
On Ends-to-Ends Encryption
Asynchronous Group Messaging with Strong Security Guarantees

July 1st, 2017

Katriel Cohn-Gordon

University of Oxford

Cas Cremers

University of Oxford

Luke Garratt

University of Oxford

Jon Millican

Facebook

Kevin Milner

University of Oxford

ABSTRACT
In the past few years secure messaging has become mainstream,

with over a billion active users of end-to-end encryption proto-

cols through apps such as WhatsApp, Signal, Facebook Messenger,

Google Allo, Wire and many more. While these users’ two-party

communications now enjoy very strong security guarantees, it

turns out that many of these apps provide, without notifying the

users, a weaker property for group messaging: an adversary who

compromises a single group member can intercept communications

indefinitely.

One reason for this discrepancy in security guarantees is that

most existing group messaging protocols are fundamentally syn-
chronous, and thus cannot be used in the asynchronous world of

mobile communications. In this paper we show that this is not

necessary, presenting a design for a tree-based group key exchange

protocol in which no two parties ever need to be online at the same

time. Our design achieves strong security guarantees, in particular

including post-compromise security.

We give a computational security proof for our core design as

well as a proof-of-concept implementation, showing that it scales

efficiently even to large groups. Our results show that strong se-

curity guarantees for group messaging are achievable even in the

modern, asynchronous setting, without resorting to using ineffi-

cient point-to-point communications for large groups. By building

on standard and well-studied constructions, our hope is that many

existing solutions can be applied while still respecting the practical

constraints of mobile devices.

KEYWORDS
end-to-end encryption, group messaging, tree Diffie-Hellman, se-

curity protocols, computational proof, verification

1 INTRODUCTION
The level of security offered by secure messaging systems has im-

proved substantially over recent years; for example, WhatsApp

now provides end-to-end encryption for its billion active users,

based on Open Whisper Systems’ Signal Protocol [28, 34], and the

Guardian publishes Signal contact details for its investigative jour-

nalism teams [17]. An important constraint of modern messaging

systems, compared to related protocols such as those used for key

exchange, is that they must allow for asynchronous communication:
Alice must be able to send a message to Bob even if Bob is currently

offline. Typically, the encrypted message is temporarily stored on a

K.C-G. thanks the Oxford CDT in Cyber Security for their support.

(possibly untrusted) server, to be delivered to Bob once he comes

online again.

This asynchronicity constraint implies that standard solutions

to achieve, e.g., perfect forward secrecy, such as a Diffie–Hellman

(DH) key exchange, do not apply directly. This has driven the de-

velopment of novel techniques to achieve perfect forward secrecy

without interaction, for example using sets of “prekeys” [27] that

Bob uploads to a server, essentially serving as precomputed DH

keys, or by using puncturable encryption [16].

Moreover, some modern messaging protocols offer a property

called post-compromise security (PCS) [9], often referred to as

“future secrecy” or “self-healing”: even after Alice’s device is entirely

compromised by an adversary, revealing her long-term key and

potentially all random values generated so far, she may be able to

later regain secure communications with others, as long as she has

one exchange with them in which the adversary does not interfere.

PCS limits the scope of a compromise, forcing an adversary to act as

a permanent man-in-the-middle if they wish to exploit knowledge

of a long-term key. Thus far, PCS-style properties have only been

proven for point-to-point protocols.

In practice however, point-to-point communication does not

suffice for real-world messaging applications, in which group and

multi-device messaging are often important features. In theory, it is

easy to solve this: Alice uses the point-to-point protocol with each

of her communication partners. However, as group sizes become

larger, this leads to inefficient systems in which the bandwidth and

computational cost for sending a message grows linearly with the

group size (as each recipient gets their own, differently encrypted,

copy of the message). In many real-world scenarios, this inefficiency

can be problematic, especially in areas with restricted bandwidth

or high data costs (e.g., 2G networks in the developing world).

The 2015 State of Connectivity report by internet.org [18] lists

affordability of mobile data as one of the four major barriers to

global connectivity, with a developing-world average monthly data

use of just 255 MB/device.

Instead of using a point-to-point protocol with each group mem-

ber, a theoretical alternative is to use a group protocol [6, 7, 11, 20–

22, 25]. These typically use tree structures based on DH keys to

combine the participants’ individual keys into a group key. This

reduces both the computational effort and bandwidth required to

send a message, as the sender sends only one copy of each message

encrypted under the group key. However, such protocols are in

general not asynchronous, and do not consider post-compromise

security—they do not make any guarantees after the adversary

completely compromises a participant.

1

internet.org

The lack of asynchronicity, among other considerations, means

that modern messaging protocols which provide post-compromise

security for two-party communications generally drop this guaran-

tee for their group messaging implementations without notifying

the users. For example, WhatsApp, Facebook Messenger and the

Signal app have mechanisms that aim to achieve post-compromise

security for two-party communications, but for conversations con-

taining three or more devices they use a simpler key-transport

mechanism (“sender keys”) which does not achieve it [13, 34]. In-

deed, in all three, an adversary who fully compromises a single

group member can indefinitely and passively read future communi-

cations in that group (though certain events, such as new device

registration, may cause the group to change and new keys to be

generated). In practice this means that in these apps, if a third

party is added to a two-party communication, the security of the

communication is decreased without informing the users.

The question thus arises: is there a secure, end-to-end encrypted

group messaging solution that

(i) allows participants to communicate asynchronously,
(ii) does not require point-to-point communications, and

(iii) admits strong security guarantees such as post-compromise

security?

In this paper we address this open question, and show how to devise

a protocol that achieves it.

Contributions
Our main contributions are the following:

We design a fully-asynchronous tree-based group key exchange

protocol that offers modern strong security properties. The protocol

derives a group key for a set of agents without any pair needing

to be online at the same time. Modern messaging protocols must

work fully asynchronously, and our design enables this.

We give a game-based computational security model for our pro-

tocol, building on multi-stage models to capture the key updating

property. This allows us to encode strong security properties such

as post-compromise security: even after total compromise, it is

possible for an agent to participate in a secure group key exchange.

We give a game-hopping computational proof of the unauthenti-

cated core of our protocol, with an explicit reduction to the deci-

sional DH problem, and a symbolic verification of its authentication

property. Our hybrid argument follows the style of e.g. [23].

We present a proof-of-concept Java implementation of all of our

core algorithms, increasing confidence in the functional correctness

and feasibility of our design.

Our design approach is of independent interest beyond our spe-

cific construction. In particular, by using simple and well-studied

constructions, our design allows many insights from the existing

literature in (synchronous) group protocols to be applied in the

asynchronous setting.

2 BACKGROUND
2.1 Other Group Messaging Protocols

2.1.1 OTR-style. Goldberg et al. [15] define Multi-Party Off

the Record Messaging (mpOTR) as a generalisation of the clas-

sic OTR [5] protocol, aiming for security and deniability in online

messaging. mpOTR has since given rise to a number of interactive

protocols, such as eQualit.ie’s (N + 1)SEC [12].

The general design of this family of protocols is as follows. First,

parties conduct a number of interactive rounds of communication

in order to derive a group key. Second, parties communicate online,

perhaps performing additional cryptographic operations. Finally,

there may be a closing phase (for instance, to assess transcript

consistency between all participants).

All of these protocols are intrinsically synchronous: they require

all parties to come online at the same time for the initial key ex-

change. This is not a problem in their context of XMPP-style instant

messaging, but does not work for mobile and unreliable networks.

2.1.2 Sender Keys. If participants have secure pairwise channels,
they can send encrypted “broadcast” keys to each group member

separately, and then broadcast their messages encrypted under

those keys. This is implemented in libsignal as the “Sender Keys”
variant of the Signal Protocol. However, it sacrifices some of the

strong security properties achieved by the Double Ratchet: if an

adversary ever learns a sender key, it can subsequently eavesdrop

on all messages and impersonate the key’s owner in the group, even

though it cannot do so over the pairwise Signal channels (whose

keys are continuously updated).

Regularly broadcasting new sender keys over the secure pairwise

channels prevents this type of attack. However, since a new sender

key message must be sent separately to each group member, this

scales linearly in the size of the group for a given key rotation

frequency.

2.1.3 n-party DH. Perhaps the most natural generalisation of

DH key updates to n parties would be a primitive that allows for

the following: given all of pk
1
, . . . , pkn and a single ski (i ∈ [n]),

derive a value дrk which is hard to compute without knowing one

of the ski . With n = 2 this can be achieved by traditional DH, and

with n = 3 Joux [19] gives a pairing-based construction.

However, for general n construction of such a primitive is a

known open problem. Boneh and Silverberg [3] essentially gener-

alise the Joux protocol with a construction from an (n − 1)-non-
degenerate linear map on the integers. Boneh and Zhandry [4]

present one from indistinguishability obfuscation (iO), and recent

work by Ma and Zhandry [26] formalises the concept as an “en-

cryptor combiner” and gives constructions from iO or from certain

lattice assumptions.

2.1.4 Tree-based group DH. There is a very large body of litera-

ture on tree-based group key agreement schemes. An early example

is the “audio teleconference system” of Steer et al. [32], and the

seminal academic work is perhaps Wallner et al. [33] or Wong et al.

[35]. Later examples include [6, 8, 11, 20–22, 25, 36], among many

others. Roughly, these protocols assign private DH keys to leaves

of a binary tree, defining

Table 1: Asymptotic efficiencies and properties of some group messaging solutions as a function of the group size n, both in the setup phase
and for each message sent. Sender Keys is the design currently used to power Whatsapp, Signal and Facebook Secret Conversation group
messaging.

exponentiations

encryptions/

server storage/

bandwidth

local

storage

provable

post-compromise

security

sender keys

(Signal)

setup 4n − 4 n − 1 n × channels +
n × keys ✗

ongoing 0 1

Signal

setup 4n − 4 1

n × channel ✓
ongoing n to 2n n − 1

our

solution

setup logn (2n for initiator) 2n
2 logn keys ✓

ongoing 2 logn 1

(i) дxy as the secret key of a node whose two children have

secret keys x and y, and
(ii) дz as the public (‘blinded’) key of a node with secret key z.

Recursively computing secret keys through the tree, starting from

the leaves, yields a value at the root which we call the “tree key”,

with the property that it can only be computed with knowledge of

at least one secret leaf key. A similar construction can be done with

ternary trees for the three-party Joux protocol.

In order to compute the secret key дxy = (дy)x assigned to a

non-leaf node, an agent must know the secret key x of one of its

children and the public key дy of the other. Thus, to compute the

tree key requires an agent to know

(i) one secret leaf key λj , and
(ii) all public node keys pk

1
to pkn along its copath,

where the copath of a node is the list of sibling nodes along its

path to the tree root. The group key is computed by alternately

exponentiating the next public key with the current secret, and

applying an injection from group elements to integers.

Interactivity in these protocols comes from, at least in part, the

requirement for Alice to know the public keys on her copath. For

example, in the figure below we depict a small DH tree of size

four. Even if Alice knows the public keys corresponding to each

leaf node, to derive the tree key she needs to know the public key

дд
sk
C
·sk

D

of the boxed node, which she cannot compute herself.

дrk

дskA ·skB

skA skB

дskC ·skD

skC skD

Traditionally, one of C or D is chosen by the messaging system to

compute дskC ·skD and broadcast its public key. For example, Kim

et al. [22] describe a system where certain agents act as “sponsors”

for their subtrees and broadcast the public keys which they know.

2.2 Widely-Used Implementations
Various widely-used mobile apps have deployed encrypted group

messaging protocols, and we survey some of the most popular.

2.2.1 WhatsApp. WhatsApp implements end-to-end encryp-

tion for group messaging using the Sender Keys variant of Signal

for all groups of size 3+, using the existing support for Signal in

pairwise channels. Sender keys are rotated whenever a participant

is removed from a group but otherwise are never changed; as dis-

cussed above, an adversary who learns a sender key can therefore

impersonate or eavesdrop on its owner until the group changes.

WhatsApp also supports multiple devices for a single user. To

do so, it defines the mobile phone as a master device and allows

secondary devices to connect by scanning a QR code. When Alice

sends a message from a secondary device, WhatsApp first sends

the message to her mobile phone, and then over the pairwise Signal

channel to the intended peer. While this method does allow for

multiple device functionality, it suffers from the downside that if

Alice’s phone is offline then she cannot use WhatsApp, even if her

other device is connected to the Internet.

2.2.2 Facebook Messenger Secret Conversations. Secret Conver-
sations on Facebook Messenger similarly use the Sender Keys vari-

ant of Signal for all conversations involving 3+ devices. As in the

WhatsApp implementation, Sender Keys are only rotated when a

device is removed from a conversation, so compromising a sender

key will allow future messages from that user to be eavesdropped.

2.2.3 Signal. The Signal mobile application also uses the Sender

Keys variant for group messaging. Signal allows multi-device mes-

saging by allowing a mobile phone to provision the desktop app,

similarly to WhatsApp. However additional devices on a Signal

account are first class participants in that they use Signal Protocol

directly, as opposed to routing messages via the phone.

2.2.4 iMessage. Apple’s iMessage implements group messaging

using pairwise channels: one copy of each message is encrypted

and sent for each group member over pairwise encrypted channels.

We remark that this indicates that in a group of size n, performing

∼ 2n asymmetric operations per message was considered a practical

cost on an iPhone 3GS (circa 2009).

3 OBJECTIVES
Security properties for authenticated key exchange (AKE) protocols

are extremely well-studied. In this section, we describe a high-level

threat model and security goals for group messaging protocols.

3.1 Security Goals
3.1.1 Secrecy and Authentication. Our fundamental goal is con-

fidentiality and authenticity of keys: if Alice exchanges a key with

Bob, even an active network adversary should not be able to learn

that key.

3.1.2 Post-Compromise Security. Traditional security models do

not provide any guarantees after the long-term keys of a participant

are compromised: it is not considered an attack to learn Bob’s

identity key and then impersonate him to Alice. Cohn-Gordon et al.

[9] defined the notion of post-compromise security to cover this

scenario, showing that it is achievable through the use of persistent

protocol state.

We aim explicitly to achieve a form of PCS in our messaging

protocols. Specifically, if the full state of a group member is compro-

mised (including their long-term keys as well as any others which

they may have derived) but the group conversation then continues

without interference and new, uncompromised keys are derived,

then the resulting group key should once again be secret.

Absent this goal, many simpler designs are possible. In particular,

the “sender keys” variant of Signal meets our other criteria; its

weakness is that learning a sender key enables the computation of

all future message keys, and hence it does not meet this form of

PCS. The PCS property is a major distinguishing feature of modern

two-party messaging protocols, and offers significant protection

to adversaries with large resources, as it forces them to actively

interfere in all sessions even after they manage to temporarily

compromise a device. We therefore believe that this property is

important for modern protocols.

3.1.3 Imperfect randomness. Security models such as extended

Canetti-Krawczyk and its generalisations [10, 24] allow for the

corruption of random numbers generated by a party as long as

their long-term keys remain secure. However, many widely-used

protocols do not to achieve this property—for example, neither TLS

nor Signal are secure if both sides’ ephemeral keys are revealed.

We aim for security even if some random numbers are revealed, as

long as not all (in the current tree) are.

3.2 Other Types of Property
3.2.1 Sender-specific authentication. In a group, authentication

becomes more subtle: if Alice, Bob and Charlie share a symmetric

key and Alice receives a message encrypted under it which she did

not sent, she can conclude only that either Bob or Charlie sent it.

Depending on the context, this may not be a desirable property

of a group messaging system—in OTR it is considered a feature

as a form of deniability, while in Signal Protocol it is ruled out by

distributing individual signature keys used to authenticatemessages

which are encrypted with the group key. We choose the simpler

design and do not include signature keys, discussing sender-specific

authentication further in Section 8.

Centralised, unencrypted group messaging systems usually pro-

vide individual authentication via the service provider’s accounts—

for example, Facebook Messenger group chats do not allow Bob

to impersonate Charlie, because Bob must log into his Facebook

account to send a message as himself. We do not assume such a

trusted third party in our analyses. Of course, an encrypted mes-

saging system can also include authentication from a third party,

as with e.g. Facebook Messenger’s Secret Conversations.

3.2.2 Malicious group members. In the two-party case, tradi-

tional security properties are generally of the form “if the peer to a

session is honest then P”. With n parties, there is an intermediate

type of property: “ifm < nmembers of the group are honest then P”.

For example, Abdalla et al. [1] give a group key exchange protocol

which enables subsets of the group to derive their own key, aiming

for security in a subset even if another group member is malicious.

Although these properties are useful, we consider them orthogo-

nal to our core research question. Moreover, because we use stan-

dard constructions from the (synchronous) literature, we anticipate

that extending our designs to handle group membership changes

should be relatively straightforward. We discuss dynamic groups

further in Section 8.

3.2.3 Executability. Implementations of group messaging sys-

tems must deal with desynchronisation of state: if Bob attempts to

update his state without realising that Alice has already performed

an update which he does not know about, he may lose track of the

current group key. This does not violate any secrecy properties, but

breaks availability.

In general, the standard solution is at the transport layer, either

by enforcing in-order message delivery or by refusing to accept

out-of-order key updates, instead delivering the latest group state.

This solution works fine for many group sizes, but in very large

groups may cause a performance bottleneck at the transport layer.

[8] study this problem in more detail; we consider it out of scope

for our work.

3.2.4 Transcript agreement. In many scenarios it is valuable

for all group participants agree on the ordered list of messages

that were sent and received in the group. Although this is a useful

property, it has many subtleties that are orthogonal to our key

research questions and we do not deal with it in this paper.

3.3 Security properties
Informally, we want our messaging protocol to provide implicit au-
thentication andmessage secrecy under a variety of strong adversary

scenarios:

Security under a network (Dolev-Yao) adversary. The adver-

sary has full control of message delivery, able to intercept,

read and modify any messages sent over the network.

Forward secrecy. Once a stage has derived a key, revealing long-

term keys or any random values from subsequent stages

should not compromise its security.

Post-compromise secrecy [9]. If a stage derives a key, but at

least one previous stage was uncompromised, the derived

key should be secret. Equivalently, after all of a party’s se-

crets are compromised, if an intermediate stage completes

with an uncorrupted key, then all subsequent stages should

be secure.

4 NOTATION
Trees. We defined binary trees as a combination of nodes with

two nested children and leaves with no children, along with associ-

ated data at each element:

tree→ (node(tree, tree), ·) | (leaf , ·).

For a binary tree T , we use the notation |T | to refer to the total

number of leaves in the tree. We label each element of a tree with

an index pair (x ,y), where x represents the level of the element:

the number of nodes (including the element itself) in the path to

the root at index (0, 0). The children of a node at index (x ,y) are
(x + 1, 2y) and (x + 1, 2y + 1); thus y represents the index a node

would have in its level if the tree were complete. To refer to the

associated data at a tree index (x ,y) in a tree T , we write Tx,y .
All tree elements but the root have a parent node, which is the

node containing the element, as well as a sibling defined as the

other element contained by the parent node. We refer to the copath
of an element in a tree as the set comprising its sibling in the tree,

the sibling of its parent node in the tree, and so on until reaching

the root. An example of a copath is shown in Figure 1.

DH groups. We work in a DH group G for which the decisional

DH problem is hard: given a tuple (дx ,дy , zb) where z0 = д
xy

and

z1 ←$G, the advantage of any PPT distinguisher in outputting b is

negligible.

We make use of an injection ι : G → Z mapping group elements

to exponents, allowing us to use a group elementдx as the exponent

of a new term дι(д
x)
.

As a convention, we use lowercase values k to represent DH se-

cret keys, and uppercase valuesK = дk to represent their associated

public keys.

Derived Keys. Our protocol contains various different classes of
secret and public key, and we fix some names for them here.

Leaf keys λj are secret DH keys assigned to tree leaves

Node keys nk are secret DH keys assigned to non-leaf tree nodes

Tree keys tk are secret values derived at the tree root T0,0

Stage keys sk are derived by combining the latest tk with the

previous sk, using a hash chain

5 DESIGN
We build on the tree-based group DH schemes described in Sec-

tion 2.1.4, and give an example tree, path and copath in Figure 1,

where the underline denotes the injection from group elements

to integers. We give informal explanations of our algorithms in

Sections 5.1 and 5.2, as well as precise definitions in pseudocode in

Section 5.3.

5.1 Asynchronous Tree Construction
As discussed in Section 2.1.4, distributing the public keys on each

agent’s copath has normally led to a number of interactive rounds

in previous tree DH protocols. We show now that these interactive

дrk

д
дsk1

·sk
2 ·дsk3

·sk
4

дsk1 ·sk2

sk1 sk2

дsk3 ·sk4

sk3 sk4

д
дsk5

·sk
6 ·дsk7

дsk5 ·sk6

sk5 sk6

sk7

Figure 1: Example computation of a tree key from secret key sk5.
The path from sk5 to the root ismarked in solid red, and the boxed
nodes lie on its copath. Thus, an agentwho knows sk5 and the public
keys of the boxed nodes can compute дrk .

rounds can be avoided, by using prekeys together with a one-time

setup key.
Prekeys were first introduced by Marlinspike [27] for asyn-

chronicity in the TextSecuremessaging app. They areDH ephemeral

values cached by an untrusted intermediate server, and fetched

on demand by messaging clients. The prekeys are sent to clients

through the public key infrastructure at the same time as long-term

identity keys, act as initial messages for a one-round authenticated

key exchange protocol, and allow a handshake to take place while

only its initiator is online.

We introduce in addition a one-time setup key, generated locally

by the creator of a group and deleted immediately after use. This

key is used to perform an initial key exchange with the prekeys,

and allows the initiator to generate secret leaf keys for the other

group members while they are offline.

Asynchronous tree construction works as follows. The initiator

(“Alice”) begins by generating a DH keyks we call the setup key. She
then requests from the public key infrastructure an identity key IK
and an ephemeral prekey EK for each of her intended peers (“Bob”,

“Charlie”, . . .) numbered 1 through npeers. Using her secret identity

key ika and the setup key ks together with the received keys for

each peer, she executes a one-round authenticated key exchange

protocol to derive leaf keys λ0, λ1, . . . , λnpeers
. Using these generated

leaf keys, she builds a DH tree whose root holds the initial group

key.

We do not force a particular instantiation of this one-round key

exchange protocol. Perhaps the simplest instantiation is with an

unauthenticated DH exchange between Alice’s setup key and Bob’s

prekey, resulting in an unauthenticated tree structure. This is the

design we analyse in Section 6.2. A more practical instantiation is

with a strong authenticated key exchange protocol; in Section 6.3

we discuss this version.

To share the initial group key with group member i , Alice sends
(i) the public setup key PK(ks),
(ii) the public prekey EKi she used to compute λi ,
(iii) the public keys along the copath from leaf i to the tree root
(iv) and a MAC of the previous data with i’s leaf key.

Upon receiving such a message, each group member can reproduce

the computation of the tree key: first they compute their leaf key

λi , and then they iteratively exponentiate with the public keys on

the copath until they reach the final key, which by construction is

KDFπ .sk π .sk′ KDF π .sk′′

π .tk π .tk′

Figure 2: Derivation of stage keys π .sk. When a new tree key π .tk
is computed (as the root of a DH tree), it is used together with the
current stage key to derive a new stage key π .sk′, and so on. This
“chaining” of keys helps to achieve post-compromise security.

дrk0

дд
λ

0
·λ

1 ·дλ2
·λ

3

дλ0 ·λ1

λ0 λ1=EK
ks
1

дλ2 ·λ3

λ2=EK
ks
2

λ3=EK
ks
3

дλ4 ·λ5

λ4=EK
ks
4

λ5=EK
ks
5

Figure 3: Alice sets up a new tree with herself and five other agents.
The copath of Agent 4 is shown boxed.

the tree key tk. They can then compute the stage key sk from tk
and their previous stage key.

We give a pseudocode definition of this algorithm as Algorithm 1.

5.2 Asynchronous Tree Updates
If Alice’s public key changes, the data needed by other group mem-

bers to update their view of the tree—the new (public) DH keys

along the path from her leaf node to the tree root—can all be com-

puted by Alice and broadcast at the same time as her new key. Thus,

once a tree is constructed, any party can asynchronously generate

a new leaf key and broadcast the update to the other group mem-

bers, who can each update their stored copath as appropriate. This

insight allows noninteractive key updates.

Specifically, if at any point Bob wishes to change his leaf key

from λb to λ′b , he computes the new public keys at all nodes along

the path from his leaf to the tree root, and broadcasts to the group

his public leaf key together with these public keys. He authenticates

this message with a MAC under the previous stage key.

A group member who receives such a message can update their

stored copath (at the node on the intersection of the two paths

to the root). Computing the key induced by this new path yields

the updated group key, again without requiring any two group

members to be online at the same time.

5.2.1 Stage key chaining. In order to achieve post-compromise

security, stage keys cannot be independent—instead, each stage key

must be derived from both the current tree key and the previous

stage key. Thus, as long as one of these inputs is unknown to the

adversary, the stage key will be as well. The resulting stage keys

form a hash chain as depicted in Figure 2.

дrk1

дд
λ

0
·λ

1 ·дλ2
·λ

3

дλ0 ·λ1

λ0 λ1

дλ2 ·λ3

λ2 λ3

дλ
′
4
·λ5

λ′
4

λ5

Figure 4: Agent 4 updates their leaf key. The path of Agent 4 is
shown in solid red, and the copath ofAlice (Agent 0) is shown boxed.

5.3 Algorithms
We give pseudocode algorithms for all of the operations in our

design in Figure 5. As an example, consider the situationwhere Alice

wishes to create a group with five other agents using Algorithm

1. She begins by generating a setup keypair with secret key ks ,
and a leaf keypair with secret key λ0 for herself. She retrieves the

public identity and ephemeral prekeys of each of the five agents,

and creates the tree shown in Figure 3.

She then sends each agent their respective copath and the prekey

she used to set them up in the tree, along with the identities of the

other group members and the public setup key. For example, the

agent Edward at index 4 would receive

4, IKAlice , IK1, . . . , IK5,EK4,Ks ,д
дд

λ
0
·λ

1 ·дλ2
·λ

3

,дλ5 .

In her own state, Alice stores her leaf key, the ordered list of public

identity keys, the tree key, and her copath. Finally, she derives the

stage key used for messaging using Algorithm 6.

Parsing this message (Algorithm 3) allows Edward to identify

his position in the group tree, and to construct the group key using

Algorithm 2. If Edward then wishes to update his key, he runs

Algorithm 4, generating a new leaf key λ′
4
and recomputing the

path up to the root. This results in the new tree shown in Figure 4.

He sends the key update message

4,дλ
′
4 ,д

дλ
′
4
·λ

5

comprising his index as well as the path of public keys excluding

the root. He stores the updated leaf key and tree key, and computes

the new stage key with Algorithm 6.

Upon receiving this key update message, Alice determines her

new copath, which has been modified by one of the new public

keys sent by Edward. This is done by executing Algorithm 5. From

this, she computes the new tree key. Finally, invoking Algorithm 6

computes the new stage key.

6 SECURITY ANALYSIS
We perform our security analysis in two parts.

First, we give a detailed computational security model for multi-

stage group key exchange protocols, and instantiate it with an unau-
thenticated version of our construction in which the initial leaf keys

are derived directly from the setup key and prekeys. This allows us

to capture the core security properties of the key updates, including

post-compromise security, without focussing on the properties of

the authenticated key exchange used for the initial construction. In

Algorithm 1 Asynchronous group setup

1: procedure SetupGroup(π ,npeers)

2: π .λ0

$← DHKeyGen()
3: ks

$← KeyExchangeKeyGen()
4: for i ← 1 . . .npeers do // generate leaf keys for each agent

5: IKi ← public identity key of agent i
6: EKi ← public ephemeral prekey of agent i
7: λi ← ι

(
KeyExchange(π .ik, IKi ,ks ,EKi)

)
8: T ← CreateTree(λ0, λ1, . . . , λnpeers

)

9: π .ID ← PK(π .ik), IK1, . . . , IKnpeers

10: for i ← 1 . . .npeers do
11: xi ← i,π .ID,EKi , PK(ks), Copath(T , i)
12: mi ←message xi ,Mac(xi ; λi) for i
13: π .tk← T0,0

14: π .P̄ ← Copath(T , 0)
15: return π ,m1,m2, . . . ,mnpeers

16: procedure CreateTree(λ0, λ1, . . . , λn) // tree with n + 1 leaves

17: if n = 0 then return (leaf , λ0)
18: l ←

⌈
log

2
(n + 1)

⌉
− 1 // height of the left subtree

19: (L, lk) ← CreateTree(λ0, . . . , λ(2l−1)) // complete left subtree

20: (R, rk) ← CreateTree(λ
2
l , . . . , λn) // possibly incomplete right subtree

21: k ← ι
(
PK(lk)rk

)
22: return (node((L, lk), (R, rk)),k)

23: procedure Copath(T , i) // where i is the index of the leaf

24: l ←
⌈
log

2
|T |

⌉
− 1 // height of the left subtree, where |T | is number of leaves

25: if i < 2
l then // i is in the complete left subtree

26: return PK(T1,1) ∥ Copath(T1,0, i)
27: else// i is in the possibly incomplete right subtree

28: return PK(T1,0) ∥ Copath(T1,1, i − 2
l
)

Algorithm 2 Deriving keys on path to root

1: procedure PathNodeKeys(λ, P̄) // leaf key and the copath of public keys

2: nks |P̄ | ← λ

3: for n ← (|P̄ | − 1) . . . 1 do
4: nksn ← ι

(
(P̄n)nksn+1

)
5: return (P̄0)nks1 , nks1, . . . , nks |P̄ |

Algorithm 3 Receiving a setup message as agent at index i

1: procedure ProcessSetupMessage(π)
2: receive i, ID,EK ,Ks , P̄
3: (π .ID,π .P̄) ← (ID, P̄) // store agent ids and copath in state

4: ek ← ephemeral prekey corresponding to EK from π
5: π .λ← ι

(
KeyExchange(π .ik, ID0, ek,Ks)

)
// compute initial leaf key

6: nks← PathNodeKeys(π .λ,π .P̄)
7: π .tk← nks0 // store initial tree key

8: return π

Algorithm 4 Updating a key as agent at index i

1: procedure UpdateKey(π)

2: π .λ
$← DHKeyGen()

3: nks← PathNodeKeys(λ,π .P̄)
4: x ← i, PK(nks1), . . . , PK(nks |P̄ |)
5: m ←message x ,Mac(x ;π .sk) for all
6: π .tk← nks0

7: return π ,m

Algorithm 5 Processing a key update message as agent at index i

1: procedure ProcessUpdateMessage(π)
2: receive j,U // their index and public keys along their path

3: h ← IndexToUpdate(

⌈
log

2
|ID |

⌉
, i, j)

4: π .P̄h ← Uh // index h of the copath has been updated in this message

5: nks← PathNodeKeys(π .λ,π .P̄)
6: π .tk← nks0

7: return π

8: procedure IndexToUpdate(h, i, j)
9: if (i < 2

h−1) ∧ (j < 2
h−1) then // both are in the left subtree

10: return IndexToUpdate(h − 1, i, j)
11: else if (i ≥ 2

h−1) ∧ (j ≥ 2
h−1) then // both in the right subtree

12: return IndexToUpdate(h − 1, i − 2
h−1, j − 2

h−1
)

13: return h // otherwise return index where they differ

Algorithm 6 Deriving the stage key

1: procedure DeriveStageKey(π)
2: π .sk← KDF(π .sk,π .tk,π .ID)
3: return π

Figure 5: Pseudocode descriptions of the algorithms in our design. Informal explanations can be found in Section 5.

the unauthenticated model, we prove indistinguishability of group

keys from random values using a game-hopping argument.

Second, we argue that authentication can be easily provided by

deriving the initial leaf keys from a non-interactive key exchange,

whose security property also applies to the resulting tree key. We

give an example construction from the NAXOS protocol [24] and

verify its authentication property using the Tamarin prover, mod-

elling the tree construction abstractly as a “black-box” derivation

from the leaf keys.

6.1 Computational Model
We build on the multi-stage definition of Fischlin and Günther

[14], in which sessions admit multiple stages with distinct session

keys and the adversary can Test any stage, and extend it to group

messaging by allowing multiple peers for each session. Our model

defines a security experiment as a game played between a challenger

and a probabilistic, polynomial-time adversary. The adversary is

given a set of queries through which it can interact with the chal-

lenger, including the ability to relay or modify messages but also

to compromise certain secrets. The adversary eventually chooses a

so-called Test session, receiving—uniformly at random—either its

true session key or a random key sampled from the same distribu-

tion. It must then decide which it has received, winning the game if

the guess is correct. Thus, a protocol which is secure in this model

enjoys the property that an adversary cannot tell if the true keys

are replaced with random values.

Definition 6.1 (Multi-stage key exchange protocol). A multi-stage

key exchange protocol Π is defined by a keyspace K , a security

parameter λ (dictating the DH group size q) and the following

probabilistic algorithms:

(i) KeyGen() $7→ (pk, sk): generate a DH keypair;

(ii) Activate(sk, ρ, peers) → π : initialise an agent’s protocol

state by accepting a long-term secret key sk, a role ρ and a

list peers of peers and returning a state π ; and
(iii) Run(π [,m]) → (π ′[,m′]): starting from some protocol

state π and an optional incoming messagem, execute the

protocol to derive an updated state π ′ and an optional

outgoing messagem′.

Protocols may maintain state between sessions—indeed, Cohn-

Gordon et al. [9] prove that this is necessary for post-compromise

security—and we collect this state π into the following variables.

Definition 6.2 (State). A state π is a collection of the following

variables:

(i) π .stage, the current stage t of the session (initialised to

0 and incremented after each new stage session key is

computed)

(ii) π .sk, the agent’s secret stage key to be used at the current

stage.

(iii) π .active[s], the execution status for stage s . Takes the
value active at the start of a session, and later set to either
accept or reject when the session key is computed

(iv) π .k[s], the session key output by stage s .
(v) π .tk, the tree key of the current stage.

(vi) π .λ, the leaf key of the current stage.

Definition 6.3 (Adversary queries). We allow the adversary access

to the queries defined in Table 2.

We fix a maximum group size γ , which is the largest group that an

agent is willing to create. This can be application-specific.

6.2 Unauthenticated Computational Analysis
We can now analyse our protocol in the model of Section 6.1. In this

analysis we do not consider the use of long-term keys, considering

them instead as used in the first stage. Our freshness criteria allow

the adversary to corrupt the random values or session key from

any stage, but rule out trivial attacks created by such corruptions.

We define Activate to additionally create locations in the state

for the agent’s belief about the shape of a tree in a given session:

Definition 6.4 (Tree structure). Let π additionally contain

(i) π .P̄ , the copath of the agent

(ii) π .ID, an ordered list of identifiers for peers in the group,

where the index of each identifier is the index of that peer’s

leaf.

(iii) optional data associated to each peer;

(iv) optional DH public keys attached to all nodes in the tree;

We define Run with the algorithms from Section 5.3, with

KeyExchange(π .ik, ID0, ek,Ks) := Ks
ek .

That is, our initial leaf nodes are constructed unauthenticated from

initial ephemeral keys. In this setting we do not need the MACs

which are defined in the protocol algorithms, and we do not make

any assumptions here on their security properties.

Thus armed, we can define when two agents are intended com-

munication partners. We use a matching-conversations definition:

Definition 6.5 (Matching). We say that two stages (u, i, t) and
(v, j, s) match if they both have status accept and moreover have

derived the same session key.

Definition 6.6 (Freshness of a copath). Let P̄ = P̄0, . . . , P̄ |P̄ |−1
be a

list of group elements representing a copath and let ℓ = λ0 . . . λn−1

be a list of group elements representing leaf keys. We say that P̄ is

the ith copath induced by ℓ precisely if, in the DH tree induced by ℓ,

each P̄j is the sibling of a node on the path from λi to the tree root.

We say that a copath P̄ is fresh if both

(i) P̄ is the ith copath induced by some ℓ, and

(ii) for each дλj ∈ ℓ, both
(a) λj was returned by a Send or Create query to some

stage (u, i, t), and
(b) no RevRandom(u ′, i ′, t ′) query was issued.

Intuitively, a copath is fresh if it is built from honestly-generated

and unrevealed leaf keys. In particular, the copath’s owner’s leaf

key must also be unrevealed, since it is included in ℓ.

Definition 6.7 (Freshness of a stage). We say that a stage (u, i, t)
deriving session key sessk is fresh if all of the following hold:

(i) it has status accept,
(ii) the adversary has not issued a RevSessKey(u, i, t) query,
(iii) there does not exist (v, j, s) such that the adversary has

issued a query RevSessKey(v, j, s) whose return value is

sessk , and
(iv) one of the following criteria holds:

(a) t > 0 and stage (u, i, t − 1) is fresh, or
(b) the current copath is fresh.

Intuitively, a stage is fresh if either all of the leaves in the current

tree are fresh or the previous stage was fresh. The latter disjunct
captures a form of post-compromise security: if an adversary allows

a fresh stage to accept, subsequent stages will also be fresh.

Capturing strong security properties. Our notion of stage fresh-

ness captures the strong security properties discussed in Section 3,

by allowing the adversary to Test sessions under a number of com-

promise scenarios. Specifically:

authentication states that if the ephemeral keys used in a session

are from an uncorrupted session then only the agents who

generated them can derive the group key. Indeed, for a

stage to be fresh either it or one of its ancestors must have

had a fresh copath; that is, one that is built only from λj
which were sent by other honest stages.

PFS is captured through clause (iv)b and the definition of the

RevRandom query. Indeed, suppose Alice accepts a stage

t and then updates her key in stage t + 1. An adversary

Table 2: Adversary queries defined in our model. We use u to denote the agent targeted by a query, i to denote the index of a session at an
agent, and t to denote the stage of a session—thus, for example, (Alice, 3, 4) would denote the fourth stage of Alice’s third session. We usem
for messages and b for a random bit.

Create(u,v1,v2, . . .vn−1) Given a set of intended peers v1, . . . ,vn−1 (n ≤ γ), agent u executes Activate and returns its output as the

initial message. This query models creating a new session.

Send(u, i,m) Given a session (u, i) and a message, execute Run withm and the current state of the session, updating its

state and returning the resulting message. This query models sending a message to a session.

RevSessKey(u, i, t) Given (u, i, t), return the session key generated in that stage, if it exists. This query models session keys being

leaked to the adversary and is used to capture authentication properties.

RevRandom(u, i, t) Given (u, i, t), reveal the random coins by u in stage t of session s . This query models the corruption of an

agent, either in their initial key generation (at stage t = 0) or in later stages (t > 0).

Test(u, i, t) Given (u, i, t), let k0 denote the session computed by useru at stage t of session i , and let k1 denote a uniformly

randomly sampled key from the challenger. The challenger flips a coin b ←$ {0, 1} and returns kb .
Guess(b ′) The adversary immediately terminates its execution after this query.

stage under attack

stage under attack

compromise

forward

compromise

post-compromise

Figure 6: Attack scenarios of forward and post-compromise secrecy,
with the session under attack marked in bold. Forward secrecy pro-
tects sessions against later compromise; post-compromise secrecy
protects sessions against earlier compromise.

who queries RevRandom(. . . , t + 1) does not receive the
randomness from stage t , which therefore remains fresh.

Our model thus requires the key of stage t to be indistin-
guishable from random to such an adversary.

PCS is captured through clause (iv)a. Indeed, suppose the adver-

sary has issued RevRandom queries against all of Alice’s

stages from 0 to t except some stage 0 ≤ j < t . Absent other
queries, stage j is therefore considered fresh, and hence

by clause (iv)a stages j + 1, j + 2, . . . , t are fresh as well.

Our model thus requires their keys to be indistinguishable

from random to such an adversary.

Definition 6.8 (Security experiment). At the start of the game, the

challenger generates the public/private key pairs of all nP parties

and sends all public info including the identities and public keys to

the adversary. The adversary then asks a series of queries before

eventually issuing a Test(u, i, t) query, for the t th stage of the ith

session of user u. We can equivalently think of the adversary as

querying oracle machines π iu for the ith session of user u.
Our notion of security is that the group session key of the Tested

session stage is indistinguishable from random. Thus, after the

Test(u, i, t) query, the challenger flips a coin b ←$ {0, 1} and with

probability 1/2 (when b = 0) reveals the actual session key of user

u’s ith session at stage t to the adversary, and with probability 1/2
(when b = 1) reveals a uniformly randomly chosen key instead.

The adversary is allowed to continue asking queries. Eventually

the adversary must guess the bit b with a Guess(b ′) query before

terminating. If the Tested (u, i, t) satisfies fresh and the guess is

correct (b = b ′), the adversary wins the game. Otherwise, the

adversary loses.

We say that a multi-stage key exchange protocol is secure if the
probability that any probabilistic polynomial-time adversary wins

this game is bounded above by 1/2 + negl(λ), where negl(λ) tends
to zero faster than any polynomial in the security parameter λ.

We now give our theorem and sketch the proof. The full proof

appears in the appendix.

Theorem 6.1. Let nP, nS and ns denote bounds on the number of
parties, sessions and stages in the security experiment respectively.
Under the decisional DH assumption, where ι is instantiated as a
random oracle, the success probability of any ppt adversary against
the key indistinguishability game of our protocol is bounded above by

1 −
nPnSns−1∏

i=0

(1 − i/q) + (nSns)γ nPγ+1 (ϵDDH + 1/q) + negl(λ) ,

where ϵDDH bounds the advantage of a PPT adversary against the
decisional DH game.

Proof Sketch. Our proof uses the standard game hopping tech-

nique. We start at our original security game and consider (“hop to”)

similar games, bounding the success probability of the adversary in

each hop, until we reach a game that the adversary clearly cannot

win with a probability non-negligibly over 1/2. As all the games’

probabilities are bounded to one another, we are able to bound the

overall success probability of the adversary in the original security

game.

The overall structure of the proof is as follows. First, we perform

some administrative game hops to rule out the possibility of DH

key collisions. Then, we guess the indices (u, i, t) of the Test session
and stage. If it is not fresh then the adversary does not win. If it is

fresh, we perform a case distinction based on the condition of the

freshness predicate which it satisfies: either the current copath is

fresh or a previous stage was fresh.

In the latter case, indistinguishability holds by induction. In the

former case, by definition we know that all of the leaf keys used to

generate the current stage are honestly-generated and unrevealed.

The secret key at a node with child public keys дx and дy is defined

to beдxy , and thus by hardness of the decisional DH problem (DDH)

we can indistinguishably replace it with a random group element.

We perform this replacement in turn for each non-leaf node in

the tree, bounding the probability difference at each game hop

with the DDH advantage. After all non-leaves have been replaced,

the tree key (and hence the stage session key) is replaced with a

random group element. The success probability of the adversary

against this final game is therefore no better than 1/2. By summing

probabilities throughout the various cases we derive our overall

probability bound. □

6.3 Adding Authentication
Deriving the leaf keys λj from a one-round authenticated key ex-

change protocol allows for authentication of the initial group key,

in the sense that only an agent who can complete the key exchange

protocol can derive the group key. We now give an example of such

a construction, and analyse its authentication property using the

Tamarin prover.

We use NAXOS [24] as our one-round key exchange proto-

col. In NAXOS, an agent A sends a message X = дx where x =
H1(eskA, skA), receives a message Y , and derives a shared key

K = H2(Y skA ,pkxB ,Y
x ,A,B). Schmidt et al. [29] performed an auto-

mated analysis of NAXOS in a symbolic version of the eCK model.

To model the authentication property we abstract out the tree

construction and replace it with a symbolic “oracle” which assigns

to any set of public keys a fresh term representing the group key

they induce. The adversary or any agent is permitted to query this

oracle, with the restriction that they must prove knowledge of at

least one secret key corresponding to a public key in the set.

We use Tamarin to verify this construction. Roughly, we model

a protocol role Alice who accepts initial NAXOS messages, repre-

senting new group members, and adds the resulting session keys

to her state. At any point she may stop accepting new members

and instead derive a group key by querying our abstract oracle.

We remark that although using a more advanced authenticated

key exchange protocol for the leaves is a relatively small change, the

resulting security property does not follow trivially. In an earlier

design, we considered a protocol without authentication of the

initial messages. We analysed this earlier design and Tamarin

found an attack in which Alice correctly fetches prekeys, computes

a group key and sends the resulting (abstract) copath to Bob, but

the adversary modifies this message to add a malicious leaf key.

Knowing a leaf key for Bob’s tree, it can then derive the resulting

session key even though it is accepted by Bob. The Tamarin analysis

made it clear that for the group key to be authenticated, not just

the λj but also the copath of public keys needs to be authenticated,

and we improved our design accordingly.

We will release the Tamarin models shortly. The model verifies

that the initial group key an agent derives in a group of size three

is secret, if none of the agents they believe to be in the group

have been compromised. Although Tamarin supports unbounded

verification, and we consider an arbitrary number of parties and

instances, it was necessary to bound the verified security property

to group sizes of three for verification to terminate quickly. The

verification of this security property proceeds automatically using

three helper lemmas and takes a few minutes on a modern desktop.

7 PROOF-OF-CONCEPT IMPLEMENTATION
We implemented the protocol described in Section 5 in Java as a

proof of concept. Our implementation generates public keys for

a number of users, constructs a tree as described in Figure 5, and

encrypts and decrypts messages. We implement the tree as a recur-

sive data structure, and perform updates recursively as opposed to

iteratively.

Message passing. We pass messages between sessions as native

Java objects in memory, to avoid (de)serialisation overhead in our

benchmarks. For simplicity, instead of extracting and sending sepa-

rate copaths to each group member we simply distribute the entire

public tree as a Java object, from which each node extracts its own

copath.

Authentication. Again for simplicity, we instantiate the protocol

with the unauthenticated design of Section 6.2, referring to the

initial keys as identity keys. We remark that using a one-round

key exchange protocol instead would simply require modifying

the newSession and fromSessionInitiationMessage methods,

alongside the routines to serialise to message objects, and the key

generation in the benchmarking code.

Primitives. For our Diffie-Hellman group operations we used

a Java implementation [31] of Curve25519 [2]. Encryption and

decryption of messages uses Java’s native AES-GCM support, at

128 bits to allow running the example without the Java runtime

patch necessary for 256 bit keys.

Encryption keys for messages (“message keys”) are derived simi-

larly to the approach used in the Double Ratchet algorithm: chain

keys are derived from a stage key, and then message keys from

the chain keys. We also extend the described algorithm to salt the

session root when deriving it from the root of the tree, to ensure

that even if multiple trees were generated with the same public

keys at their leaves, they would derive a different root key. In our

example we use HKDF for all key derivations of both stage keys

and message keys.

Effort. While a production-ready implementation may take sig-

nificantly more work to build, our toy example took took a few

days to build and totalled 1480 lines of code, demonstrating that

this is not an overly complex set of algorithms to implement.

Our goal was not to produce secure cryptographic code, but to

demonstrate the feasibility of our algorithms for practical scenarios.

Even in unoptimised Java, it takes fractions of a second to import

a large tree—as expected, given our logarithmic asymptotic com-

plexity. In Table 3 we give some simple timing results for group

construction and key update messages for variously-sized groups.

Our asynchronous setup requires the initiator to construct their

entire key tree locally, in order to generate the public tree values

to send to other group members. Thus, for the group creator it

takes linear time in the size of the group. Although this overhead

is minimal for the group sizes normally seen in messaging applica-

tions, for large-scale use cases we remark that this is a significant

performance requirement. However, we might expect large-scale

use cases either to be more tolerant of a high setup cost, or to build

up to a large size gradually by dynamically adding group members.

Table 3: Times in milliseconds for our implementation to perform various tree operations. All computation was performed on a 2016 Apple
MacBook Pro, and results are the average of 5 benchmark runs. In construct tree, the initiator fetches public keys for each groupmember, and
follows the unauthenticated algorithm in Section 5 to build a complete DH tree. In import tree, responders use their private key to compute
the first stage key. In encrypt (initiator), the initiator derives new chain keys from the first stage key, and uses them to encrypt messages,
decrypted by the responder in decrypt (responder). In encrypt (responder), the responder performs a tree update as per Section 5 to derive a new
stage key and then message key, encrypting a message decrypted in decrypt (initiator).

group size

construct tree import tree encrypt decrypt encrypt decrypt

(initiator) (responder) (initiator) (responder) (responder) (initiator)

2 1.8 0.4 0 0.8 0 0.4

7 5.8 0 0.2 0.8 0.2 0

127 90.6 0 0.2 1.6 0 0

32,768 25,187.8 20.6 0.6 4.2 0.4 0

100,000 77,022.8 248.8 0.6 3.8 0.4 0

8 EXTENSIONS
We here remark on various possible extensions to our designs. In

general, because we use standard tree-DH techniques, much of

the existing literature is directly applicable. This means that we

can directly apply well-studied techniques which do not require

interactive communication rounds.

Sender-specific authentication. As early as 1999, Wallner et al.

[33] pointed out the issue of “sender-specific authentication”: in a

system which derives a shared group key known to all members,

there is no cryptographic proof of which group member sent a

particular message. Various works have discussed such proofs; the

most common design is to assign to each group member a signature

key with which they sign all their messages. We remark that it is

easy to extend our design with such a system.

In particular, if an agent generates and broadcasts new signature

keys together with their new leaf keys, signing the new key with

the old one, then we conjecture that they will achieve a form of

authentication even post-compromise.

Dynamic groups. We refer the reader to e.g. [21] for a summary

of previous work on dynamic groups. In general, since we build on

tree-based ideas, our design can support join and leave operations

using standard techniques.

We remark in particular that these operations can be done asyn-
chronously using a design similar to the setup keys in Section 5.1.

Specifically, Alice can add Ted as a sibling to her own node in the

tree by performing an operation similar to the initial tree setup,

generating an ephemeral key and performing a key update which

replaces Alice’s leaf with an intermediate node whose children are

Alice and Ted. With the cooperation of other users in the tree, Alice

can add Ted anywhere, allowing her to keep the tree balanced.

Multiple Devices. One importantmotivation for supporting group

messaging is to enable users to communicate using more than one

of their own devices. By treating each device as a separate group

member, our design of course supports this use case. However, the

tree structure can be optimised for this particular scenario: all of

Alice’s devices can be stored in a single subtree, so that the “leaves”

of the group tree are themselves roots of device-specific trees. This

has two particular benefits.

First, in her own time Alice can execute the group key agreement

protocol just between her devices, and use the resulting shared

secret as an ephemeral prekey or “pretree”. This allows other group

members to retrieve a single key for Alice, instead of adding all of

her devices as separate entities in the group tree. If most users have

multiple devices, this can significantly reduce the size of group

trees.

Second, when any of Alice’s devices performs a key update, the

other group members only need to know the public keys from the

root of Alice’s subtree to the root of the group tree. In particular,

Alice does not need to broadcast to the group the set of her devices

or the metadata about which device is performing a key update.

Thus, she can maintain end-to-end encryption between all of her

devices while still keeping the list private.

Chain keys. The Signal protocol introduced the concept of chain
keys to support out-of-order message receipt as well as a fine-

grained form of forward secrecy. Instead of using a shared secret to

encrypt messages directly, Signal derives a new encryption key for

each message by applying a key derivation function to the current

key, generating a new chain key in the process.

The shared secret derived by our group key exchange can be

directly used as the start of a key chain. Indeed, our implementation

derives its message keys from a hash chain, ensuring that each key

is only ever used once as well as providing a form of forward secrecy

after compromise of a chain key.

9 CONCLUSION
While modern messaging applications can offer strong security

guarantees, they typically only do this for two-party communica-

tions. If another person is added to the group, the effective security

guarantees are decreased, without notifying the users of this secu-

rity degradation.

In this paper, we combined techniques from synchronous group

messaging with modern guarantees from asynchronous messag-

ing. Our resulting asynchronous design combines the bandwidth

benefits of group messaging with the strong security guarantees of

modern point-to-point protocols. This paves the way for modern

messaging applications to offer the same type of security for groups

that they are currently only offering for two-party communications.

Our construction is of independent interest, since it provides a

blueprint for generically applying insights from synchronous group

messaging in the asynchronous setting. We expect this to lead to

many more alternative designs in future works.

REFERENCES
[1] Michel Abdalla, Céline Chevalier, Mark Manulis, and David Pointcheval. 2010.

Flexible Group Key Exchange with On-demand Computation of Subgroup Keys.

In AFRICACRYPT 10 (LNCS), Daniel J. Bernstein and Tanja Lange (Eds.), Vol. 6055.

Springer, Heidelberg, 351–368.

[2] Daniel J. Bernstein. 2006. Curve25519: New Diffie-Hellman Speed Records. In

PKC 2006 (LNCS), Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin

(Eds.), Vol. 3958. Springer, Heidelberg, 207–228.

[3] Dan Boneh and Alice Silverberg. 2003. Applications of multilinear forms to cryp-

tography. In Topics in Algebraic and Noncommutative Geometry: Proceedings in
Memory of Ruth Michler, Caroline Grant Mellesand Jean-Paul Brasseletand Gary

Kennedyand Kristin Lauter and Lee McEwan (Eds.). Contemporary Mathematics,

Vol. 324. American Mathematical Society.

[4] Dan Boneh and Mark Zhandry. 2014. Multiparty Key Exchange, Efficient Traitor

Tracing, and More from Indistinguishability Obfuscation. In CRYPTO 2014, Part I
(LNCS), JuanA. Garay and Rosario Gennaro (Eds.), Vol. 8616. Springer, Heidelberg,
480–499. https://doi.org/10.1007/978-3-662-44371-2_27

[5] Nikita Borisov, Ian Goldberg, and Eric Brewer. 2004. Off-the-record Commu-

nication, or, Why Not to Use PGP. In Proceedings of the 2004 ACM Workshop
on Privacy in the Electronic Society (WPES ’04). ACM. https://doi.org/10.1145/

1029179.1029200

[6] Timo Brecher, Emmanuel Bresson, and Mark Manulis. 2009. Fully Robust Tree-

Diffie-Hellman Group Key Exchange. In CANS 09 (LNCS), Juan A. Garay, Atsuko

Miyaji, and Akira Otsuka (Eds.), Vol. 5888. Springer, Heidelberg, 478–497.

[7] Emmanuel Bresson, Olivier Chevassut, David Pointcheval, and Jean-Jacques

Quisquater. 2001. Provably Authenticated Group Diffie-Hellman Key Exchange.

In ACM CCS 01. ACM Press, 255–264.

[8] Yi-Ruei Chen and Wen-Guey Tzeng. 2017. Group key management with efficient

rekey mechanism: A Semi-Stateful approach for out-of-Synchronized members.

Computer Communications 98 (2017). https://doi.org/10.1016/j.comcom.2016.08.

001

[9] Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt. 2016. On post-compromise

security. In Computer Security Foundations Symposium (CSF), 2016 IEEE 29th. IEEE,
164–178.

[10] Cas J. F. Cremers and Michele Feltz. 2012. Beyond eCK: Perfect Forward Se-

crecy under Actor Compromise and Ephemeral-Key Reveal. In ESORICS 2012
(LNCS), Sara Foresti, Moti Yung, and Fabio Martinelli (Eds.), Vol. 7459. Springer,

Heidelberg, 734–751.

[11] Yvo Desmedt, Tanja Lange, and Mike Burmester. 2007. Scalable Authenticated

Tree Based Group Key Exchange for Ad-Hoc Groups. In FC 2007 (LNCS), Sven
Dietrich and Rachna Dhamija (Eds.), Vol. 4886. Springer, Heidelberg, 104–118.

[12] eQualit.ie. 2016. (N + 1)SEC. (2016). https://learn.equalit.ie/wiki/Np1sec
[13] Facebook. 2017. Messenger Secret Conversations (Technical Whitepaper Version

2.0). Technical Report. https://fbnewsroomus.files.wordpress.com/2016/07/

messenger-secret-conversations-technical-whitepaper.pdf

[14] Marc Fischlin and Felix Günther. 2014. Multi-stage key exchange and the case of

Google’s QUIC protocol. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 1193–1204.

[15] Ian Goldberg, Berkant Ustaoglu, Matthew Van Gundy, and Hao Chen. 2009.

Multi-party off-the-record messaging. In ACM CCS 09, Ehab Al-Shaer, Somesh

Jha, and Angelos D. Keromytis (Eds.). ACM Press, 358–368.

[16] MatthewD. Green and IanMiers. 2015. Forward Secure AsynchronousMessaging

from Puncturable Encryption. In 2015 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, 305–320. https://doi.org/10.1109/SP.2015.26

[17] The Guardian. 2017. Contact the Guardian securely. (2017). https://gu.com/

tip-us-off

[18] internet.org. 2016. State of Connectivity 2015. (2016). https://fbnewsroomus.

files.wordpress.com/2016/02/state-of-connectivity-2015-2016-02-21-final.pdf

[19] Antoine Joux. 2004. A One Round Protocol for Tripartite Diffie-Hellman. Journal
of Cryptology 17, 4 (Sept. 2004), 263–276.

[20] Yongdae Kim, Adrian Perrig, and Gene Tsudik. 2000. Simple and Fault-tolerant

Key Agreement for Dynamic Collaborative Groups. In Proceedings of the 7th
ACM Conference on Computer and Communications Security (CCS ’00). ACM.

https://doi.org/10.1145/352600.352638

[21] Yongdae Kim, Adrian Perrig, and Gene Tsudik. 2001. Communication-Efficient
Group Key Agreement. Springer US. https://doi.org/10.1007/0-306-46998-7_16

[22] Yongdae Kim, Adrian Perrig, and Gene Tsudik. 2004. Tree-based Group Key

Agreement. ACM Trans. Inf. Syst. Secur. (Feb. 2004). https://doi.org/10.1145/

984334.984337

[23] N. Kobeissi, K. Bhargavan, and B. Blanchet. 2017. Automated Verification for Se-

cure Messaging Protocols and their Implementations: A Symbolic and Computa-

tional Approach. In IEEE European Symposium on Security and Privacy (EuroS&P).
to appear.

[24] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. 2007. Stronger Security

of Authenticated Key Exchange. In ProvSec 2007 (LNCS), Willy Susilo, Joseph K.

Liu, and Yi Mu (Eds.), Vol. 4784. Springer, Heidelberg, 1–16.

[25] Sangwon Lee, Yongdae Kim, Kwangjo Kim, and Dae-Hyun Ryu. 2003. An Efficient

Tree-Based Group Key Agreement Using Bilinear Map. In ACNS 03 (LNCS),
Jianying Zhou,Moti Yung, and Yongfei Han (Eds.), Vol. 2846. Springer, Heidelberg,

357–371.

[26] Fermi Ma andMark Zhandry. 2017. Encryptor Combiners: A Unified Approach to

Multiparty NIKE, (H)IBE, and Broadcast Encryption. Cryptology ePrint Archive,

Report 2017/152. (2017). http://eprint.iacr.org/2017/152.

[27] Moxie Marlinspike. 2013. Forward Secrecy for Asynchronous Messages. (22 08

2013). https://whispersystems.org/blog/asynchronous-security/

[28] Moxie Marlinspike. 2016. Signal Protocol documentation. (2016). https://

whispersystems.org/docs/

[29] Benedikt Schmidt, Simon Meier, Cas J. F. Cremers, and David A. Basin. 2012. Au-

tomated Analysis of Diffie-Hellman Protocols and Advanced Security Properties.

In 25th IEEE Computer Security Foundations Symposium, CSF 2012, Cambridge,
MA, USA, June 25-27, 2012. 78–94. https://doi.org/10.1109/CSF.2012.25

[30] Victor Shoup. 2004. Sequences of games: a tool for taming complexity in security

proofs. IACR Cryptology EPrint Archive 2004 (2004), 332.
[31] Dmitry Skiba. 2008. trevorbernard/curve25519-java. (23 02 2008). https://github.

com/trevorbernard/curve25519-java

[32] D. G. Steer, L. Strawczynski, W. Diffie, and M. Wiener. 1990. A Secure Audio Tele-
conference System. Springer New York. https://doi.org/10.1007/0-387-34799-2_37

[33] D. Wallner, E. Harder, and R. Agee. 1999. Key Management for Multicast: Issues

and Architectures. (1999).

[34] WhatsApp. 2016. WhatsApp Encryption Overview. Technical Report. https:

//www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

[35] Chung Kei Wong, Mohamed Gouda, and Simon S. Lam. 2000. Secure Group

Communications Using Key Graphs. IEEE/ACM Transactions on Networking 8, 1

(Feb. 2000), 16–30.

[36] Zheng Yang, Chao Liu, Wanping Liu, Daigu Zhang, and Song Luo. 2017. A new

strong security model for stateful authenticated group key exchange. Inter-
national Journal of Information Security (2017), 1–18. https://doi.org/10.1007/

s10207-017-0373-1

https://doi.org/10.1007/978-3-662-44371-2_27
https://doi.org/10.1145/1029179.1029200
https://doi.org/10.1145/1029179.1029200
https://doi.org/10.1016/j.comcom.2016.08.001
https://doi.org/10.1016/j.comcom.2016.08.001
https://learn.equalit.ie/wiki/Np1sec
https://fbnewsroomus.files.wordpress.com/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://doi.org/10.1109/SP.2015.26
https://gu.com/tip-us-off
https://gu.com/tip-us-off
https://fbnewsroomus.files.wordpress.com/2016/02/state-of-connectivity-2015-2016-02-21-final.pdf
https://fbnewsroomus.files.wordpress.com/2016/02/state-of-connectivity-2015-2016-02-21-final.pdf
https://doi.org/10.1145/352600.352638
https://doi.org/10.1007/0-306-46998-7_16
https://doi.org/10.1145/984334.984337
https://doi.org/10.1145/984334.984337
http://eprint.iacr.org/2017/152
https://whispersystems.org/blog/asynchronous-security/
https://whispersystems.org/docs/
https://whispersystems.org/docs/
https://doi.org/10.1109/CSF.2012.25
https://github.com/trevorbernard/curve25519-java
https://github.com/trevorbernard/curve25519-java
https://doi.org/10.1007/0-387-34799-2_37
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://doi.org/10.1007/s10207-017-0373-1
https://doi.org/10.1007/s10207-017-0373-1

A COMPUTATIONAL SECURITY PROOF
Theorem 6.1. Let nP, nS and ns denote bounds on the number of parties, sessions and stages in the security experiment respectively.

Under the decisional DH assumption, where ι is instantiated as a random oracle, the success probability of any ppt adversary against the key
indistinguishability game of our protocol is bounded above by

1 −
nPnSns−1∏

i=0

(1 − i/q) + (nSns)γ nPγ+1 (ϵDDH + 1/q) + negl(λ) ,

where ϵDDH bounds the advantage of a PPT adversary against the decisional DH game.

Proof. Security in this sense means that no efficient adversary can break the key indistinguishability game against our protocol. Suppose

for contradiction that A is such an adversary. By the definition of the security experiment, it can only win if it issues a Test(u, i, t) query
against some stage t of a session i at agent u such that (u, i, t) is fresh, and subsequently issues a correct Guess(b) query.

By the definition of freshness, (u, i, t) is fresh exactly when

(i) it has status accept,
(ii) the adversary has not issued a RevSessKey(u, i, t) query,
(iii) there does not exist (v, j, s) such that the adversary has issued a query RevSessKey(v, j, s) whose return value is sessk , and
(iv) one of the following criteria holds:

(a) t > 0 and stage (u, i, t − 1) is fresh, or
(b) the current copath is fresh.

We proceed by constructing a sequence of related games and corresponding adversaries, identifying the game from the security experiment

with game 0. Let Advi denote the maximum over all adversariesA of the advantage ofA in game i . Our goal is to bound Adv
0
, the advantage

of any adversary against the security experiment.

Game 0. This is the original AKE security game. We see that the success probability of the adversary is bounded above by

1/2 + Adv
0

Game 1. This is the same as Game 0, except the challenger aborts and the adversary loses if there is ever a collision of honestly generated

DH keys in the game. There are a total number of nP parties in the game. There are a maximum of nSns ephemeral DH keys generated per

party. There are therefore a total maximum of nPnSns DH keys, each pair of which must not collide. All keys are generated in the same DH

group of order q. Therefore we have the following bound:

Adv
0
≤ 1 −

nPnSns−1∏
i=0

(1 − i/q) + Adv
1

Game 2. This is the same as Game 1, except the challenger begins by guessing (uniformly at random, independently of other random

samples) a user u ′, session i ′ and stage t ′. If the adversary issues a Test(u, i, t) query with (u, i, t) , (u ′, i ′, t ′), the challenger immediately

aborts the game and the adversary loses.

Since the challenger’s guess is independent of the adversary’s choice of Test session, we derive the bound

Adv
1
≤ nPnSns · Adv2

Now, note that the Test session has an internal view of the DH tree structure and the peers associated with each leaf.

Game 3. In this game, the challenger guesses in advance the peer sessions associated with each of these leafs. There are of course no more

than γ − 1 leafs, so we will assume the worst case of making γ − 1 guesses. In other words, this game hop is guessing the (ordered) peers in

the Test.

Precisely, the challenger does the following. For each leaf l , it guesses a triple of indices (v ′l , j
′
l , s
′
l) ∈ [nnP] × [nS] × [ns] and aborts if at

leaf l there exists a session π
j
v that matches the Test session π iu at stage s but (v ′l , j

′
l , s
′
l) , (v, j, s). Note that it might be the case that no such

matching π
j
v exists, but this game ensures that if such π

j
v do exist, they are uniquely defined and known in advance by the challenger.

We must first show that there can exist at most one (v, j, s) that matches the Test that also has the same internal view of being at any

given leaf node of the tree structure of the Test. This follows from our first game hop that forced honestly generated DH keys not to collide

and the fact that sessions matching includes computing the same session key, and the ordered list of identities with keys is in the KDF.

This provides the following bound.

Adv
2
≤ (nPnSns)γ−1 · Adv

3

Consider the event E defined to be true when the copath in the session state of the Tested stage is fresh. We now perform a case distinction

on E, considering first the case (i) where E is true, and then the case (ii) where E is false.

Case (i).We assume that E holds. By definition of copath freshness, it therefore holds that the copath is the ith copath induced by some ℓ,

where each λj ∈ ℓ was output by an honest stage against which no RevRandom query was issued. WLOG we define λ1 to be the actor of the

Test session’s DH leaf key.

Case (i), Game 4(i).1.

Recall that the parent of the first two leaf nodes, λ1 and λ2, is defined as дλ1 ·λ2
. We define a new game in which, in the local session key

computation of the actor of the Test session and any match (which is unique by the previous game), дλ1 ·λ2
is replaced with a group element

дz sampled uniformly at random, and all subsequent computations upwards along the path of the tree use дz instead of дλ1 ·λ2
.

This is a game hop based on indistinguishability [30]. In general, we consider a hybrid game and a distinguisher D that interpolates

between the two games. The distinguisher D that distinguishes between distributions P1 and P2, when given an element drawn from

distribution P1 as input, outputs 1 with probability Adv
3
+ 1/2, and when given element drawn from distribution P2, outputs 1 with probability

Adv
4(i).1 + 1/2. The indistinguishability assumption then implies that the difference in negligible.

We prove that game 4(i).1 is indistinguishable from game 3 under the decisional Diffie-Hellman assumption. Precisely, we aim to show

that if a distinguisher D could efficiently distinguish between the games, then it could be used to break the DDH assumption. This implies

that Adv
4(i).1 ≤ Adv

3
+maxD ϵD , where ϵD is the probability that a PPTM D correctly distinguishes between Games 3 and 4(i).1 because

we create a hybrid

It remains to bound ϵD , which we do with a reduction to decisional DH. Specifically, suppose D is such a distinguisher. We construct

an adversary A(D) against the DDH game as follows. Given DDH challenge дx ,дy ,дz and the challenge of determining whether or not

z = xy, A(D) simulates the hybrid game as the challenger in a fully honest way except it inserts дx = дx1 ,дy = дx2 ,дz = дx1x2
. Note that

дz is the “secret” from Alice and Bob with дx1
and дx2

respectively, which the DDH adversary/simulator is given, so the simulator can

compute all public DH intermediate keys up the tree that use дz , including the group key at the top of the tree. This hybrid game is clearly a

hybrid between Game 3 and Game 4(i).1, with equal probability of either. The simulator answers all queries in the honest way, except in

the send/create queries where it needs to insert these DH values. It knows when and where to do this because of the earlier game hops

and the freshness predicate: it knows exactly where to insert them in the game and by the freshness predicate, they are honest. It is also

able to answer any reveal queries because these values are ephemeral and it never has to reveal them to the adversary due to the freshness

predicate. Therefore the simulation is sound.

In Game 1 we ensured no DH keys collide, and with probability 1/q the DDH challenger may provide challenge values дx = дy , in which

case the simulator must abort. Thus we have the bound adv3 ≤ adv
4(i).1 + ϵDDH + 1/q.

Case (i), Game 4(i).k where 2 ≤ k ≤ ⌊γ/2⌋.We repeat the replacement performed in the previous game, but for the next pair of sibling nodes.

Again, detecting this replacement would require violating DDH. At this point, the tree key is no longer a function of the leaf keys—instead, it

depends on the keys at the nodes whose children are leaves, each of which has been replaced by a random value, unknown to the adversary.

Case (i), Game 4(i).ℓ where ℓ ≤ L ≤ γ . We iteratively replace DH keys using the DDH assumption, starting along the base of the tree and

then working our way up until eventually all DH keys in the tree, including the final group key, are independent of each other. It is trivially

impossible for the adversary to do any better than guessing in the final game. Given a group size of n, we never need to do more than n ≤ nP
such game hops due to our tree structure. Thus

advnP ≤ γ (ϵDDH + 1/q) + 0

Case (ii), Game 4(ii). We now proceed with case (ii), restarting our game hopping sequence on Game 3. Assume now that E does not hold,

and thus the copath in the session state of the Tested session is not fresh. Since the Tested session must be fresh, the first disjunct of the final

clause of the freshness predicate must hold: that t > 0 and stage (u, i, t − 1) is fresh.
We proceed by induction on the stage number of the Test session. Our inductive hypothesis at step k is that no adversary can win stage k

with non-negligible advantage. The base case k = 0 holds by the above argument: case (ii) cannot apply since the freshness predicate in case

k = 0 requires E to occur.

Assume now that the inductive hypothesis is true for stage t ≤ k − 1; we show that it is also true for t = k . As before, if the adversary
Tests (u, i, t), then this means stage t must be fresh. Let RO be the event that the adversary queried the random oracle and received the

session key of the Test session as a reply.

If RO does not hold, we perform a single game hop in which we replace the session key with a random value. Since the random oracle

response is by construction a random value, this replacement is indistinguishable and the resulting advantage is zero. We use the fact that

the adversary is not permitted to perform any RevSessKey queries which return the Tested stage key.

Thus, we conclude that RO must hold; in particular, the adversary must have queried KDF(π .sk,π .tk, 0). We are in case (ii), so the

freshness predicate restricts the adversary from issuing a RevSessKey(u, i,k − 1) query to learn the stage key of stage k − 1. This adversary

therefore has a distinguishing advantage against the previous stage, which will contradict our induction hypothesis.

Specifically, given such an adversaryA we construct an adversaryA ′ which wins with non-negligible probability against stage k − 1.A ′
simply simulates A without changing any values and recording all random oracle queries; the simulation is thus trivially faithful. When A
issues a Test(u, i, s) query,A ′ issues a Test(u, i, s − 1) query and compares the resulting key to all of A’s random oracle queries. If it appears

in a random oracle query, A ′ outputs b = 0; otherwise, it outputs b = 1. By construction, stage (u, i, s − 1) is fresh and its session key is an

argument to the random oracle, so the advantage of A ′ is non-negligible.
This contradicts our inductive hypothesis that no adversary can win against a stage less than t with non-negligible probability; the result

thus holds in case (ii) by induction. □

	Abstract
	1 Introduction
	2 Background
	2.1 Other Group Messaging Protocols
	2.2 Widely-Used Implementations

	3 Objectives
	3.1 Security Goals
	3.2 Other Types of Property
	3.3 Security properties

	4 Notation
	5 Design
	5.1 Asynchronous Tree Construction
	5.2 Asynchronous Tree Updates
	5.3 Algorithms

	6 Security Analysis
	6.1 Computational Model
	6.2 Unauthenticated Computational Analysis
	6.3 Adding Authentication

	7 Proof-of-Concept Implementation
	8 Extensions
	9 Conclusion
	References
	A Computational Security Proof

