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Abstract. We provide the first systematic analysis of the ISO/IEC 11770
standard for key management techniques [18,19], which describes a set
of key exchange, key authentication, and key transport protocols. We
analyse the claimed security properties, as well as additional modern
requirements on key management protocols, for 30 protocols and their
variants. Our formal, tool-supported analysis of the protocols uncovers
several incorrect claims in the standard. We provide concrete suggestions
for improving the standard.

1 Introduction

The International Organisation for Standardisation (ISO) develops and promotes
international standards, which include a wide variety of security mechanisms.
Many large vendors aim to support ISO standards, for example because they
are mandated by oversight bodies [15] or to prevent trade barriers. Hence, it is
critical that the ISO standards for security mechanisms are thoroughly scrutinised.
However, most previous analyses of the ISO security standards have been very
limited in scope, e.g., [10, 16, 23, 24]. One exception is the analysis of Basin et al.
of the ISO/IEC 9798 standard for entity authentication [4] in 2012. Their analysis
uncovered a series of issues that led to an updated version of the 9798 standard.

In this paper we focus on the ISO/IEC 11770 standard for key management
protocols, in particular on parts 2 and 3 of this standard. In the most recent
version as of June 2014, these two parts together describe 30 base protocols
for key exchange, key agreement, and key transport. Many of the standard’s
protocols are based on protocols such as Diffie-Hellman, variants of MQV, and
the TLS handshake. For many of the protocols, at least two variants are described.
Thus, analysing these two parts is a significant undertaking.

In positive contrast to other security protocol standards [5], the ISO/IEC
11770 standard explicitly specifies security properties for each of its protocols.
Two of these properties are structural properties, i.e., key control and replay
detection. Additionally, there are four security properties that relate to active
adversaries, namely key authentication, key confirmation, entity authentication,
and forward secrecy.

In this work, we use tool-supported formal methods to determine if the
protocols indeed satisfy their claimed properties. Additionally, we analyse the
protocols for modern key exchange security properties, such as resilience against
Key Compromise Impersonation (KCI) and Unknown Key Share (UKS) attacks.
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Overview In Section 2 we give some background on ISO/IEC 11770 and illustrate
some of its protocols. We describe our analysis approach in Section 3 and present
the results in Section 4. We provide concrete recommendations for improving
the standard in Section 5, discuss related work in Section 6, and conclude in
Section 7.

2 Background on ISO/IEC 11770

The ISO/IEC 11770 standard describes key management techniques. According
to the standard, the purpose of key management is to provide procedures for
handling cryptographic keying material to be used in symmetric or asymmetric
mechanisms. Effectively, the standard describes a large number of key agreement,
key transport, and key exchange protocols. We will therefore use the terms
mechanism and protocol interchangeably.

The standard is currently divided into five parts. Part 1 was originally re-
leased in 1996 and has been updated over the years. It describes the context and
framework. Parts 2 and 3 describe mechanisms based on symmetric and asym-
metric techniques. Part 4 describes mechanisms based on weak secrets, such as
password-based key exchange protocols. Part 5 describes group key management
mechanisms. A part 6 on key derivation functions is currently under development.

2.1 Protocols

In this work we focus on part 2 [18] and part 3 [19] of the ISO/IEC 11770
standard. Part 2 describes 13 key establishment mechanisms. Part 3 describes
11 key agreement mechanisms and 6 key transport mechanisms. Many of these
30 mechanisms in parts 2 and 3 have optional message parts and message flows,
giving rise to a large number of variants.

Additionally, the mechanisms produce keying material that must be used with
a key derivation function to form a key for use in further messages. The standard
does not specify a single key derivation function; instead it gives examples of
various possible key derivation functions. Thus, using a single mechanism with
different key derivation functions can be regarded as multiple variants of the
same base mechanism. As we will see in Section 4.3, the choice of a key derivation
function can influence the security of a mechanism.
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Fig. 1. Protocol 2-12 with optional fields

Naming conventions. We provide a unique name for each base mechanism in
the considered parts of the standard. We refer to the thirteen key establishment
mechanisms from part 2 as protocol 2-1, 2-2, ..., 2-13. We refer to the key agree-
ment mechanisms as 3-KA-1, ..., 3-KA-11 and to the key transport mechanisms
as 3-KT-1, ..., 3-KT-6.

We next describe two protocols from the standard. This enables us to introduce
notation and provide an indication of the protocols contained in the standard.

Key Exchange Mechanism 12 (2-12). We give an example of a protocol
described in part 2 [18], referenced in the standard in Section 7.2 as Key Estab-
lishment Mechanism 12. The protocol is stated to be derived from, but not fully
compatible with, the four-pass mutual authentication mechanism specified in
ISO/IEC 9798-2 [17]. The protocol has several variants. For this example, we
consider the variant with all optional parts included, depicted using a Message
Sequence Chart (MSC) in Figure 1.

In the figure, TA/NA is either a time stamp TA or sequence number NA of A.
IA and IB respectively identify entities A and B. eK(m) denotes the encryption
of the message m with the key K. The protocol assumes that entities A and B
respectively share long-term symmetric keys KAP and KBP with a trusted third
party P . Text1 through Text5 are text fields whose contents are not specified by
the standard. F denotes keying material.

The protocol proceeds as follows. When a party A wants to communicate
with another party B, it contacts trusted third party P . A generates fresh keying
material F and includes it in the message encrypted for P , who responds with
two encrypted messages. They are respectively encrypted with KAP and KBP .
Both encrypted messages are sent to A, who forwards the second encryption to B.
B decrypts the message and obtains the keying material F . A and B now both
use a key derivation function to compute the session key K from F . We are only
considering the protocol variant with optional fields, so the protocol proceeds
with two messages that allow both entities to confirm to the other entity that
they have successfully computed the key.
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Fig. 2. Protocol 3-KA-11

For the key derivation function, we consider two extremes from the KDFs
described in the standard: at the one end, some KDFs take as input only F ,
whereas others include additional parameters, such as the identities IA and IB .

Key Agreement Mechanism 11 (3-KA-11). Key Agreement Mechanism
11 from part 3, shown in Figure 2, establishes a key shared by entities A and
B. First, A generates a random value rA and sends it to B. B responds with
his own random value rB and his certificate. Upon receiving this message, A
generates a new random value r′A. r′A is used with the other two random values
to derive a session key K. Then r′A is encrypted using B’s public key, and sent to
B along with a message authentication code (MAC) keyed with K that includes
the earlier randomness rA. B decrypts the message, computes K, and checks the
MAC. B then responds with his own MAC of rB and his certificate.

According to the standard, this protocol is derived from the TLS handshake
protocol [14]. In particular, since only B uses his private key (to decrypt the
message) and the random values are directly input to the key derivation function,
the protocol resembles TLS’s unilaterally authenticated RSA mode, where A
corresponds to the client and B to the server. The random value r′A in 3-KA-11
plays the same role as TLS’s pre-master secret and the two text fields are used
in TLS for the cipher suite negotiation.

2.2 Security properties and threat model of the standard

Most standards for security protocols do not specify threat models or intended
security properties [5]. In this respect, ISO/IEC 11770 is an exception since it
explicitly specifies a set of security properties, and states for each protocol which of
these properties it satisfies. ISO/IEC 11770 defines the following properties [18,19]:
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Implicit key authentication from entity A to entity B Assurance for en-
tity B that A is the only other entity that can possibly be in possession of the
correct key.

Explicit key authentication from entity A to entity B Assurance for en-
tity B that A is the only other entity that is in possession of the correct key.

Key confirmation from entity A to entity B Assurance for entity B that
entity A is in possession of the correct key.

Entity authentication of entity A to entity B Assurance of the identity of
entity A to entity B.

Forward secrecy with respect to entity A Property that knowledge of en-
tity A’s long-term private key subsequent to a key agreement operation does
not enable an opponent to recompute previously derived keys.

Forward secrecy with respect to both entity A and entity B Property
that knowledge of entity A’s long-term private key or knowledge of entity B’s
long-term private key subsequent to a key agreement operation does not enable
an opponent to recompute previously derived keys.

Mutual forward secrecy Property that knowledge of both entity A’s and
entity B’s long-term private keys subsequent to a key agreement operation does
not enable an opponent to recompute previously derived keys.

For example, regarding the protocols described in the previous section, the stan-
dard claims the following: protocol 2-12 with optional parts satisfies mutual
explicit key authentication, mutual key confirmation and mutual entity authenti-
cation, and protocol 3-KA-11 provides mutual explicit key authentication, mutual
key confirmation, entity authentication to B and mutual forward secrecy.

The standard does not specify an explicit threat model. However, the security
properties stated above are not claimed for all protocols. Because some protocols
apparently do not meet the above properties, we can conclude that the adversary
is considered to have at least the following capabilities:

Injecting network messages Entity authentication is claimed for some, but
not all mechanisms. Entity authentication can only be effectively violated if
the adversary is able to inject or tamper with network messages.

Eavesdropping on network messages If the adversary cannot eavesdrop on
messages, we would need no complex key management mechanism, and could
exploit simple authentication mechanisms.

Compromising long-term private keys For some protocols, perfect forward
secrecy is claimed. The adversary can only violate perfect forward secrecy by
compromising the long-term private keys of some entities.

3 Formally modelling the protocols and their properties

We analyse all 30 protocols specified in the standard, along with their described
variants, by using formal methods. In particular, we use the Scyther framework [13]
for the automatic symbolic analysis of security protocols. The Scyther tool [11]
has built-in support for compromising adversaries [2], and is therefore especially
suitable for analysing security notions that are common in the domain of protocols
for key agreement, exchange, and transport.
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3.1 Protocol specification

Within the Scyther framework, protocols are specified using so-called role scripts.
A protocol can have any finite number of roles, and is run by entities who execute
those roles. Entities may execute each role multiple times, and every role can
be executed by any entity. We call each such role instance a session. We assume
that, prior to protocol execution, every entity has generated or securely received
a long-term asymmetric key pair consisting of a public and a private key, it has
authentic and secret copies of all its long-term symmetric keys shared with other
entities, and authentic copies of the public keys of all other entities.

Roles are specified as sequences of send, receive and claim events. Events
have term parameters, where terms are constructed from role names, function
names, variables, and constants. Receive events correspond to pattern matching
on incoming messages, and may therefore contain nonces generated in previous
send steps and variables to store incoming payloads. Send events can contain
freshly generated nonces and variables that have been previously initialised in
receive steps. We specify intended security properties using claim events.

For example, we give in Figure 3 the input for the Scyther tool to describe
protocol 2-12 from Section 2.1. Send, receive and claim events are respectively
specified with send, recv, and claim. Freshly generated nonces are declared
with fresh, variables with var, user-defined types with usertype, hash functions
with hashfunction. Every function, constant and variable can have a different
type, such as Nonce or a user-defined type such as Integer, KeyingMaterial,
or String—the types are used to restrict the pattern matching in the execution
of a receive event. The keyword macro can be used to define shorthands.

3.2 Specifying security properties

We model the following properties from the standard: key authentication, key
confirmation, entity authentication, and forward secrecy. Additionally, we model
key compromise impersonation (KCI) and unknown key share (UKS) attacks.

Key authentication. According to the standard, both implicit and explicit
key authentication require that if an entity A uses a protocol to establish a
key K with entity B, then only A and B will learn the key. We model this
by analysing the secrecy of K whilst allowing the adversary to impersonate
any entity except for A and B. The possibility of impersonation is modelled by
allowing the adversary to learn the long-term private key of any entity except for
A and B. Additionally, explicit key authentication requires that entities in fact
compute the key. We cover this requirement in our modelling of key confirmation.

Key confirmation. This and the following property correspond to authen-
tication properties in Lowe’s hierarchy [22]. Key confirmation from A to B
corresponds to non-injective data agreement on the key, which we model with
two claims: a Running claim in the A role and a Commit claim in the B role.
If the Commit claim is executed, we require that the corresponding Running
claim is executed as well: it must have the entities in reverse order, and the same
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1 option "--partner-definition=2";
2

3 usertype KeyingMaterial;
4 usertype String;
5 usertype Integer;
6

7 hashfunction KDF;
8 const N1,N2,N3: Integer;
9

10 macro key = KDF(F);
11 macro sid = (A,B,key);
12

13 protocol 2-12-withOptional(A,B,P)
14 {
15 role A
16 {
17 fresh TNA,TNA2: Nonce;
18 fresh F: KeyingMaterial;
19 fresh Text1,Text4: String;
20 var Text2,Text5: String;
21 var T: Ticket;
22 var TNB: Nonce;
23

24 claim(A,SID,sid);
25 claim(A,Running,B,key);
26 send_1(A,P,{N1,TNA,B,F,Text1}k(A,P));
27 recv_2(P,A,{N2,TNA,B,Text2}k(A,P),T);
28 send_3(A,B,T,{TNA2,B,Text4}key);
29 recv_4(B,A,{TNB,A,Text5}key);
30

31 claim(A,SKR,key);
32 claim(A,Commit,B,key);
33 claim(A,Alive,B);
34 }

35 role B
36 {
37 var TNP,TNA2: Nonce;
38 var F: KeyingMaterial;
39 var Text3,Text4: String;
40 fresh TNB: Nonce;
41 fresh Text5: String;
42

43 recv_3(A,B,{N3,TNP,F,A,Text3}k(B,P),
44 {TNA2,B,Text4}key);
45 claim(B,SID,sid);
46 claim(B,Running,A,key);
47 send_4(B,A,{TNB,A,Text5}key);
48

49 claim(B,SKR,key);
50 claim(B,Commit,A,key);
51 claim(B,Alive,A);
52 }
53 role P
54 {
55 var TNA: Nonce;
56 var F: KeyingMaterial;
57 var Text1: String;
58 fresh Text2: String;
59 fresh TNP: Nonce;
60 fresh Text3: String;
61

62 claim(P,SID,P);
63 recv_1(A,P,{N1,TNA,B,F,Text1}k(A,P));
64 send_2(P,A,{N2,TNA,B,Text2}k(A,P),
65 {N3,TNP,F,A,Text3}k(B,P));
66 }
67 }

Fig. 3. Scyther input file for 2-12 with confirmation messages and claimed properties.

contents (the entities are said to agree on the contents). It is called non-injective
data agreement because replays are not considered.

Entity authentication. Entity authentication from A to B corresponds to
aliveness [22]: an Alive claim of A is placed in the specification of role B. Whenever
the claim is executed, the entity assumed to be performing the A role is required
to have executed some event.

Forward secrecy. There are several definitions of forward secrecy in the
literature, and it is not clear from the standard which property is intended. The
mutual forward secrecy (MFS) notion from the standard seems to be closest to
two common formal definitions. Weak Perfect Forward Secrecy (wPFS) [12,20]
requires that the adversary does not actively inject messages (and thus is passive)
with respect to the session that he attacks. In contrast, (strong) Perfect Forward
Secrecy (PFS) allows the adversary to actively interfere with the messages received
by the session under attack. Scyther directly supports checking for both properties
through its support of the LKRaftercorrect and LKRafter rules [2]. Our analysis
revealed that the majority of protocols for which MFS is claimed in fact only
achieve wPFS, and we therefore interpret MFS as wPFS.
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Key compromise impersonation (KCI). Resilience to KCI attacks is a
desirable property of key exchange protocols [6]. KCI attacks are attacks in which
the adversary exploits his knowledge of the long-term private key of Alice to
impersonate any entity in subsequent communication with Alice.

This property is modelled in Scyther by a session key secrecy claim of an
entity whose long-term private keys the adversary is allowed to reveal. These
attacks can be seen as a broader class than unilateral forward secrecy attacks
because KCI attacks allow for dynamic usage of the compromised keys: the
adversary can use them during protocol execution to inject messages or otherwise
tamper with the communication.

Unknown key share (UKS). Unknown key share attacks are attacks in
which only Alice and Bob know the session key K; however, Alice and Bob
disagree on who they share K with [7]. For example, Alice correctly thinks K
is shared with Bob, but Bob might think that K is shared with Charlie. Even
though the adversary does not learn the key in such attacks, using the key is not
sufficient to authenticate subsequent messages: if Alice sends a message encrypted
with K or accompanied by a MAC keyed by K, Bob will assume that the message
came from Charlie. Similarly, Bob will send messages intended for Charlie that
will be received by Alice.

We model UKS attacks in the standard way, i.e., if the assumptions on the
partner identities of the attacked session s do not match the assumptions of a
session s′, we allow the adversary to reveal the session key of s′. This causes
UKS attacks to manifest as violations of secrecy of the session key computed by
s. Note that false positives can also occur, where the revealed session key is used
for more than computing the session key of s′, e.g., for injecting messages.

We specify session identifiers (SIDs) manually in Scyther input files by in-
cluding option "--partner-definition=2" and annotating each role with SID

claims, in which the SID is specified for the role instance. For example, in Figure
3 we enable the manual specification of a partner session on line 1, define the
session identifier on line 11 and insert it into role specifications on lines 24 and 45.
When session key secrecy is analysed for a session s, and Scyther’s SKR adversary
rule (Session-Key Reveal) is enabled in the GUI or --SKR=1 is provided as a
command-line option, the adversary is able to obtain the session keys computed
by any session whose identifier differs from that of s.

4 Results of the formal analysis

We analyse the protocol models described in the previous section with respect to
their claimed properties, and afterwards consider KCI and UKS attacks.

4.1 Claimed properties

We give an overview of our results when analysing the protocols with respect to
their claimed properties in Table 1. The contents of this table are directly taken
from the tables in [18, 19], with the difference that we added notes and used red
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and bold to mark incorrect statements. We classify the incorrect claims in the
standard into five categories AT1. . .AT5, which we describe below.

Note that the table in [18] only has an (explicit) key authentication column
with “yes” or “no” in the cells, but this information has to be combined with
NOTE 2 [18], which states that all protocols in part 2 achieve implicit key
authentication, and that “yes” should be interpreted as explicit key confirmation.

AT1: entity authentication failures for 2-8, 2-9, 2-12, and 2-13. We
find several possible entity authentication failures for protocols in part 2 that are
derived from protocols in an earlier version of the ISO/IEC 9798-2 standard for
entity authentication [17].

These attacks are closely related to the attacks on the corresponding protocols
from the 9798 standard as presented in [4]. The attacks work in all implemen-
tations where a single entity can perform not only the role of the trusted third
party but also another role. In the attacks, the adversary can cause A to complete
the protocol, apparently with B, even though B is not present. Thus, the attacks
violate even the weakest form of entity authentication. We show an example of
such an attack on protocol 2-12 in Appendix A.

Fixes for these protocols have been proposed in [4], which have been integrated
into the ISO/IEC 9798 standard. As a result, these attacks no longer work on
ISO/IEC 9798, but since no changes have been made to the derived protocols in
ISO/IEC 11770, similar attacks are still possible on this standard.

AT2: 3-KA-11 key authentication/confirmation failure for B. According
to the standard this mechanism (depicted in Figure 2) offers mutual explicit key
authentication and mutual key confirmation. However, there is an attack on entity
authentication on the B role that violates both of these claimed properties. In
the attack, the adversary performs the A role, pretending to be Alice, and sends
messages to Bob in the B role. Because executing the A role does not require
the use of any long-term secrets, the adversary can simply claim to be anybody.
The entity performing the B role therefore cannot obtain any authentication
guarantees about its communication partner or about the secrecy of the key.

As said before, 3-KA-11 is derived from the unilaterally authenticated RSA
mode of the TLS handshake [14]. In this mode of TLS, the server obtains no
guarantee about whether the client is who he claims to be or not. The same issue
occurs here for the B role of 3-KA-11.

AT3: Failure of MFS for 3-KA-11. Because protocol 3-KA-11 is derived
from the RSA mode of TLS, it provides no forward secrecy. The adversary only
needs to observe a regular session. If he afterwards obtains the long-term private
key of B, he can decrypt eB(r′A) and learn r′A. Since rA and rB have been sent
in plaintext, the adversary now has all the ingredients he needs to recompute the
key K.

AT4: Failure of key authentication for 2-11. Depending on the imple-
mentation, it may be possible for an agent to misinterpret an agent identity
as (random) keying material, for example if both are the same bit length. If
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Table 1. Claimed properties Security properties claimed for the protocols in parts
2 and 3 of the standard. Our analysis revealed that some claims are incorrect, and we
mark them using bold and red.

Mechanism Key Key Entity
in part 2 Authentication Confirmation Authentication

2-1 implicit no no

2-2 implicit no no

2-3 explicit no A

2-4 explicit no A

2-5 explicit no A & B

2-6 explicit no A & B

2-7 implicit no no

2-8 explicit (AT1) opt. (AT1) opt. (AT1)

2-9 explicit (AT1) opt. (AT1) opt. (AT1)

2-10 explicit no no

2-11 explicit (AT4) no no

2-12 explicit (AT1) opt. (AT1) opt. (AT1)

2-13 explicit (AT1) opt. (AT1) opt. (AT1)

Mechanism Implicit Key Key Entity Forward
in part 3 Authentication Confirmation Authentication Secrecy

3-KA-1 A,B no no no

3-KA-2 B no no A

3-KA-3 A,B B A A

3-KA-4 no no no MFS

3-KA-5 A,B opt no A,B

3-KA-6 A,B opt B B

3-KA-7 A,B A,B A,B MFS

3-KA-8 A,B no no A

3-KA-9 A,B no no MFS

3-KA-10 A,B A,B A,B MFS

3-KA-11 A,B (AT2) A,B (AT2) B MFS (AT3)

3-KT-1 B no no A

3-KT-2 B B A A

3-KT-3 B B A A

3-KT-4 A A B B

3-KT-5 A,B (A),B A,B no

3-KT-6 A,B A,B (AT5) A,B no
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an implementation of 2-11 cannot tell the difference between these, it can be
vulnerable to a type-flaw attack on key authentication.

The 2-11 protocol assumes pre-shared symmetric keys and a trusted third
party P. In a regular execution of the protocol, A sends a request to P for a ticket
to forward to B. The request is a triplet (IB , F,Text1) encrypted with the key
shared between A and P. P then returns a triplet (F, IA,Text2) encrypted with
the key shared between B and P, which A forwards to B.

The adversary Charlie can attack a session of Bob which assumes to be
talking to Alice, even though Alice and Bob are not compromised. Charlie
encrypts a message for the trusted third party Pete, requesting a key for Alice.
However, instead of generating new keying material F , Charlie instead includes
Bob’s identity in the keying material field. Pete’s response therefore is the
triplet (IAlice, ICharlie,Text2) encrypted with KPete,Bob. Charlie re-sends this
message to Pete. There is nothing in the standard that prevents Pete from
accepting this message as a valid request. Now, Pete responds with the triplet
(ICharlie, IAlice,Text2) encrypted with KBob,Pete. Upon receiving this message,
Bob will assume that it is a valid message and that ICharlie is secure keying
material for communicating with Alice. The adversary can now compute the
session key that Bob computes.

MSCs of the protocol and the attack are provided in the appendix.

AT5: Failure of key confirmation for 3-KT-6. There is a complex attack
possible on some implementations of 3-KT-6 that meet three conditions. The
3-KT-6 protocol is a three-pass protocol that transfers two secret keys. After the
exchange, a session key can be computed from either or both of these keys. We
give the full attack description and the preconditions in the appendix.

4.2 Key Compromise Impersonation (KCI) results

All of the protocols in part 2 use symmetric cryptography and hashing only.
Hence, they are necessarily vulnerable to KCI attacks, which is implied by the
impossibility result from [3]. All the key transport and public key transport
protocols from part 3 are KCI resilient.

The automatic analysis shows that four of the eleven key agreement protocols
in part 3 are vulnerable to KCI attacks: 3-KA-1, 3-KA-3, 3-KA-6, and 3-KA-8.
Mechanisms 3-KA-1 and 3-KA-3 are variants of the unsigned Diffie-Hellman
protocol. Mechanism 3-KA-1 is the static Diffie-Hellman protocol, so as expected
the session key is not secret when one of the static keys is known to the adversary.
Similarly, 3-KA-3 is a one-pass Diffie-Hellman variant where A’s ephemeral and
B’s static half keys are used: if the adversary gets B’s static private key, he can
use A’s half key to infer the session key. In 3-KA-6, the fact that the input to
the key derivation function is only protected by the private key of B allows an
adversary who knows B’s key to impersonate A in subsequent communications
that are only protected with the established session key.

3-KA-8 is derived from one-pass MQV, and is described in Appendix C. The
adversary can construct a message with his own injected randomness, send it to
B, and use B’s key to infer the session key.
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role A
executed by Alice
assumes Bob in role B
SID=(A,B,K)

Adversary only modifies sender
and recipient fields (redirect)

role B
executed by Bob
assumes Charlie in role A
SID=(C,B,K)

rA,Text1 rA,Text1

rB ,CertBob,Text2rB ,CertBob,Text2

K = KDF (rA, rB , r
′
A)

eBob(r
′
A),MACK(rA,Text1, eBob(r

′
A)) eBob(r

′
A),MACK(rA,Text1, eBob(r

′
A))

K = KDF (rA, rB , r
′
A)

MACK(rB ,CertBob,Text2)MACK(rB ,CertBob,Text2)

session key K session key K

Fig. 4. Unknown key share attack on protocol 3-KA-11. Alice shares a key K with Bob
as she expects, but Bob mistakenly assumes he is sharing K with Charlie.

Note that all (unilateral) forward secrecy attacks can be considered to be KCI
attacks with late occurrences of long-term key compromise. The converse does
not hold: forward secrecy does not imply KCI resilience in general, because KCI
attacks may require knowledge of the long-term keys before the attacked session
ends. In this specific set of protocols, no KCI attacks require early knowledge
of the relevant long-term keys, because the long-term keys are only needed for
session key computation. Hence, the protocols in the standard that satisfy forward
secrecy are also KCI resilient.

Therefore, in order to obtain KCI resilience guarantees while preserving the
required properties, we turn to the Forward Secrecy column in Table 1. We
replace each protocol vulnerable to KCI attacks with one that achieves all the
already satisfied security guarantees, plus forward secrecy with respect to both
entities:

– 3-KA-1 can be replaced by 3-KA-5 (optionally, key confirmation can be
enabled),

– 3-KA-3 and 3-KA-6 can be replaced by 3-KA-7 (if entity authentication is
required) or 3-KA-5 (otherwise), and

– 3-KA-8 can be replaced by 3-KA-9.

4.3 Unknown Key Share (UKS) results

We used Scyther to analyse all protocols for which key authentication was claimed
for UKS attacks. We found that two protocols are vulnerable to UKS for any
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implementation, and that some implementations of several other protocols are
vulnerable to UKS attacks.

We first explain the unknown key share attack on the 3-KA-11 protocol
in detail. A graphical representation is given in Figure 4. In the attack, the
adversary does not modify the content of any messages, but only changes the
implicit sender/recipient fields. When Alice executes role A with intended partner
Bob, she sends out her first message. The adversary modifies the sender field
to “Charlie” and forwards the message to Bob. Bob assumes Charlie wants to
communicate with him and starts to execute the B role, and sends the response
message to Charlie. The adversary redirects this message to Alice. The protocol
continues as usual except that the adversary continues to modify the sender fields
and redirecting the responses. There is nothing in the messages that allows the
entities to check each other’s beliefs about the communication partner. In the
end, Alice and Bob compute the same key K. Although the adversary does not
know this key, Bob will believe that any subsequent messages he receives, which
are encrypted or authenticated using K, are coming from Charlie, where in fact
they come from Alice, leading to a serious authentication flaw [8, p. 139].

Although 3-KA-11 is derived from the TLS protocol, the TLS protocol is not
vulnerable to unknown key share attacks. The reason for this is that the TLS
protocol performs confirmation on all previously received messages, which in TLS
contain the identities of the sender and recipient. This confirmation will fail if
the parties have different views on their communication partners. In some sense,
3-KA-11 can be regarded as a stripped down version of the unilateral TLS-RSA
handshake where security-relevant information (the identities of the participants)
has been removed.

The second UKS attack is possible on the 2-10 protocol, which suffers from a
role-mixup attack in which Alice and Bob both perform the A role and compute
the same session key. This can lead to reflection attacks and misinterpretation
attacks when the session key is later used to encrypt payloads. In implementations
in which entities can perform multiple roles, protocols 2-2, 2-8, 2-9, 2-11, and
2-12 are also vulnerable to UKS attacks.

Fortunately, UKS attacks can be prevented by choosing a key derivation
function that includes the identifiers (IA and IB) of the involved entities [7, 8].
For example, this is required by the NIST SP-800-56A key derivation [1], which
is included in part 3 of the standard. We modelled the use of this KDF and used
automated analysis to confirm that this prevents the UKS attacks. Intuitively,
including the identities in the KDF ensures that entities that have different beliefs
about their intended peers compute different keys, which prevents UKS attacks.

5 Recommendations

We provide three recommendations to improve the ISO/IEC 11770 standard.

1. Improving protocols to achieve the stated properties. Our first rec-
ommendation is to make small changes to the protocols to achieve their properties,
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if possible. The most straightforward way is to adopt the recommendations made
for ISO/IEC 9798 in [4, p. 14]. In particular, we require that

– no cryptographic data must be interchangeable, which can be enforced by
including unique tags,

– when optional fields are not used, then they must be set to empty, and
– entities that perform the role of the TTP in the 2-8, 2-9, 2-12 and 2-13

protocols must not perform the A or B role.

Following these recommendations addresses all problems in Table 1 except for
the problems of protocol 3-KA-11.

2. Using appropriate key derivation functions. Our second recommen-
dation improves the security of the standard by preventing unknown key share
attacks. If the input to the key derivation function includes the identities of the
communicating parties, UKS is directly prevented. We therefore recommend mak-
ing this an explicit requirement. For example, the key derivation function from
NIST SP-800-56A [1], which is described in the standard, meets this requirement.

3. Addressing remaining issues with 3-KA-11. 3-KA-11 inherently does
not offer perfect forward secrecy or mutual authentication. Switching to a protocol
that does, such as mutually authenticated TLS-DHE RSA, substantially changes
the environmental assumptions, including the pre-distribution of keys.

A simpler solution is to adapt the statements made about the protocol. In
particular, it should not be claimed in the overview table [19, p. 42] that 3-KA-
11 achieves implicit key authentication for both entities, that it achieves key
confirmation for both entities, or that it achieves MFS. Similarly, the running
text [19, p. 26] should not claim that 3-KA-11 achieves mutual explicit key
authentication.

6 Related work

In 1998, Horng and Hsu presented an attack on an early version of the 3-KT-6
protocol [16]. Their attack violated key confirmation and showed that the protocol
did not offer any strong mutual authentication. In the same year, Mitchell and
Yeun proposed a fix [24] that was later introduced in the standard. It essentially
involves adding more identifiers to the messages, similar to Lowe’s fix of the
Needham-Schroeder protocol.

In 2004, Cheng and Comley presented two attacks on a previous version of
the 2-12 protocol [10]. Their first attack is a replay attack. The second attack is
a type flaw attack based on the possibility of interpreting an identity field as a
fresh key. Cheng and Comley presented a fixed version of the protocol. Initially,
protocol 2-12 was withdrawn from the standard, and it was later updated in 2008
with a new version that does not suffer from these attacks.

Mathuria and Sriram used Scyther to discover in 2008 [23] more complex
type-flaw attacks on protocol 2-13 and on Cheng’s and Comley’s proposed fixed
protocol. The attacks rely on the possibility that complex fields (concatenations,
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encryptions) can be interpreted as atomic fields (random values, keys, identities)
in some implementations.

In 2010, Chen and Mitchell [9] generalised some of the concepts occurring
in this class of type-flaw attacks and presented countermeasures, some of which
found their way into later versions of ISO standards.

7 Conclusions

In retrospect, though we found all attacks through automatic analysis, it is
clear that some attacks should have been found by manual inspection. This
holds especially for 3-KA-11, which is based on TLS’s unilaterally authenticated
RSA handshake: it is clear that this protocol cannot offer key authentication or
confirmation for both parties, since only one party is authenticated.

One way in which standardisation bodies could be more proactive is by being
aware of analysis of standards on which they build. For example, many protocols
in ISO/IEC 11770 are mentioned to be derived from authentication protocols
in ISO/IEC 9798. In 2012, the ISO/IEC 9798 standard was analysed, several
problems were identified [4], and it was subsequently updated to fix the identified
problems. However, it seems that no attempt was made to determine if the
derived protocols inherited these problems. Our analysis shows that this was
in fact the case, implying that the attacks on protocols from part 2 could have
been identified earlier. Our analysis shows that applying the recommendations
for ISO/IEC 9798 as described in [4] to ISO/IEC 11770 would have prevented all
issues in Table 1, except for those on 3-KA-11.

The standard currently does not claim resilience to UKS or KCI attacks.
One could consider identifying those protocols that achieve these properties or
improve the others. For example, all UKS attacks that we found can easily be
prevented, at negligible cost, by using key derivation functions that include the
identities of the participants. We therefore recommend including the identities in
the input to the KDF.

Compared to other security protocol standards, ISO standards have been
less analysed in the academic literature. A possible reason for this difference is
that people who are not members of the working groups can only access the
standards by purchasing the final versions. One possible way to promote the
external analysis of ISO standards is to publish early drafts of proposed changes
or new standards. Parties that are interested in applying the standards will still
need to purchase the final versions to ensure they comply. However, interested
parties can freely analyse the designs from the early drafts, which may help
identify and prevent problems before the standards are deployed.
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A Attack on protocol 2-12

The attack on entity authentication claimed for protocol 2-12 is depicted in
Figure 5. It depends on the fact that the entity running role A does not check
the contents of the message encrypted for entities running roles B and P . In fact,
normally such a check is impossible because all three roles are run by different
entities. Seeing the payload of that particular message would be the only way for
Pete to detect that something is wrong: he could see that the message contains
IAlice where IPete should be. Pete then gladly confirms the session key to Bob in
role B, who falsely thinks that Alice just confirmed it.

B AT5: 3-KT-6 attack

There are three preconditions for the attack, which will not be met by most
implementations. However, there is nothing in the standard that ensures that
they are not met.

The first precondition is that the implementation must not implement any
of the optional text fields except for Text1. Second, nonces must be acceptable
values for the Text1 field. Third, entities must be able to perform both the A and
the B role of the protocol, which occurs in many implementations.

If an implementation meets these conditions, the adversary can attack an
instance of the A role by exploiting three instances of the B role. We give a
graphical representation in Figure 7 in the appendix. The adversary redirects
each sent message into the first receive of a new instance of the B role, and
swapping the entity assumptions for the next B instance. This is possible since
entities can perform multiple roles, and enabled by the fact that the nonces in
messages sent by instances of the B role can be accepted into the Text1 field.
After three instances of the B role, the final message is then rerouted back to the
final receive of the A role. Consequently, there is no instance of B that agrees
with the A instance on both of the private keys. Thus, when the session key is
computed from both these keys, key confirmation fails for the A instance.

C Key Agreement Mechanism 8 (3-KA-8)

We next give an example from part 3 of the standard, referred to as Key Agreement
Mechanism 8. This one-pass mechanism is derived from the one-pass variant of
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role P
executed by Pete
assumes Alice in role A
assumes Bob in role B

role A
executed by Pete
assumes Bob in role B
assumes Alice in role P

eKPete,Alice
(1, TA/NA, IBob, F,Text1)

eKAlice,Pete
(2, TA/NA, IBob,Text2),

eKBob,Pete
(3, TP /NP , F, IAlice,Text3)

role B
executed by Bob
assumes Alice in role A
assumes Pete in role P

eKBob,Pete
(3, TP /NP , F, IAlice,Text3)

eK(T ′A/N
′
A, IBob,Text4)

alive(Alice)

eK(TB/NB , IAlice,Text5)

Fig. 5. Entity authentication attack on protocol 2-12 with optional fields

the MQV protocol [21]. It uses an elliptic curve agreed upon by entities A and B
to establish a shared secret key. As shown in Figure 10, A generates an ephemeral
secret and uses it to transmit to B a public value, modelled as a point on the
elliptic curve. B then computes a fresh session key with his static private key
and the public values of A (similarly, A uses her secrets and B’s public values).

Formally, let H be an elliptic curve over a finite field Fq and G ∈ H of
prime order n. The parameters H, q, G and n are known to both entities. It is
assumed that each entity X has a private key hX ∈ Z∗n, a public key PX = hXG,
and an authenticated copy of the other entity’s public key. For the function π

defined for every point P on H by π(P ) = (Px mod 2d
ρ
2e) + 2d

ρ
2e, where Px is

the x-coordinate of P and ρ = dlog2ne, the protocol is executed as follows: A
randomly generates rA in Z∗n, computes rAG and sends it to B. B computes the
shared key as K = (hB + π(PB)hB)(rAG+ π(rAG)PA).
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A B

eB(IA,KA, rA,Text1)

K = KDF (KA,KB)

eA(IB ,KB , rA, rB),

K = KDF (KA,KB)

rB

Fig. 6. Protocol 3-KT-6 combined key variant

role A
executed by Alice
assumes Bob in role B

role B
executed by Bob
assumes Alice in role A

role B
executed by Alice
assumes Bob in role A

eBob(IAlice,KA, rA,Text1)

Running(Bob,Alice,KDF (KA,KB))

eAlice(IBob,KB , rA, rB)

role B
executed by Bob
assumes Alice in role A Running(Alice,Bob,KDF (KB ,K

′
B))

eBob(IAlice,K
′
B , rA, r

′
B)

Running(Bob,Alice,KDF (K ′B ,K
′′
B))

eAlice(IBob,K
′′
B , rA, r

′′
B)

Commit(Alice,Bob,KDF (KA,K
′′
B))

r′′B

Fig. 7. 3-KT-6 combined key variant key confirmation attack

19



P A B

eKAP
(IB , F,Text1)

eKBP
(F, IA,Text2) eKBP

(F, IA,Text2)

Fig. 8. Protocol 2-11

role P
executed by Pete
assumes Charlie in role A
assumes Alice in role B

Adversary Charlie
knows KCharlie,Pete

eKCharlie,Pete
(IAlice, IBob,Text1)

role P
executed by Pete
assumes Alice in role A
assumes Bob in role B

role B
executed by Bob
assumes Alice in role A
assumes Pete in role P

eKAlice,Pete
(IBob, ICharlie,Text2) eKBob,Pete

(ICharlie, IAlice,Text ′2)

secret(KDF (ICharlie))

Fig. 9. Protocol 2-11 key authentication attack

A B

rAG

K = (hB + π(PB)hB)(rAG+ π(rAG)PA)

secret(K)

Fig. 10. Protocol 3-KA-8
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