
Modeling and Analyzing Security in the
Presence of Compromising Adversaries?

David Basin and Cas Cremers??

Department of Computer Science, ETH Zurich

Abstract. We present a framework for modeling adversaries in security
protocol analysis, ranging from a Dolev-Yao style adversary to more
powerful adversaries who can reveal different parts of principals’ states
during protocol execution. Our adversary models unify and generalize
many existing security notions from both the computational and symbolic
settings. We extend an existing symbolic protocol-verification tool with
our adversary models, resulting in the first tool that systematically
supports notions such as weak perfect forward secrecy, key compromise
impersonation, and adversaries capable of state-reveal queries. In case
studies, we automatically find new attacks and rediscover known attacks
that previously required detailed manual analysis.

1 Introduction

Problem context. Many cryptographic protocols are designed to work in
the face of various forms of corruption. For example, a Diffie-Hellman
key agreement protocol, where signatures are used to authenticate the
exchanged half-keys, provides perfect forward secrecy [17,30]: the resulting
key remains secret even when the signature keys are later compromised
by the adversary. Designing protocols that work even in the presence
of different forms of adversary compromise has considerable practical
relevance. It reflects the multifaceted computing reality with different
rings of protection (user-space, kernel space, hardware security modules)
offering different levels of assurance with respect to the computation of
cryptographic functions (e. g., the quality of the pseudo-random numbers
generated) and the storage of keys and intermediate results.

Symbolic and computational approaches have addressed this problem
to different degrees. Most symbolic formalisms are based on the Dolev-
Yao model. These offer, with few exceptions, a limited view of honesty
and conversely corruption: either principals are honest from the start and

? Changes after ESORICS 2010: Nov 30, 2010; Minor change in Table 2.
?? This work was supported by ETH Research Grant ETH-30 09-3 and the FP7-ICT-

2007-1 Project no. 216471 (AVANTSSAR).

always keep their secrets to themselves or they are completely malicious and
always under adversary control. Under this limited view, it is impossible to
distinguish between the security provided by early key-exchange protocols
such as the Bilateral key-exchange [12] and state-of-the art protocols
such as (H)MQV [23,27]. It is also impossible to discern any benefit from
storing the long-term keys in a tamper-proof module or performing part
of a computation in a cryptographic coprocessor.

In contrast to the above, researchers in the computational setting,
such as [7,9,21,25,32], have explored stronger adversary models, whereby
principals may be selectively corrupted during protocol execution. For
example, their short-term or long-term secrets, or the results of intermedi-
ate computations may be revealed (at different times) to the adversary.
These models are used to establish stronger properties, such as perfect
forward secrecy or resilience against state-reveal attacks. There are, how-
ever, drawbacks to these computational models. These models have been
defined just for key-agreement protocols, whereas one may expect similar
definitions to exist for any security protocol. Moreover, contrary to the
security models used in symbolic approaches, there is no automated tool
support available for the stronger adversary models.

Contributions. We present a framework for analyzing security protocols in
the presence of adversaries with a wide range of compromise capabilities.
We show how analogs of adversary models studied in the computational
setting can be modeled in our framework. For example, we can model
attacks against implementations of cryptographic protocols involving the
mixed use of cryptographic co-processors for the secure storage of long-
term secrets with the computation of intermediate results in less-secure
main memory for efficiency reasons.

Our models bridge another gap between the computational and sym-
bolic approaches by providing symbolic definitions for adversaries and
security properties that were previously only available in the computational
setting. Moreover, by decomposing security properties into an adversary
model and a basic security property, we unify and generalize many existing
security properties.

Our framework directly lends itself to protocol analysis. As an example,
we extend Scyther [14], a symbolic protocol analysis tool. This results
in the first automated tool that systematically supports notions such
as weak perfect forward secrecy, key compromise impersonation, and
adversaries that can reveal the local state of agents. We analyze a set of
protocols with the tool and rediscover many attacks previously reported
in the cryptographic literature. Furthermore, our tool finds previously

unreported attacks, including a novel attack on HMQV. This shows that
symbolic methods can be effectively extended for analyses that previously
were possible only using a manual computational analysis.

Organization. We present our framework in Section 2 and show several
applications in Section 3. We discuss related work in Section 4 and conclude
in Section 5.

2 Compromising Adversary Model

We define an operational semantics that is modular with respect to the
adversary’s capabilities. Our framework is compatible with the majority of
existing semantics for security protocols, including trace and strand-space
semantics. We have kept our execution model minimal to focus on the
adversary rules. However, it would be straightforward to incorporate a
more elaborate execution model, e. g., with control-flow commands.

Notational preliminaries.
Let f be a function. We write dom(f) and ran(f) to denote f ’s domain

and range. We write f [b ←[a] to denote f ’s update, i. e., the function
f ′ where f ′(x) = b when x = a and f ′(x) = f(x) otherwise. We write
f : X 7→ Y to denote a partial function from X to Y . For any set S, P(S)
denotes the power set of S and S∗ denotes the set of finite sequences of
elements from S. We write 〈s0, . . . , sn〉 to denote the sequence of elements
s0 to sn, and we omit brackets when no confusion can result. For s a
sequence of length |s| and i < |s|, si denotes the i-th element. We write
sˆs′ for the concatenation of the sequences s and s′. Abusing set notation,
we write e ∈ s iff ∃i.si = e. We write union(s) for

⋃
e∈s e. We define

last(〈〉) = ∅ and last(sˆ〈e〉) = e.
We write [t0, . . . , tn / x0, . . . , xn] ∈ Sub to denote the substitution

of ti for xi, for 0 ≤ i ≤ n. We extend the functions dom and ran to
substitutions. We write σ ∪ σ′ to denote the union of two substitutions,
which is defined when dom(σ) ∩ dom(σ′) = ∅, and write σ(t) for the
application of the substitution σ to t. Finally, for R a binary relation, R∗

denotes its reflexive transitive closure.

2.1 Terms and events

We assume given the infinite sets Agent , Role, Fresh, Var , Func, and TID
of agent names, roles, freshly generated terms (nonces, session keys, coin
flips, etc.), variables, function names, and thread identifiers. We assume
that TID contains two distinguished thread identifiers, Test and tidA.

These identifiers single out a distinguished “point of view” thread of an
arbitrary agent and an adversary thread, respectively.

To bind local terms, such as freshly generated terms or local variables,
to a protocol role instance (thread), we write t]tid. This denotes that the
term t is local to the protocol role instance identified by tid.

Definition 1. Terms

Term ::=Agent | Role | Fresh | Var | Fresh]TID | Var]TID

| (Term,Term) | pk(Term) | sk(Term) | k(Term,Term)

| {|Term |}aTerm | {|Term |}sTerm | Func(Term∗)

For each X,Y ∈ Agent , sk(X) denotes the long-term private key, pk(X)
denotes the long-term public key, and k(X,Y) denotes the long-term
symmetric key shared between X and Y . Moreover, {| t1 |}at2 denotes the
asymmetric encryption (for public keys) or the digital signature (for
signing keys) of the term t1 with the key t2, and {| t1 |}st2 denotes symmetric
encryption. The set Func is used to model other cryptographic functions,
such as hash functions. Freshly generated terms and variables are assumed
to be local to a thread (an instance of a role).

Depending on the protocol analyzed, we assume that symmetric or
asymmetric long-term keys have been distributed prior to protocol exe-
cution. We assume the existence of an inverse function on terms, where
t−1 denotes the inverse key of t. We have that pk(X)−1 = sk(X) and
sk(X)−1 = pk(X) for all X ∈ Agent , and t−1 = t for all other terms t.

We define a binary relation `, where M ` t denotes that the term t
can be inferred from the set of terms M . Let t0, . . . , tn ∈ Term and let
f ∈ Func. We define ` as the smallest relation satisfying:

t ∈ M ⇒ M ` t M ` t1 ∧M ` t2 ⇔ M ` (t1, t2)

M ` {| t1 |}st2 ∧M ` t2 ⇒ M ` t1 M ` t1 ∧M ` t2 ⇒ M ` {| t1 |}st2
M ` {| t1 |}at2 ∧M ` (t2)

−1 ⇒ M ` t1 M ` t1 ∧M ` t2 ⇒ M ` {| t1 |}at2∧
0≤i≤n

M ` ti ⇒ M ` f(t0, . . . , tn)

The term t′ is a subterm of t, written t′ v t, when t′ is a syntactic subterm of
t, e. g., t1 v {| t1 |}st2 and t2 v {| t1 |}st2 . We write FV (t) for the free variables
of t, where FV (t) = {t′ | t′ v t} ∩

(
Var ∪ {v]tid | v ∈ Var ∧ tid ∈ TID}

)
.

Definition 2. Events

AgentEvent ::= create(Role,Agent) | send(Term) | recv(Term)

| generate(P(Fresh)) | state(P(Term)) | sessionkeys(P(Term))

AdversaryEvent ::= LKR(Agent) | SKR(TID) | SR(TID) | RNR(TID)

Event ::= AgentEvent | AdversaryEvent

We explain the interpretation of the agent and adversary events shortly.
Here we simply note that the first three agent events are standard: starting
a thread, sending a message, and receiving a message. The message in
the send and receive events does not include explicit sender or recipient
fields although, if desired, they can be given as subterms of the message.
The last three agent events tag state information, which can possibly be
compromised by the adversary. The four adversary events specify which
information the adversary compromises. These events can occur any time
during protocol execution and correspond to different kinds of adversary
queries from computational models. All adversary events are executed in
the single adversary thread tidA.

2.2 Protocols and threads

A protocol is a partial function from role names to event sequences, i. e.,
Protocol : Role 7→ AgentEvent∗. We require that no thread identifiers
occur as subterms of events in a protocol definition.

Example 1 (Simple protocol). Let {Init,Resp} ⊆ Role, key ∈ Fresh, and
x ∈ Var . We define the simple protocol SP as follows.

SP(Init) = 〈generate({key}), state({key, {|Resp, key |}ask(Init)}),
send(Init,Resp, {| {|Resp, key |}ask(Init) |}

a
pk(Resp)), sessionkeys({key})〉

SP(Resp) = 〈recv(Init,Resp, {| {|Resp, x |}ask(Init) |}
a
pk(Resp)),

state({x, {|Resp, x |}ask(Init)}), sessionkeys({x})〉

Here, the initiator generates a key and sends it (together with the responder
name) signed and encrypted, along with the initiator and responder names.
The recipient expects to receive a message of this form. The additional
events mark session keys and state information. The state information
is implementation-dependent and marks which parts of the state are
stored at a protection level lower than the long-term private keys. The
state information in SP corresponds to, e. g., implementations that use
a hardware security module for encryption and signing and perform all
other computations in ordinary memory.

Protocols are executed by agents who execute roles, thereby instan-
tiating role names with agent names. Agents may execute each role
multiple times. Each instance of a role is called a thread. We distin-
guish between the fresh terms and variables of each thread by assigning
them unique names, using the function localize : TID → Sub, defined
as localize(tid) =

⋃
cv∈Fresh∪Var [cv]tid / cv]. Using localize, we define a

function thread : (AgentEvent∗ × TID × Sub)→ AgentEvent∗ that yields
the sequence of agent events that may occur in a thread.

Definition 3 (Thread). Let l be a sequence of events, tid ∈ TID, and
let σ be a substitution. Then thread(l, tid, σ) = σ(localize(tid)(l)).

Example 2. Let {A,B} ⊆ Agent . For a thread t1 ∈ TID performing the
Init role from Example 1, we have localize(t1)(key) = key]t1 and

thread(SP(Init), t1, [A,B / Init,Resp]) =

〈generate({key]t1}), state({key]t1, {|B, key]t1 |}ask(A)}),
send(A,B, {| {|B, key]t1 |}ask(A) |}apk(B)), sessionkeys({key]t1})〉 .

Test thread. When verifying security properties, we will focus on a par-
ticular thread. In the computational setting, this is the thread where the
adversary performs a so-called test query. In the same spirit, we call the
thread under consideration the test thread, with the corresponding thread
identifier Test . For the test thread, the substitution of role names by agent
names, and all free variables by terms, is given by σTest and the role is
given by RTest . For example, if the test thread is performed by Alice in
the role of the initiator, trying to talk to Bob, we have that RTest = Init
and σTest = [Alice,Bob / Init,Resp].

2.3 Execution model

We define the set Trace as (TID×Event)∗, representing possible execution
histories. The state of our system is a four-tuple (tr, IK , th, σTest) ∈
Trace × P(Term) × (TID 7→ Event∗) × Sub, whose components are (1)
a trace tr, (2) the adversary’s knowledge IK , (3) a partial function th
mapping the thread identifiers of initiated threads to sequences of events,
and (4) the role to agent and variable assignments of the test thread. We
include the trace as part of the state to facilitate defining the partner
function later.

Definition 4 (TestSubP). Given a protocol P , we define the set of test
substitutions TestSubP as the set of ground substitutions σTest such that
dom(σTest) = dom(P) ∪ {v]Test | v ∈ Var} and ∀r ∈ dom(P). σTest(r) ∈
Agent.

For P a protocol, the set of initial system states IS (P) is defined as

IS (P) =
⋃

σTest∈TestSubP

{
(〈〉,Agent ∪ {pk(a) | a ∈ Agent}, ∅, σTest)

}
.

R ∈ dom(P) dom(σ) = Role ran(σ) ⊆ Agent tid 6∈ (dom(th) ∪ {tidA,Test})
(tr, IK , th, σTest) −→ (trˆ〈(tid, create(R, σ(R)))〉, IK , th[thread(P (R), tid, σ)←[tid], σTest)

[create]

a = σTest(RTest) Test 6∈ dom(th)
(tr, IK , th, σTest) −→ (trˆ〈(Test , create(RTest , a))〉, IK , th[thread(P (RTest),Test , σTest)← [Test], σTest)

[createTest]

th(tid) = 〈send(m)〉ˆl
(tr, IK , th, σTest) −→ (trˆ〈(tid, send(m))〉, IK ∪ {m}, th[l← [tid], σTest)

[send]

th(tid) = 〈recv(pt)〉ˆl IK ` σ(pt) dom(σ) = FV (pt)
(tr, IK , th, σTest) −→ (trˆ〈(tid, recv(σ(pt)))〉, IK , th[σ(l)← [tid], σTest)

[recv]

th(tid) = 〈generate(M)〉ˆl
(tr, IK , th, σTest) −→ (trˆ〈(tid, generate(M))〉, IK , th[l←[tid], σTest)

[generate]

th(tid) = 〈state(M)〉ˆl
(tr, IK , th, σTest) −→ (trˆ〈(tid, state(M))〉, IK , th[l←[tid], σTest)

[state]

th(tid) = 〈sessionkeys(M)〉ˆl
(tr, IK , th, σTest) −→ (trˆ〈(tid, sessionkeys(M))〉, IK , th[l←[tid], σTest)

[sessionkeys]

Fig. 1. Execution-model rules

In contrast to Dolev-Yao models, the initial adversary knowledge does not
include any long-term secret keys. The adversary may learn these from
long-term key reveal (LKR) events.

The semantics of a protocol P ∈ Protocol is defined by a transition
system that combines the execution-model rules from Figure 1 with a set
of adversary rules from Figure 2. We first present the execution-model
rules.

The create rule starts a new instance of a protocol role R (a thread). A
fresh thread identifier tid is assigned to the thread, thereby distinguishing
it from existing threads, the adversary thread, and the test thread. The
rule takes the protocol P as a parameter. The role names of P , which
can occur in events associated with the role, are replaced by agent names
by the substitution σ. Similarly, the createTest rule starts the test thread.
However, instead of choosing an arbitrary role, it takes an additional
parameter RTest , which represents the test role and will be instantiated
in the definition of the transition relation in Def. 7. Additionally, instead
of choosing an arbitrary σ, the test substitution σTest is used.

The send rule sends a message m to the network. In contrast, the receive

rule accepts messages from the network that match the pattern pt, where
pt is a term that may contain free variables. The resulting substitution σ
is applied to the remaining protocol steps l.

The last three rules support our adversary rules, given shortly. The
generate rule marks the fresh terms that have been generated, the state rule
marks the current local state, and the sessionkeys rule marks a set of terms
as session keys.

Auxiliary functions. We define the long-term secret keys of an agent a as

LongTermKeys(a) = {sk(a)} ∪
⋃

b∈Agent
{k(a, b), k(b, a)} .

For traces, we define an operator ↓ that projects traces on events belonging
to a particular thread identifier. For all tid, tid′, and tr, we define 〈〉↓tid =
〈〉 and

(〈(tid′, e)〉ˆtr) ↓ tid =

{
〈e〉ˆ(tr ↓ tid) if tid = tid′, and

tr ↓ tid otherwise.

Similarly, for event sequences, the operator � selects the contents of events
of a particular type. For all evtype ∈ {create, send, recv, generate, state,
sessionkeys}, we define 〈〉 � evtype = 〈〉 and

(〈e〉ˆl) � evtype =

{
〈m〉ˆ(l � evtype) if e = evtype(m), and

l � evtype otherwise.

During protocol execution, the test thread may intentionally share
some of its short-term secrets with other threads, such as a session key.
Hence some adversary rules require distinguishing between the intended
partner threads and other threads. There exist many notions of partnering
in the literature. In general, we use partnering based on matching histories
for protocols with two roles, as defined below.

Definition 5 (Matching histories). For sequences of events l and l′,
we define MH(l, l′) ≡

(
l � recv = l′ � send) ∧ (l � send = l′ � recv

)
.

Our partnering definition is parameterized over the protocol P and the test
role RTest . These parameters are later instantiated in the transition-system
definition.

Definition 6 (Partnering). Let R be the non-test role, i. e., R ∈ dom(P)
and R 6= RTest . For tr a trace, Partner(tr, σTest) =

{
tid

∣∣ tid 6=
Test ∧

(
∃a.create(R, a) ∈ tr ↓ tid

)
∧∃l . MH(σTest(P (RTest)), (tr ↓ tid)̂ l)

}
.

A thread tid is a partner iff (1) tid is not Test , (2) tid performs the role
different from Test ’s role, and (3) tid’s history matches the Test thread
(for l = 〈〉) or the thread may be completed to a matching one (for l 6= 〈〉).

2.4 Adversary-compromise rules

We define the adversary-compromise rules in Figure 2. They factor the
security definitions from the cryptographic protocol literature along three

a 6∈ {σTest(R) | R ∈ dom(P)}
(tr, IK , th, σTest) −→ (trˆ〈(tidA, LKR(a))〉, IK ∪ LongTermKeys(a), th, σTest)

[LKRothers]

a = σTest(RTest) a 6∈ {σTest(R) | R ∈ dom(P) \ {RTest}}
(tr, IK , th, σTest) −→ (trˆ〈(tidA, LKR(a))〉, IK ∪ LongTermKeys(a), th, σTest)

[LKRactor]

th(Test) = 〈〉
(tr, IK , th, σTest) −→ (trˆ〈(tidA, LKR(a))〉, IK ∪ LongTermKeys(a), th, σTest)

[LKRafter]

th(Test) = 〈〉 tid ∈ Partner(tr, σTest) th(tid) = 〈〉
(tr, IK , th, σTest) −→ (trˆ〈(tidA, LKR(a))〉, IK ∪ LongTermKeys(a), th, σTest)

[LKRaftercorrect]

tid 6= Test tid 6∈ Partner(tr, σTest)
(tr, IK , th, σTest) −→ (trˆ〈(tidA,SKR(tid))〉, IK ∪ union((tr ↓ tid) � sessionkeys), th, σTest)

[SKR]

tid 6= Test tid 6∈ Partner(tr, σTest) th(tid) 6= 〈〉
(tr, IK , th, σTest) −→ (trˆ〈(tidA,SR(tid))〉, IK ∪ last((tr ↓ tid) � state), th, σTest)

[SR]

(tr, IK , th, σTest) −→ (trˆ〈(tidA,RNR(tid))〉, IK ∪ union((tr ↓ tid) � generate), th, σTest)
[RNR]

Fig. 2. Adversary-compromise rules

dimensions of adversarial compromise: which kind of data is compromised,
whose data it is, and when the compromise occurs. Not all combinations
of capabilities have been used for analyzing protocols. Some combinations
are not covered because of impossibility results (e. g. [23]), whereas other
combinations appear to have been previously overlooked.

Compromise of long-term keys. The first four rules model the compromise
of an agent a’s long-term keys, represented by the long-term key reveal
event LKR(a). In traditional Dolev-Yao models, this event occurs implicitly
for dishonest agents before the honest agents start their threads.

The LKRothers rule formalizes the adversary capability used in the
symbolic analysis of security protocols since Lowe’s attack on Needham-
Schroeder [28]: the adversary can learn the long-term keys of any agent
a that is not an intended partner of the test thread. Hence, if the test
thread is performed by Alice, communicating with Bob, the adversary can
learn, e. g., Charlie’s long-term key.

The LKRactor rule allows the adversary to learn the long-term key of
the agent executing the test thread (also called the actor). The intuition
is that a protocol may still function as long as the long-term keys of the
other partners are not revealed. This rule allows the adversary to perform
so-called Key Compromise Impersonation attacks [21]. The rule’s second
premise is required because our model allows agents to communicate with
themselves.

The LKRafter and LKRaftercorrect rules restrict when the compromise may
occur. In particular, they allow the compromise of long-term keys only
after the test thread has finished, captured by the premise th(Test) = 〈〉.
This is the sole premise of LKRafter. If a protocol satisfies secrecy properties
with respect to an adversary that can use LKRafter, it is said to satisfy
perfect forward secrecy (PFS) [17,30]. LKRaftercorrect has the additional
premise that a finished partner thread must exist for the test thread.
This condition stems from [23] and excludes the adversary from both
inserting fake messages during protocol execution and learning the key
of the involved agents later. If a protocol satisfies secrecy properties with
respect to an adversary that can use LKRaftercorrect, it is said to satisfy
weak perfect forward secrecy (wPFS). This property is motivated by a
class of protocols given in [23] whose members fail to satisfy PFS, although
some satisfy this weaker property.

The left-hand side of Figure 3 depicts the relationships between our
long-term key compromise rules in the relevant dimensions: the rows
specify when the compromise occurs and the columns specify whose long-
term keys are compromised. With respect to when a compromise occurs,
we differentiate between before, during, and after the test thread. With
respect to whose keys are compromised, we differentiate between agents
not involved in the communication (others), the agent performing the test
thread (actor), and the other partner (peer). The ovals specify the effects
of each of the long-term key reveal rules.

Compromise of short-term data. The three remaining adversary rules
correspond to the compromise of short-term data, that is, data local to a
specific thread. In the right-hand side of Figure 3, we show the relevant
dimensions: whose data, specified by the columns, and which kind of data,
specified by the rows. Whereas we assumed a long-term key compromise
reveals all long-term keys of an agent, we differentiate here between the
different kinds of local data. Because we assume that local data does not
exist before or after a session, we can ignore the temporal dimension.

We differentiate between three kinds of local data: randomness, session
keys, and other local data such as the results of intermediate computations.
The notion that the adversary may learn the randomness used in a protocol
stems from [25]. Considering adversaries that can reveal session keys, e. g.,
by cryptanalysis, is found in many works, such as [4]. An adversary capable
of revealing an agent’s local state was described in [9].

In our adversary-compromise models, the session-key reveal event
SKR(tid) and state reveal event SR(tid) indicate that the adversary gains

before Test
thread

during
Test thread

after Test
thread

key of
actor

keys of
peers

keys of
others

t
t
t

t
t
t

t
t
t�

�

�

�

�

�

�

��� �

LKRactor

LKRothers

LKRafter,
LKRaftercorrect

randomness

session keys

other local
data

data of
Test and
partners

data of
others

t
t
t

t
t
t�� ��� �

�

�

�

�

RNR

SKR

SR

Fig. 3. Relating long-term and short-term data reveal rules

access to the session key or, respectively, the local state of the thread tid.
These are marked respectively by the sessionkeys and state events.

The contents of the state change over time and are erased when the
thread ends. This is reflected in the SR rule by the last state marker for
the state contents and the third premise requiring that the thread tid has
not ended. The random number reveal event RNR(tid) indicates that the
adversary learns the random numbers generated in the thread tid.

The rules SKR and SR allow for the compromise of session keys and the
contents of a thread’s local state. Their premise is that the compromised
thread is not a partner thread. In contrast, the premise of the RNR rule
allows for the compromise of all threads, including the partner threads.
This rule stems from [25], where it is shown that it is possible to construct
protocols that are correct in the presence of an adversary capable of RNR.

For protocols that establish a session key, we assume the session key is
shared by all partners and should be secret: revealing it trivially violates
the protocols’ security. Hence the rules disallow the compromise of session
keys of the test or partner threads. Similarly, our basic rule set does not
contain a rule for the compromise of other local data of the partners.
Including such a rule is straightforward. However it is unclear whether
any protocol would be correct with respect to such an adversary.

We call each subset of the set of adversary rules from Figure 2 an
adversary-compromise model.

2.5 Transition relation and security properties

Given a protocol and an adversary-compromise model, we define the
possible protocol behaviors as a set of reachable states.

Definition 7 (Transition relation and reachable states). Let P be
a protocol, Adv an adversary-compromise model, and RTest a role. We

Decomposition
Security property

Basic property Adversary model

Perfect Forward Secrecy [17,30] Secrecy {LKRafter}
Weak Perfect Forward Secrecy [23] Secrecy {LKRaftercorrect}
Known-Key Security [30] Secrecy (of session key) {SKR}
Key Compromise Impersonation [21] Authentication {LKRactor}

Table 1. Decomposing security properties

define a transition relation →P,Adv ,RTest
from the execution-model rules

from Figure 1 and the rules in Adv. The variables P , Adv, and RTest

in the adversary rules are instantiated by the corresponding parameters
of the transition relation. For states s and s′, s →P,Adv ,RTest

s′ iff there
exists a rule in either Adv or the execution-model rules with the premises
Q1(s), . . . , Qn(s) and the conclusion s→ s′ such that all of the premises
hold. We define the set of reachable states RS as

RS(P,Adv , RTest) =
{
s
∣∣ ∃s0. s0 ∈ IS (P) ∧ s0 →∗P,Adv ,RTest

s
}

.

We provide a symbolic definition of session-key secrecy which, when
combined with different adversary models, gives rise to different notions of
secrecy found in the literature. Other security properties, such as secrecy
of general terms, symbolic indistinguishability, or different variants of
authentication, can be defined analogously.

Definition 8 (Session-key secrecy). Let P be a protocol and Adv an
adversary model. We say that P satisfies session-key secrecy with respect
to Adv if and only if

∀RTest ∈ dom(P). ∀(tr, IK , th, σTest) ∈ RS(P,Adv , RTest).

th(Test) = 〈〉 ⇒ ∀k ∈ union((tr ↓ Test) � sessionkeys). IK 0 k .

Many definitions of security properties, such as perfect forward secrecy,
also contain elements of adversary capabilities. In our framework, such
properties are cleanly separated into a basic security property (e. g. secrecy
or authentication) and an adversary model. In Table 1, we decompose
different security properties from the literature this way.

Our way of modeling security properties provides a uniform view and
also allows for direct generalizations of security properties. This leads
to new, practically relevant combinations of adversary models and basic
security properties. For example, for a hardware security module restricted
to protecting long-term keys, relevant properties could be secrecy or agree-
ment, resilient against state-reveal. Further properties arise by considering
the combination of our adversary models with other basic properties

Long-term data Short-term data
Owner Timing Type

Name others actor after aftercorrect SessionKey State Random Origin of model

AdvEXT external Dolev-Yao

Adv INT X Dolev-Yao [28]

AdvCA X Key Compromise Impersonation [21]

AdvAFC X Weak Perfect Forward Secrecy [23]

AdvAF X X Perfect Forward Secrecy [17,30]

AdvBR X X BR95 [5]

AdvCKw X X X X X CK2001-wPFS [23]

AdvCK X X X X X CK2001 [9]

AdveCK-1 X X X
AdveCK-2 X X X X

eCK [25]

Table 2. Mapping adversary-compromise models from the literature

like non-repudiation, plausible deniability, anonymity, or resistance to
denial-of-service attacks.

3 Applications and case studies

Modeling adversary notions from the literature. We use our modular
semantics to provide a uniform formalization of different adversary models,
including a number of established adversary models from the computa-
tional setting [5,9,23,25]. We focus on the adversary capabilities only,
abstracting from subtle differences between the computational models.
For example, the model in [9] has an execution model that restricts the
agents’ choice of thread identifiers, leading to a different notion of partner
threads than in other models. Here we define partnering uniformly by
matching histories. We refer the reader to [8,10,11,29] for further details
on the differences between computational models.

Table 2 provides an overview of different adversary models, interpreted
as instances of our semantics. We write AdvCK to denote the adversary
model extracted from the CK model [9] and similarly for other models.
We use a check (X) to denote that the rule labeling the column is included
in the adversary model named in the row.

Tool support. We extended the symbolic security-protocol verification tool
Scyther [14,15] with our adversary rules from Figure 2. We used this tool
to automatically analyze a set of protocols, described below. The tool, all
protocol models, and test scripts can be downloaded from [13].

Attack example. The MQV protocol family [24,27,33] is a class of au-
thenticated key-exchange protocols designed to provide strong security
guarantees. The HMQV protocol was proven secure with respect to the
adversary model in [23]. This model is the analog of our AdvCKw model,
where the local state of HMQV is defined as the random values generated

Thread 1

Responder: Bob
(responding to Alice)

Not a partner

Thread Test

Responder: Alice
(responding to Bob)

Z = gz

generate({x})

X = gx

state({ZAe1 , x+ d1b}) generate({y})

StateReveal(1) Y = gy

sessionkeys({H ((ZAe1)x+d1b)}) sessionkeys({H ((XBd1)y+e2a)})

Fig. 4. SR attack on HMQV

for the Diffie-Hellman key-exchange. Surprisingly, our tool finds that the
HMQV protocol is, depending on the definition of the state, insecure in
adversary models that contain SR rules, such as the CK model [9].

Below we describe a new attack, which shows that MQV and HMQV are
insecure in, e. g., AdvCKw, if the final exponentiation in the computation
of the session key is performed in the local state. It is possible for an
adversary to reuse the inputs to this exponentiation to impersonate an
agent in future sessions. The attack is not covered in [23] because both
the proof and the extended analysis given there assume that the local
state contains only the ephemeral keys (the temporary private keys).

Using notation from [23], we show the attack in Figure 4, where
d1 = H̄ (X,Bob), e1 = H̄ (Z,Alice), and e2 = H̄ (Y,Alice). The attack
starts with Bob receiving a message gz apparently coming from Alice.
This message may have been sent by an agent or have been generated
by the adversary. Next, Bob generates x and sends X = gx, which is
intercepted by the adversary. Thread 1 is not a partner of the test thread
because its history does not match the test thread’s. Hence the adversary
can compromise thread 1’s state, accessing x+d1b. At any desired time, the
adversary sends X to the responder test thread of Alice. Alice computes
and sends Y = gy and computes the session key based on X and y. The
adversary intercepts Y and computes H ((Y Ae1)x+d1b). This yields the
session key of the test thread.

We assume that in critical scenarios the protocol is implemented en-
tirely in a tamper-proof module or cryptographic coprocessor and the
local state is therefore empty, which prevents this attack. Conversely, if
(H)MQV will be implemented entirely in unprotected memory, the state
will also include the long-term keys, which enables an attack where the
adversary compromises these keys using SR. This example shows how anal-

AdvEXT Adv INT AdvCA AdvAFC AdvAF AdvBR AdvCKw AdvCK AdveCK-1 AdveCK-2

DH-ISO [18,25] ×(B)

DH-ISO-C [18] × ×
DHKE-1 [18] ×(A) × ×
HMQV-C [24] × ×
HMQV [24] ×(B) ×(A) ×
NAXOS [16,25] ×(B) × ×
KEA+ [26] ×(A) ×(B) × × × ×
NSL [28] ×(A) ×(B) ×(B) × × × ×
BKE [12] ×(A) ×(B) ×(B) × × × ×
Yahalom-Paulson [31] ×(A) ×(B) ×(B) ×(A) × × × ×
NS [28] × ×(A) ×(B) ×(B) × × × × ×

Table 3. Attacks found: (A) new, and (B) rediscovered automatically

ysis with respect to our models can help sharpen protocol implementation
requirements.

Further case studies. In Table 3, we summarize the attacks found using
our tool on protocols with respect to the adversary models from Table 2.
A cross (×) in the table denotes that an attack was found. Attacks marked
(A) were previously unreported. Attacks marked (B) were previously found
by manual computational analysis. The set of protocols includes both
formally analyzed protocols (NS, NSL, BKE, Yahalom) as well as protocols
recently proposed in computational settings (HMQV, DH-ISO, Naxos,
KEA+). Our tool rediscovers the attacks described in the literature, e. g.,
that DH-ISO is insecure in the eCK model [25] and that the implicitly
authenticated two-message protocols KEA+, Naxos, and HMQV do not
satisfy perfect forward secrecy. Additionally our tool finds new attacks on
KEA+ and HMQV. The time needed for finding the attacks in the table
ranged from less than a second to three minutes for each attack.

4 Related work

Related work in computational analysis. Most research on adversary
compromise has been performed in the context of key-exchange protocols
in the computational setting, e. g. Canetti and Krawczyk [9,23], Shoup
[32], Bellare et al. [3–5], Katz and Yung [22], LaMacchia et al. [25], and
Bresson and Manulis [7]. In general, any two computational models are
incomparable due to (often minor) differences not only in the adversary
notions, but also in the definitions of partnership, the execution models,
and security property specifics. As these models are generally presented in
a monolithic way, where all parts are intertwined, it is difficult to separate
these notions. Details of some of these definitions and their relationships
have been studied by, e. g., Choo et al. [10,11], Bresson et al. [8], LaMacchia
et al. [25], and Menezes and Ustaoglu [29].

The CryptoVerif tool of Blanchet [6] is a mechanized tool for compu-
tational analysis. Its adversary model covers Adv INT, corresponding to
static corruption, i. e., the classical Dolev-Yao adversary.

Related work in symbolic analysis. In the symbolic setting, Guttman [20]
has modeled a form of forward secrecy. With respect to verification, the
only work we are aware of is where researchers have verified (or discovered
attacks on) key-compromise related properties of particular protocols.
These cases do not use a compromising adversary model, but are ad-hoc
constructions of key compromise, made for specific protocols, which can
be verified in a Dolev-Yao style adversary model.

In [1], Abadi, Blanchet, and Fournet analyzed the JFK protocol in
the Pi Calculus and showed it achieves perfect forward secrecy, by giving
the adversary all long-term keys at the end of the protocol run. This
corresponds to manually instrumenting the analog of our LKRafter rule.
Paulson used his inductive approach to reason about the compromise of
short-term data [31]. To model compromise, he adds a rule to the protocol,
called Oops, that directly gives short-term data to the adversary. This
rule is roughly analogous to our SKR rule. Gupta and Shmatikov [18,19]
link a symbolic adversary model that includes dynamic corruptions to
an adversary model used in the computational analysis of key-agreement
protocols. They describe in [19] a cryptographically-sound logic that can
be used to prove security in the presence of adaptive corruptions, that is,
the adversary can dynamically obtain the long-term keys of agents.

In [2], we have built upon the work presented here and introduce
the concept of a protocol-security hierarchy, which classifies the relative
strength of protocols against different forms of compromise.

5 Conclusions

We have provided the first symbolic framework capable of systematically
modeling a family of adversaries endowed with different compromise capa-
bilities. Our adversary capabilities generalize those from the computational
setting and combine them with a symbolic model. In doing so, we unify
and generalize a wide range of adversary models from both settings.

Our definitions of adversaries and security properties from the compu-
tational setting allow us to apply symbolic techniques to problems that
were previously tackled only by computational approaches. We developed
the first tool capable of systematically handling notions such as weak
perfect forward secrecy, key compromise impersonation, and session state
compromise. In case studies, our tool not only rediscovered many attacks

previously reported in the cryptographic literature, e. g., on DH-ISO, it
also found new attacks, e. g., on HMQV and KEA+. These examples
show that our symbolic adversary models are surprisingly effective for
automatically establishing results that, until now, required labor-intensive
manual computational analysis.

References

1. M. Abadi, B. Blanchet, and C. Fournet. Just Fast Keying in the Pi calculus. ACM
Transactions on Information and System Security (TISSEC), 10(3):1–59, July 2007.

2. D. Basin and C. Cremers. Degrees of security: Protocol guarantees in the face
of compromising adversaries. In 19th EACSL Annual Conferences on Computer
Science Logic (CSL 2010), LNCS Advanced Research in Computing and Software
Science, 2010. To appear.

3. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In EUROCRYPT, LNCS, pages 139–155. Springer,
2000.

4. M. Bellare and P. Rogaway. Entity authentication and key distribution. In CRYPTO,
pages 232–249. Springer, 1993.

5. M. Bellare and P. Rogaway. Provably secure session key distribution: the three
party case. In Proc. STOC ’95, pages 57–66. ACM, 1995.

6. B. Blanchet. A computationally sound mechanized prover for security protocols.
In IEEE Symposium on Security and Privacy, pages 140–154, May 2006.

7. E. Bresson and M. Manulis. Securing group key exchange against strong corruptions.
In ASIACCS, pages 249–260. ACM, 2008.

8. E. Bresson, M. Manulis, and J. Schwenk. On security models and compilers for
group key exchange protocols. In IWSEC, volume 4752 of LNCS, pages 292–307.
Springer, 2007.

9. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In EUROCRYPT, volume 2045 of LNCS, pages 453–474.
Springer, 2001.

10. K.-K. Choo, C. Boyd, and Y. Hitchcock. Examining indistinguishability-based
proof models for key establishment proofs. In ASIACRYPT, volume 3788 of LNCS,
pages 624–643. Springer, 2005.

11. K.-K. Choo, C. Boyd, Y. Hitchcock, and G. Maitland. On session identifiers
in provably secure protocols. In SCN’05, volume 3352 of LNCS, pages 351–366.
Springer, 2005.

12. J. Clark and J. Jacob. A survey of authentication protocol literature, 1997. http:

//citeseer.ist.psu.edu/clark97survey.html.

13. C. Cremers. Scyther tool with compromising adversaries extension. Includes
protocol description files and test scripts. Available online at http://people.inf.

ethz.ch/cremersc/scyther/.

14. C. Cremers. The Scyther Tool: Verification, falsification, and analysis of security
protocols. In Proc. CAV, volume 5123 of LNCS, pages 414–418. Springer, 2008.

15. C. Cremers. Unbounded verification, falsification, and characterization of security
protocols by pattern refinement. In CCS ’08: Proc. of the 15th ACM conference on
Computer and communications security, pages 119–128. ACM, 2008.

http://citeseer.ist.psu.edu/clark97survey.html
http://citeseer.ist.psu.edu/clark97survey.html
http://people.inf.ethz.ch/cremersc/scyther/
http://people.inf.ethz.ch/cremersc/scyther/

16. C. Cremers. Session-state reveal is stronger than ephemeral key reveal: Attacking
the NAXOS authenticated key exchange protocol. In ACNS, volume 5536 of LNCS,
pages 20–33. Springer, June 2009.

17. C. Günther. An identity-based key-exchange protocol. In EUROCRYPT’89, volume
434 of LNCS, pages 29–37. Springer, 1990.

18. P. Gupta and V. Shmatikov. Towards computationally sound symbolic analysis of
key exchange protocols. In Proc. FMSE 2005, pages 23–32. ACM, 2005.

19. P. Gupta and V. Shmatikov. Key confirmation and adaptive corruptions in the
protocol security logic. In FCS-ARSPA’06, pages 113–142, 2006.

20. J. D. Guttman. Key compromise, strand spaces, and the authentication tests.
ENTCS, 45:1–21, 2001. Invited lecture, 17th Annual Conference on Mathematical
Foundations of Programming Semantics.

21. M. Just and S. Vaudenay. Authenticated multi-party key agreement. In ASI-
ACRYPT 1996, volume 1163 of LNCS, pages 36–49, 1996.

22. J. Katz and M. Yung. Scalable protocols for authenticated group key exchange. In
CRYPTO, volume 2729 of LNCS, pages 110–125. Springer, 2003.

23. H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. Cryptol-
ogy ePrint Archive, Report 2005/176, 2005. http://eprint.iacr.org/, retrieved
on April 14, 2009.

24. H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In
CRYPTO, volume 3621 of LNCS, pages 546–566. Springer, 2005.

25. B. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of authenticated key
exchange. In ProvSec, volume 4784 of LNCS, pages 1–16. Springer, 2007.

26. K. Lauter and A. Mityagin. Security analysis of KEA authenticated key exchange
protocol. In PKC 2006, volume 3958 of LNCS, pages 378–394, 2006.

27. L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An efficient protocol for
authenticated key agreement. Designs, Codes and Cryptography, 28:119–134, 2003.

28. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In TACAS’96, volume 1055 of LNCS, pages 147–166. Springer, 1996.

29. A. Menezes and B. Ustaoglu. Comparing the pre- and post-specified peer models
for key agreement. In ACISP 2008, volume 5107 of LNCS, pages 53–68, 2008.

30. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, October 1996.

31. L. Paulson. Relations between secrets: Two formal analyses of the Yahalom protocol.
Journal of Computer Security, 9(3):197–216, 2001.

32. V. Shoup. On formal models for secure key exchange (version 4), Nov. 1999. revision
of IBM Research Report RZ 3120 (April 1999).

33. B. Ustaoglu. Obtaining a secure and efficient key agreement protocol from (H)MQV
and NAXOS. Des. Codes Cryptography, 46(3):329–342, 2008.

http://eprint.iacr.org/

	Modeling and Analyzing Security in the Presence of Compromising Adversaries

