help guide TAMARIN’s heuristics.

5.2 Modeling ARPKI
We modeled the communication flow of ARPKI for the initial
ARCert generation and registration following Figures 3 and 4.

Abstractions used. We employed several abstractions dur-
ing modeling. We used lists instead of Merkle hash trees
to store the registered certificates. As we do not give the
adversary the ability to tamper with these lists, and all
protocol participants only access them in the designated way,
this encodes the assumption that the hash tree cannot be
tampered with. However, the adversary can create such lists
(representing hash trees) himself by compromising parties
and using their long-term private keys to sign the lists.

9

Model excerpt. The full TAMARIN model for ARPKI is
available [8] and contains 23 rules taking around 1000 lines,
and is roughly 35000 characters before macro expansion, and
54000 characters after macro expansion. Even though, in
principle, our model allows arbitrarily many CAs and ILSes,
for the analysis we restrict ourselves to the minimal case of
two CAs and one ILS.

We present a simplified fragment of the rules to explain
the model’s key elements. The two rules below model the ex-
ecution of a domain that wants to register an ARCert, where
it requests two CAs to sign off on the new public key before
it combines them. The state fact DomainCombineARCertA
connects the two rules, so that the second rule can only
be triggered if the first rule was previously triggered and
messages of the expected form are available.

rule A_Create_AR_Cert:
let ILSlist = $ILSk

pkA = pk(˜ltkA) in
[!Ltk($A, ˜ltkA), F_CERT($A,pkA)]

--[OnlyOne(’A_Create_AR_Cert’)
, AskedForARCert($A,˜ltkA)]->
[DomainCombineARCertA($A, CertA, $CA1, $CA2)
, Out(<$A,$CA1,SIGNREQ>), Out(<$A,$CA2,SIGNREQ>)]

In the above rule, we model the ILS list as a single public
name of an arbitrary ILS called ILSk. The $ prefix denotes
that ILSk is of type ‘public name’ and the ˜ prefix denotes
terms of type ‘fresh’, i.e., freshly generated terms. Additional
annotation of the type of each entity and timestamps have
been omitted throughout this section. Fact symbols with the
! prefix are never consumed and can be used repeatedly.

We model asymmetric keys by using fresh (unique) terms
as long-term private keys (here: ˜ltkA) and use an abstract
one-way function pk to yield the corresponding public key.

rule A_Receive_SignedCerts:
let contactCA = $CA1 in
[DomainCombineARCertA($A, CertA, $CA1, $CA2) ,
In(<$CA1,$A,SIGCert1>) , In(<$CA2,$A,SIGCert2>)]

--[NotEq(˜ltkCAx1, ˜ltkCAx2)
, ReceivedCASignedARCert($A,˜ltkA)]->
[DomainHasARCertA($A, contactCA, ARCertA)]

We use the action NotEq(x,y) to specify that the rule
can only be triggered for two different CAs. This concludes
the ARCert generation as described at the top of Figure 4.

We next describe the remaining message flows for the
domain registering the new ARCert and the creation of the
registration confirmation by CA1, CA2, and ILS, ignoring
the ILS synchronization as that is not part of our model.
In Figure 4 these message flows are given by Steps 1–2 and
Steps 7–9. Each such step is a message exchange between two
parties, the sender and receiver. In the following step, the
previous receiver becomes the sender of the next message. As
each rule is written from the point of view of one participant,
we simply combine the receiving of one message and the
sending of the next message into a single rule.

First, rule ILS_REG_A1 models sending the message
from Step 1. Note that the presence of private keys does
not mean that the participant actually knows the long-term
private keys of CA1 or CA2, but rather that it can check
that the correct signatures are used for those. The OnlyOne
action guarantees that for each ARCert, represented by its
key ˜ltkA, this registration will only be started once by
an honest participant. The state fact DomainHasARCertA

connects this rule with the previous one (initial generation)
and the final rule which receives the fully signed ARCert.
Note that the message being sent, represented as RegReq,
hides much of the complexity of generating and checking
the content of messages.

rule ILS_Reg_A1:
let ILSlist = $ILSk in
[DomainHasARCertA($A, $CA1, ARCertA)
, !Ltk($A, ˜ltkA), !Ltk($CA1, ˜ltkCAx1)
, !Ltk($CA2, ˜ltkCAx2)]

--[OnlyOne(< ’ILS_Reg_A1’ , ˜ltkA >)]->
[Out(< $A, $CA1, RegReq >),

DomainHasARCertA($A, $CA1, ARCertA)]

The rule ILS_REG_CA1_FORWARD models receiving the
message from Step 1 and sending the message of Step 2. Note
that CA1 matches the contact CA in the ARCert. CA1 keeps
state of the received message in ContactCAStateILSReg
and does additional checks later.

rule ILS_Reg_CA1_Forward:
[In(< $A, $CA1, RegReq >)] --[]->
[Out(< $CA1, $ILSk, RegReq >)
, ContactCAStateILSReg($A, $CA1, RegReq)]

Next, the rule ILS_REG_ILS receives the message from
Step 2 and sends the message of Step 7 as an ILS. The two
CAs are bound inside the message that is received and the
private keys of CA1 and CA2 are again exclusively used for
signature verification. The action OnlyOne ensures that each
domain can only be registered once at the ILS. The state fact
ILStoAdd stores the list of new ARCerts that must be added.
The message MSG1 that is sent out is a macro that expands to
contain the relevant parts of the registration request RegReq
and is signed by the ILS.

rule ILS_Reg_ILS:
[In(< $CA1, $ILSk, RegReq >) , !Ltk($ILSk, ˜ltkK)
, !Ltk($CA1, ˜ltkCAx1) , !Ltk($CA2, ˜ltkCAx2)
, ILStoAdd(˜ltkK, $ILSk, AddList)]

--[OnlyOne(< ’RegisterDomain’, $A >)]->
[Out(< $ILSk, $CA2, MSG1 >)
, ILStoAdd(˜ltkK, $ILSk, AddList + ARCertA)]

The remaining message flows are modeled analogously.

5.3 Adversary Model

By default, TAMARIN’s adversary model assumes that the
adversary has full network control. All messages sent using
Out(m) facts in the right-hand side of rules are added to
the adversary’s knowledge, and any message that can be
constructed from this knowledge can be used to trigger an
In(m) fact in the left-hand side of a rule. Thus, the adversary
can eavesdrop, modify, and insert messages.

Additionally we assume that the adversary can compro-
mise ILSes and CAs. For the main security property, we
assume that the adversary has compromised at most two
such entities. It is clear that for any design, if the adversary
can compromise all involved entities (here: two CAs and one
ILS) that the browser trusts, he can convince the browser
that a certificate is good. We model this by adding rules that
enable the adversary to register public keys that are later
designated as a CA or an ILS. A compromised ILS will then
sign any Integrity Tree represented as a list as usual.

10

5.4 Analysis Guarantees

Proof goal. Whenever (i) a domain A has been registered
initially by an honest party with an ARCert; and (ii) a browser
later accepts a connection to domain A with some ARCert
(which may have been updated and hence differs from the
original ARCert), then the adversary does not know the
private key for that ARCert.

We require that the adversary does not know the private
key for the ARCert to model that the browser communicates
with the right domain, because for a bogus certificate the
adversary would know the private key. The part (i) makes
explicit the assumption that until a domain has had an
ARCert issued using ARPKI, anyone can register that domain
themselves, including the adversary, as long as they can fool
(or compromise) two CAs.

We analyze this proof goal twice: once for at most
two compromised entities, and once for three or more
compromised entities. The formula that encodes this property
in TAMARIN is shown in Figure 7 and takes the form of an
implication. The formula starts with a quantification over
variables (cid, a, b, . . .): for all values of those variables there
should be a GEN_LTK(...) action in the trace at position i1
(#i1 denotes a variable i1 of type ‘timepoint’). In our model,
this action can only be produced by a particular rule that
generates initially trusted keys. If a domain A has initially
received an ARPKI certificate using a non-compromised
private key, and the browser accepted a connection for that
domain for any key pair (uniquely determined by the private
key key), then the implication holds if the adversary does
not know the private key key (encoded by K�key�).

This is precisely the connection integrity property from
Section 2. As we will show next, it holds for ARPKI whenever
at most two entities are compromised, and can be broken
only with three or more compromised entities. This is a
stronger property than AKI offers, since with AKI only two
compromised entities result in a security breach already.

Analysis. Using TAMARIN, we find the expected attack for
the case of three or more compromised CAs and ILSes. An
adversary that, for example, controls two CAs as well as
one ILS can create an ARCert for any domain. But, when at
most two entities are compromised, TAMARIN verifies the
lemma. This guarantees that no attack with less than three
compromised parties is possible.

We ran our experiments on a PC with an Intel Xeon CPU
(2.60GHz) with 16 cores and 32 GB of RAM with Ubuntu
14.04 64bit as the operating system. The proof runtime
with at most two compromised entities was 78 minutes,
and the runtime for finding the attack with three or more
compromised entities was 52 minutes. We had to develop
extensions and provided hints to TAMARIN as indicated in
Section 5.1. We estimate the overall verification effort at
several person months.

5.5 Co-design
We developed our formal specification of ARPKI in tandem
with its implementation, working from a single evolving
design document. As a result, the specification and the
implementation are tightly linked, significantly reducing
the possibility of modeling errors.

TAMARIN played a critical role during the development,
helping us to make all details of the protocol design precise
and to uncover missing detail. During development, we
found a number of attacks on early designs, even when
limited to two compromised parties. For example, in one
case, we discovered that checks performed by the browser,
to protect against a party signing more than once, were not
performed by the domain owner during certificate creation.
The missing checks were then added to the model, the
specification document, and the implementation.

We improved the formal model over several iterations.
For example, as our understanding of the implementation
concerns and their impact on the design increased, we added
more implementation details to the model. Additionally, we
continuously reproved several basic properties that served
as sanity checks, such as proving that certain expected
behaviors can indeed occur. Finally, we sometimes found
false attacks on our earlier models that were the result of
over-approximating the actual protocol. Such attacks, which
would not be possible on the implementation, indicated that
the model needed to be further refined. Once the formal
model had stabilized, further issues found in failed proof
attempts were quickly communicated and fixed.

6 IMPLEMENTATION

In this section we describe our proof-of-concept implemen-
tation of ARPKI and assess its performance. Our implemen-
tation provides all the features required for deployment.
In particular, we implemented the following parts: (1) the
communication flows and processing logic for the message
exchanges presented in Section 4, (2) the ILS process with
the fully implemented Integrity Tree, and the capability to
publish the information required for its consistency checks,
(3) the CA process, which monitors the ILSes and publishes
misbehavior, (4) the CA process that can produce on-line
confirmations, (5) the client process, i.e., a browser extended
with support for full ARCert validation, (6) the protocol for
accountable synchronization, and (7) the domain tool, which
can register, update, revoke, recover, and confirm ARCerts.

6.1 Design and Implementation Choices

We implement the ARCerts using a concatenation of standard
X.509 certificates. We use X.509 extensions [31] to add ARPKI-
related fields such as CA_LIST, ILS_LIST, and CA_MIN.

The implementation of all processes is written in C++.
We use OpenSSL (version 1.0.1) APIs for all cryptographic
operations, and use the JavaScript Object Notation (JSON)
and Base64 encoding for request and response messages.
We implement the Integrity Tree using SHA-512 as the hash
function, and use RSA-2048 as the signature algorithm.

Entities are implemented as modules with APIs. The
communication module is implemented using a multi-
threaded work queue with TCP sockets. The Integrity Tree
is implemented as a separate database module, while the
publishing module is realized by a local HTTP server. The ILS
publishes all accepted requests and the root hash at each
update time. This module also allows every entity to publish
detected misbehavior. Through the publishing module, ILSes
and CAs show their current view of all Integrity Trees.

11

lemma main_prop:
"(All cid a b reason oldkey key #i1 #i2 #i3 #i4 .

(GEN_LTK(a,oldkey,’trusted’) @i1 // ’Honest’ agent
& AskedForARCert(a,oldkey) @i2 // domain has asked for an ARCert with this exact key
& ReceivedARCert(a,oldkey) @i3 // domain has confirmation that its ARCert with this

// exact key has been processed.
& ConnectionAccepted(cid,b,a,reason,key) @i4 // browser accepted connection, based on private key

// ’key’ for domain a.
& i3 < i4)
==>
((not (Ex #j. K(key) @j)))) " // adversary cannot know that private key

Fig. 7. Main security property proven

Due to the reasonably small number of ILSes and CAs,
the synchronization between parties is realized by unicast
communication. Each ILS and CA contacts every ILS at
update time to keep the Integrity Trees consistent. The
synchronization protocol can tolerate a range of system
failures as every ILS and CA acts as global state replication.

We implement the ARPKI-enabled web server by recon-
figuring the Nginx HTTP server (version 1.5.7). We configure
the web server to periodically interact with ARPKI’s infras-
tructure to fetch fresh confirmations that are provided to
the browsers. After at most every ILS_TIMEOUT (expected
to be a few hours), the server sends a request CCREQ and
receives fresh confirmations, i.e., either PROOF or ACCEPT.
The received confirmations are validated and saved for future
HTTPS client connections.

We implement the client by extending the Chromium
web browser and we deploy our system without significant
changes to the TLS protocol. During the client-server con-
nection, the server’s ARCert is sent within the handshake’s
Server Certificate message while confirmations are provided to
the browser using the existing Online Certificate Status Protocol
Stapling extension. This architecture includes the ARCert
validation process from Section 4, so the browser verifies the
ARCert and the signatures of the received confirmation. The
browser additionally verifies the consistency of the ARCert
and the confirmation.

6.2 Performance Evaluation
We analyzed the performance of our prototype implemen-
tation in a real-world scenario. We set up a test-bed that
included all entities: the ILS, CAs, ARPKI-supporting server,
and browser. We ran our tests on a PC with an Intel i5-3470
(3.20GHz) CPU and 16GB of RAM with Ubuntu 12.04 64bit as
the operating system. On this machine, we ran three virtual
machines, acting as CA1, CA2, and ILS1, respectively.

First we investigated how long processing takes for the
infrastructure for three requests initiated by the domain:
REGREQ, UPDATEREQ, and CCREQ. REGREQ is sent once per
domain, while UPDATEREQ is envisioned to be sent annually
for each domain. The most common request is CCREQ,
which is sent roughly every ILS_TIMEOUT. Measurements
are given as the average over 1000 test runs in Table 2. We
only measure the total processing time spent by the entities
involved, without considering network latency.

To validate ARPKI’s deployability in a more realistic
setting we conducted an experiment using a distributed
infrastructure based on Amazon’s EC2. We deployed CAs,
ILSes, and domains as separate EC2 instances located in

TABLE 2
Total processing time (in milliseconds) per request per entity.

Request CA1 CA2 ILS1 Total
REGREQ 9.31 9.28 13.56 32.15

UPDATEREQ 9.49 9.33 12.98 31.80
CCREQ 5.12 5.64 7.06 17.82

different geographical locations in Asia, Europe, and the
US. Then, for a randomly selected domain, CA1, CA2, and
ILS1, we conducted ARCert registration, ARCert update,
and ARCert confirmation, and measured the total time
consumed by each operation. Measured over 100 such runs,
these operations took on average 1.966, 1.930, and 1.921
second, respectively.

For validation by the browser, we distinguish two phases:
standard validation and ARPKI validation. During the standard
validation phase, the browser validates every X.509 certificate
within an ARCert, using the standard browser validation
procedure. This includes checking whether the certificate is
issued for a correct domain, has been signed correctly, has
not expired, etc. The ARPKI validation phase additionally
checks that (1) certificates within an ARCert are signed by
CAs trusted by the domain, (2) proofs have been produced
for the correct ARCert and that the proof validates with
the correct root, and (3) the proof and the root are signed
by the correct entities (i.e., they are distinct and trusted by
the domain). We used an ARCert that consisted of three
standard X.509 certificates. The entire validation took 2.25ms
on average, the standard validation took 0.70ms on average,
and the ARPKI validation took on average 1.55ms.

The most time-consuming operations in our system
involve signature creation and verification. This overhead
can be reduced by using state-of-the-art digital signature
schemes [32,33]. However, this may not be backward-
compatible with software using older cryptographic libraries.

In our design, the CAs are required to perform verifica-
tion in addition to their normal operations. Even though our
prototype is not yet optimized, our tests indicate that a CA
on a single low-end machine can serve about 100 ARCert
registrations/updates and 200 confirmations per second. The
bandwidth required for this is 10Mbit/s.

In terms of client-server communication, the biggest
transmission overhead is introduced by using the ARCert,
since it is implemented by concatenating standard X.509
certificates. Instead of sending one standard certificate, as is
currently done, a domain sends the concatenation of standard
certificates, each signed by a different CA. Note that the
size of this overhead is not fixed: the domain can adjust

12

the trade-off between processing/transmission overhead
and the authentication of its own public key by combining
the desired number of standard certificates into an ARCert.
It is important that the latency introduced by the ARPKI
infrastructure does not influence the client-server connection.
The confirmations are obtained periodically and stored by the
server for a configurable amount of time. At each connection,
the server provides these confirmations to the browser along
with its ARCert. Our solution does not introduce any extra
network requests for client-server connections. However,
due to the size of ARCerts and confirmations, a small
amount of latency may be introduced by the transport layer
protocol [34]. Note that our solution does not introduce any
additional computational overhead for the server during
regular HTTPS connections.

Overall, our analysis of our prototype indicates that it is
feasible to deploy ARPKI with reasonable overhead.

7 DISCUSSION

ARPKI’s security parameter n describes the number of par-
ties that must be compromised for a successful impersonation
attack. This parameter expresses a basic trade-off between
security and efficiency: by increasing n, all ARCerts become
more trustworthy, but system performance decreases and
domain expenses increase.

Although we do not address the question of what an
optimal value for n is (although this might be the subject
of a future, empirical study), we do discuss below: (1) how
ARPKI can be enhanced to detect powerful attacks where n
or more parties are compromised, and (2) what could be the
price of an ARCert on the current TLS certificate market.

7.1 Detection of a Successful Impersonation Attack
ARPKI provides strong security guarantees, namely that a
successful impersonation attack is only possible when at least
n different parties (i.e., at least one ILS and n � 1 CAs) are
under control of the adversary. If such a compromise occurs,
the adversary can then produce a malicious ARCert along
with fake proofs that this ARCert is in the log. Consequently,
every client will accept a TLS connection based on this
ARCert. Moreover, the adversary does not have to update
the log with this ARCert, making the attack undetectable for
the non-compromised part of the infrastructure (as only the
attacked clients would see proofs for the malicious ARCert).
Unfortunately, it is impossible to protect the clients from
such a threat. However, one could consider whether it is
possible to at least retroactively detect such an attack. ARPKI
can be extended to support the detection of such a powerful
adversary using the two approaches outlined below.

Validators. In ARPKI, logs are publicly available and anyone
can easily monitor them. A party that is not part of the ARPKI
infrastructure, but constantly monitors the operations of logs,
is called a validator (the same name is used in AKI, but
in CT this party is called a monitor). To monitor the logs,
each validator periodically downloads the logs, and checks
whether the ILSes operate correctly. For this check, a validator
performs exactly the same action as a CA; thus validators
can be straightforwardly implemented with support for a
subset of CA operations. As proposed in AKI [7], validators

could be operated by non-governmental Internet governance
organizations, such as the EFF, which have no incentives to
collude with corporations (like CAs) and governments.

For every ARPKI-enabled TLS connection, a client is
provided with an ARCert, a presence proof for that ARCert,
and the tree root of an ILS (signed by n parties). This
information is required to establish a connection, and it
is sufficient to check whether the view of the log presented to
the client is consistent with the validators’ views. For this, the
client can periodically ask validators for their views of the
log. Misbehavior is detected when the views are inconsistent,
that is, when there are two or more different roots for the
same ILS_UP period. Such inconsistent roots constitute a
proof of misbehavior and can be reported, for example, to
software vendors to remove misbehaving entities from their
root certificate stores.

Gossip protocols. The main disadvantages of a validator-
based approach is the requirement for additional infras-
tructure (as validators should be highly available), and the
risk that for highly targeted attacks, one or more validators
could still be compromised. To solve the problem of efficient
misbehavior detection, without relying on any trusted party,
gossip protocols have been suggested [35] where clients ran-
domly exchange information about the log. Gossip protocols
provide the clients with a lightweight way to guarantee that
they have the same view of the log.

The first proposal that uses this approach was pre-
sented [36]. The clients exchange signed roots with the server
during the TLS connection. This exchange is realized during
normal client traffic, whereby messages about the log are
piggybacked on top of native requests and responses. The
protocol therefore requires neither additional infrastructure
nor a dedicated connection. The only requirement is that
some fraction of clients and servers gossip. Evaluation of the
protocol shows that every log’s inconsistency is eventually
detected with high probability. Moreover, as in the previous
approach, the proof of misbehavior is that different signed
roots from the same time period exist. This protocol can
be directly applied to ARPKI, making the detection of
misbehavior more robust.

7.2 Economic Incentives
Although ARPKI requires changes to CAs, we believe that
CAs have incentives to participate in the system. The
reputation of CAs has been undermined by security breaches,
which were challenging to detect and mitigate. Therefore,
CAs understand the value of log-based approaches that make
observing their own certificates and operations easier and
more transparent. Moreover, high-quality CAs would gain
a competitive advantage if their reliable operation would
become publicly verifiable. Evidence for these points is given
by the deployment of log servers in Certificate Transparency,
which currently features 13 independent log servers operated
for instance by Google, Symantec, DigiCert, and StartCom.

Many companies are interested in a secure Internet since
this is likely to increase the Internet’s use and therefore their
profits; companies like Google and Facebook, which invest
heavily in security, likely reason this way. Moreover, some of
these high-profile domains have been targeted in previous
CA breaches, which has increased the general awareness

13

of the drawbacks of the current generation of PKIs. Conse-
quently, several companies are actively using and developing
log-based security enhancements. For instance, Facebook, by
monitoring CT logs, discovered an unauthorized issuance of
two certificates on multiple Facebook domains [37].

An ARCert provides stronger assurance for a binding
between a public key and a domain name than today’s TLS
certificates because it consists of multiple (namely, n � 1) CA
assertions. Such redundancy increases the security of the
certificate, but also increases the price.

The market for digital certificates is diverse. Commercial
CAs usually issue three types of certificates based on the
validation they perform: (1) domain validation (DV), where a
CA checks the right of the applicant to use a specific domain
name by an automated e-mail, (2) organization validated
(OV), where domain validation is performed and the CA
conducts some vetting of the organization, and (3) extended
validation (EV), where domain validation is performed as
well as a thorough vetting of the organization. Arnbak et
al. [38] survey the market for TLS certificates and present
price ranges for these different types of certificates. According
to this study, DV certificates cost $0–$249, OV certificates $38–
$258, and EV certificates $100–$1,520.

The above cost estimates show that an ARCert imple-
mented by concatenating today’s certificates would not be
too expensive. For instance, assuming the most secure EV
certificates as components of an ARCert, and n � 4, the
lowest price of an ARCert would be $300. That is less than
half the average price for a single EV certificate, which is
around $600 in 2014 [38].

7.3 Deployment Aspects

Google has already proposed, standardized, and deployed
CT, a log-based approach [35]. Since March 2016, the Chrome
Browser ceased displaying the green bar for EV certificates
that are not registered in a log server. ARPKI’s ILSes could
be deployed on top of the CT infrastructure, given their
similarities.

While CT is optimized for deployability, ARPKI is opti-
mized for security. Consequently, the deployment of ARPKI
is more challenging. However, with the increased interest in
secure network architectures, we have the opportunity to add
a secure PKI ecosystem. Specifically, ARPKI is a component
of the SCION secure Internet architecture [39]. SCION is
already deployed by several ISPs and we have observed
that there is substantial interest by security-conscious cor-
porations in achieving a higher level of security for their
certificates with ARPKI.

8 CONCLUSIONS

We have presented ARPKI, a new PKI with strong security
guarantees. It offers resilience against impersonation attacks
that involve n � 1 compromised trusted entities. Moreover, if
all entities involved in an ARCert are compromised, in which
case domain impersonation cannot be prevented, the other
CAs may still obtain the evidence of the compromise, and
can take compensating actions out of band. If such evidence
cannot be obtained (an adversary uses compromised keys
to produce an ARCert and its confirmation, without logging

this malicious ARCert), then only an attacked client can
make that attack detectable by contacting CAs out of band,
involving validators, or participating in a gossip protocol.
Even though attack resilience cannot be achieved in this
case, complete compromise situations are at least visible. We
have implemented and evaluated our proposal, providing
evidence that a TLS connection setup using ARPKI for
certificate validation incurs only a small overhead.

Throughout the design and implementation of ARPKI,
we used formal analysis to validate our design decisions.
This co-design of the formal model and the implementation
enabled us to detect numerous pitfalls early on. It also
enabled us to make implementation choices that simplified
the construction of proofs later, such as including unique tags
in all messages. As a result, our formal model is much closer
to the implementation than a typical after-the-fact analysis,
thereby reducing the possibility of modeling errors.

Finally, ARPKI introduces a new model of public-key in-
frastructure and certificate validation. Future work therefore
includes developing procedures for managing CA certifi-
cates, elaborating the CAs’ policies and business models,
improving the representation of ARCert, and developing
incremental deployment strategies.

ACKNOWLEDGMENTS

This work was in part supported by CyLab at Carnegie
Mellon University, by NSF under award CNS-1040801, by a
gift from Google, and by ETH Zurich. The research leading
to these results has received funding from the European
Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC grant agree-
ment 617605. We thank Emilia Kasper for her feedback
during the early stages of this work. We thank Lorenzo
Baesso and Lin Chen for their programming assistance.

REFERENCES

[1] P. Ducklin, “The TURKTRUST SSL certificate fi-
asco - what really happened, and what happens
next?” http://nakedsecurity.sophos.com/2013/01/08/
the-turktrust-ssl-certificate-fiasco-what-happened-and-what-happens-next/,
January 2013.

[2] P. Roberts, “Phony SSL certificates issued for
Google, Yahoo, Skype, others,” http://threatpost.com/
phony-ssl-certificates-issued-google-yahoo-skype-others-032311/,
March 2011.

[3] J. Menn, “Key internet operator VeriSign hit by
hackers,” http://www.reuters.com/article/2012/02/02/
us-hacking-verisign-idUSTRE8110Z820120202, January 2012.

[4] T. Sterling, “Second firm warns of concern
after Dutch hack,” http://news.yahoo.com/
second-firm-warns-concern-dutch-hack-215940770.html,
September 2011.

[5] B. Laurie, A. Langley, and E. Kasper, “Certificate Transparency,”
http://tools.ietf.org/pdf/rfc6962.pdf, June 2013, IETF RFC 6962.

[6] P. Eckersley, “Sovereign Key Cryptography for Internet
Domains,” https://git.eff.org/?p=sovereign-keys.git;a=blob;f=
sovereign-key-design.txt;hb=HEAD, 2012.

[7] T. H.-J. Kim, L.-S. Huang, A. Perrig, C. Jackson, and V. Gligor,
“Accountable Key Infrastructure (AKI): A Proposal for a Public-Key
Validation Infrastructure,” May 2013.

[8] “ARPKI: Full implementation, formal model, and security proper-
ties,” 2015, http://www.netsec.ethz.ch/research/arpki.

14

http://nakedsecurity.sophos.com/2013/01/08/the-turktrust-ssl-certificate-fiasco-what-happened-and-what-happens-next/
http://nakedsecurity.sophos.com/2013/01/08/the-turktrust-ssl-certificate-fiasco-what-happened-and-what-happens-next/
http://threatpost.com/phony-ssl-certificates-issued-google-yahoo-skype-others-032311/
http://threatpost.com/phony-ssl-certificates-issued-google-yahoo-skype-others-032311/
http://www.reuters.com/article/2012/02/02/us-hacking-verisign-idUSTRE8110Z820120202
http://www.reuters.com/article/2012/02/02/us-hacking-verisign-idUSTRE8110Z820120202
http://news.yahoo.com/second-firm-warns-concern-dutch-hack-215940770.html
http://news.yahoo.com/second-firm-warns-concern-dutch-hack-215940770.html
http://tools.ietf.org/pdf/rfc6962.pdf
https://git.eff.org/?p=sovereign-keys.git;a=blob;f=sovereign-key-design.txt;hb=HEAD
https://git.eff.org/?p=sovereign-keys.git;a=blob;f=sovereign-key-design.txt;hb=HEAD
http://www.netsec.ethz.ch/research/arpki

[9] D. A. Basin, C. J. F. Cremers, T. H. Kim, A. Perrig, R. Sasse, and
P. Szalachowski, “ARPKI: attack resilient public-key infrastructure,”
in Proc. of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, November 3-7, 2014,
G. Ahn, M. Yung, and N. Li, Eds. ACM, 2014, pp. 382–393.
[Online]. Available: http://doi.acm.org/10.1145/2660267.2660298

[10] M. Abadi, A. Birrell, I. Mironov, T. Wobber, and Y. Xie, “Global
authentication in an untrustworthy world,” in HotOS, P. Maniatis,
Ed. USENIX Association, 2013.

[11] D. Wendlandt, D. G. Andersen, and A. Perrig, “Perspectives:
Improving SSH-style Host Authentication with Multi-Path Probing,”
Jun. 2008.

[12] “Convergence,” http://convergence.io/, 2011.
[13] Electronic Frontier Foundation, “SSL Observatory,” https://www.

eff.org/observatory.
[14] R. Housley, W. Polk, W. Ford, and D. Solo, “Internet X.509 Public

Key Infrastructure: Certificate and Certificate Revocation List (CRL)
Profile,” Technical Report RFC 3280, Internet Engineering Task
Force, Apr. 2002.

[15] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams,
“X.509 Internet Public Key Infrastructure Online Certificate Status
Protocol - OCSP,” Internet Request for Comments 2560, United
States, Jun. 1999.

[16] E. Topalovic, B. Saeta, L.-S. Huang, C. Jackson, and D. Boneh,
“Towards Short-Lived Certificates,” May 2012.

[17] “Public Key Pinning,” http://www.imperialviolet.org/2011/05/
04/pinning.html, May 2011.

[18] “Public Key Pinning Extension for HTTP,” http://tools.ietf.org/
html/draft-ietf-websec-key-pinning-01, Dec. 2011.

[19] M. Marlinspike and T. Perrin, “Trust Assertions for Certificate
Keys,” http://tack.io/draft.html, May 2012.

[20] P. Hoffman and J. Schlyter, “The DNS-based Authentication of
Named Entities (DANE) Transport Layer Security (TLS) Protocol:
TLSA,” http://tools.ietf.org/html/rfc6698, 2012, IETF RFC 6698.

[21] P. Hallam-Baker, R. Stradling, and B. Laurie, “DNS Certificate
Authority Authentication (CAA) Resource Record,” https://tools.
ietf.org/html/rfc6844, 2013, IETF RFC 6844.

[22] G. Slepak, “DNSChain,” https://github.com/okTurtles/dnschain,
2014.

[23] B. Laurie and E. Kasper, “Revocation Transparency,” http://sump2.
links.org/files/RevocationTransparency.pdf, 2012.

[24] M. D. Ryan, “Enhanced certificate transparency and end-to-end
encrypted mail,” 2014.

[25] J. Yu, V. Cheval, and M. Ryan, “DTKI: a new formalized PKI with
no trusted parties,” IACR Cryptology ePrint Archive, 2014. [Online].
Available: http://eprint.iacr.org/2014/600

[26] P. Szalachowski, S. Matsumoto, and A. Perrig, “PoliCert: Secure
and Flexible TLS Certificate Management,” Nov. 2014.

[27] R. Biddle, P. C. van Oorschot, A. S. Patrick, J. Sobey, and T. Whalen,
“Browser interfaces and extended validation SSL certificates: an
empirical study,” in Proc. of the 2009 ACM workshop on Cloud
computing security. ACM, 2009, pp. 19–30.

[28] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: validating
SSL certificates in non-browser software,” in Proc. of the 2012 ACM
conference on Computer and communications security. ACM, 2012,
pp. 38–49.

[29] B. Schmidt, S. Meier, C. Cremers, and D. Basin, “Automated analy-
sis of Diffie-Hellman protocols and advanced security properties,”
in Computer Security Foundations Symposium (CSF). IEEE, 2012, pp.
78–94.

[30] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The TAMARIN
Prover for the Symbolic Analysis of Security Protocols,” in Computer
Aided Verification, 25th International Conference, CAV 2013, Princeton,
USA, Proc., ser. LNCS, vol. 8044. Springer, 2013, pp. 696–701.

[31] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk, “Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile,” RFC 5280 (Proposed
Standard), Internet Engineering Task Force, May 2008. [Online].
Available: http://www.ietf.org/rfc/rfc5280.txt

[32] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-
speed high-security signatures,” Journal of Cryptographic Engineering,
vol. 2, no. 2, pp. 77–89, 2012.

[33] E. Kasper, “Fast elliptic curve cryptography in OpenSSL,” in
Financial Cryptography and Data Security, ser. LNCS. Springer,
2012, vol. 7126, pp. 27–39.

[34] A. Langley, “Overclocking SSL,” https://www.imperialviolet.org/
2010/06/25/overclocking-ssl.html, Jun. 2010.

[35] B. Laurie, A. Langley, and E. Kasper, “Certificate Transparency,”
http://tools.ietf.org/html/draft-laurie-pki-sunlight-07, Jun. 2013.

[36] L. Chuat, P. Szalachowski, A. Perrig, B. Laurie, and E. Messeri,
“Efficient gossip protocols for verifying the consistency of certificate
logs,” in Communications and Network Security (CNS). IEEE, 2015.

[37] D. Huang and B. Hill, “Early Impacts of Certificate Transparency,”
https://www.facebook.com/notes/protect-the-graph/
early-impacts-of-certificate-transparency/1709731569266987/,
2016.

[38] A. Arnbak, H. Asghari, M. Van Eeten, and N. Van Eijk, “Security
collapse in the https market,” Queue, vol. 12, no. 8, Aug. 2014.

[39] D. Barrera, R. M. Reischuk, P. Szalachowski, and A. Perrig, “Scion
five years later: Revisiting scalability, control, and isolation on
next-generation networks,” arXiv e-prints, Aug. 2015. [Online].
Available: http://arxiv.org/pdf/1508.01651

AUTHOR BIOGRAPHIES

David Basin is a full professor at ETH Zurich. He received
his Ph.D. from Cornell University in 1989. His research
focuses on Information Security, in particular on foundations,
methods, and tools for modeling, building, and validating
secure and reliable systems.

Cas Cremers is a full professor at the University of
Oxford. He received his Ph.D. from Eindhoven University of
Technology in 2006. His research focuses on the foundations
and analysis of secure systems, using approaches from formal
methods, automated verification, and cryptographic analysis.

Tiffany Hyun-Jin Kim is a research scientist at HRL
Laboratories LLC. She received her Ph.D. from Carnegie
Mellon University in 2012, and her research interests include
usable security and privacy, network security, and applied
cryptography.

Adrian Perrig is a Professor at the Department of Com-
puter Science at ETH Zurich. He is also a Distinguished
Fellow at CyLab, and an Adjunct Professor of Electrical and
Computer Engineering, and Engineering and Public Policy
at Carnegie Mellon University. He received his Ph.D. from
Carnegie Mellon University in 2002. His research revolves
around building secure systems – in particular his group
working on the SCION secure future Internet architecture.

Ralf Sasse is a senior scientist at ETH Zurich.He received
his Ph.D. from the University of Illinois in 2012. His research
focuses on security of software, particularly applying Formal
Methods to security protocol verification as a building block.

Pawel Szalachowski is a postdoctoral researcher at ETH
Zurich. He received his Ph.D. degree in Computer Science
from Warsaw University of Technology, Poland, in 2012. His
research interests include the Internet and network security,
public-key infrastructures, and applied cryptography.

15

http://doi.acm.org/10.1145/2660267.2660298
http://convergence.io/
https://www.eff.org/observatory
https://www.eff.org/observatory
http://www.imperialviolet.org/2011/05/04/pinning.html
http://www.imperialviolet.org/2011/05/04/pinning.html
http://tools.ietf.org/html/draft-ietf-websec-key-pinning-01
http://tools.ietf.org/html/draft-ietf-websec-key-pinning-01
http://tack.io/draft.html
http://tools.ietf.org/html/rfc6698
https://tools.ietf.org/html/rfc6844
https://tools.ietf.org/html/rfc6844
https://github.com/okTurtles/dnschain
http://sump2.links.org/files/RevocationTransparency.pdf
http://sump2.links.org/files/RevocationTransparency.pdf
http://eprint.iacr.org/2014/600
http://www.ietf.org/rfc/rfc5280.txt
https://www.imperialviolet.org/2010/06/25/overclocking-ssl.html
https://www.imperialviolet.org/2010/06/25/overclocking-ssl.html
http://tools.ietf.org/html/draft-laurie-pki-sunlight-07
https://www.facebook.com/notes/protect-the-graph/early-impacts-of-certificate-transparency/1709731569266987/
https://www.facebook.com/notes/protect-the-graph/early-impacts-of-certificate-transparency/1709731569266987/
http://arxiv.org/pdf/1508.01651

	Introduction
	Desired Properties
	Adversary Model
	Security Properties
	Performance Properties

	Related Work
	Alternative Approaches
	Accountable Key Infrastructure
	Comparison

	ARPKI: Attack-Resilient PKI
	Initial ARCert Registration Process
	Clients Visiting a Domain using ARCert
	Confirmation Renewal and Validation
	Certificate Management
	Security Considerations

	Model and Analysis
	Tamarin Extensions
	Modeling ARPKI
	Adversary Model
	Analysis Guarantees
	Co-design

	Implementation
	Design and Implementation Choices
	Performance Evaluation

	Discussion
	Detection of a Successful Impersonation Attack
	Economic Incentives
	Deployment Aspects

	Conclusions
	References

