
Feasibility of Multi-Protocol Attacks

Cas Cremers
Eindhoven University of Technology

Department of Mathematics and Computer Science
P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

ccremers@win.tue.nl

Abstract

Formal modeling and verification of security protocols typ-
ically assumes that a protocol is executed in isolation, with-
out other protocols sharing the network. We investigate the
existence of multi-protocol attacks on protocols described
in literature. Given two or more protocols, that share key
structures and are executed in the same environment, are
new attacks possible? Out of 30 protocols from literature,
we find that 23 are vulnerable to multi-protocol attacks.
We identify two likely attack patterns and sketch a tagging
scheme to prevent multi-protocol attacks.

1. Introduction

In recent years, a number of successful formal methods and
corresponding tools have been developed to analyse secu-
rity protocols, e.g. [2, 3, 21, 24]. These methods are gener-
ally limited to verification of protocols that run in isolation:
for a protocol that is used over an untrusted network, the
formal models generally assume that there is only one pro-
tocol that is using the network.

However, the assumption that a protocol is the only pro-
tocol run over the untrusted network is not realistic. Un-
fortunately, when multiple protocols are used over a shared
untrusted network, the problem of verifying security prop-
erties becomes significantly harder. The cause of this is the
fact that security properties are not compositional. When
two protocols, that are correct when run in isolation, are
used over the same network, new attacks might be intro-
duced.

An attack that necessarily involves more than one pro-
tocol, is called a multi-protocol attack. That such attacks
exist has been established by Kelsey, Schneier and Wagner
in [18]. They show that given a correct protocol, it is pos-
sible to construct a specially tailored protocol that is also
correct. When these two protocols are run over the same
network, the intruder can use messages from one protocol

to attack the other protocol. Some examples have been ex-
plained in [1, 27]. Because the protocols in these papers
are constructed especially for the purpose of breaking some
other protocol, they seem contrived, and it seems unlikely
that they would occur in practice.

At the other end of the spectrum, sufficient conditions
for compositionality have been established by e.g. Guttman
and Thayer in [15]. Alternative requirements can be found
in [5, 6, 14]. If all protocols that use the same network and
key infrastructure satisfy certain requirements, e.g. suffi-
ciently different message structures, compositionality of the
individual security properties is guaranteed. In that case, in
order to prove correctness of the system it suffices to prove
correctness of the protocols in isolation. However, the stan-
dard protocols found in literature do not meet these require-
ments, and thus the theoretical possibility of multi-protocol
attacks remains.

A third approach to the compositionality problem are
methods that aim to establish that a given set of protocols
does not interfere. A recent example of such an approach is
e.g. the invariant based approach in [12].

The question that is answered here is: Are multi-protocol
attacks a realistic threat which we should consider when
using protocols from literature? This question has not
been addressed before, because verification methods for
security protocols traditionally do not scale well. This
holds for manual methods (e.g. proofs by hand) as well as
(semi-)automatic methods. It is feasible to verify small to
medium-sized protocols in isolation, but large and/or com-
posed protocols have been outside the scope of most formal
methods. This lack of scalability has also led to a limited ex-
pressiveness of security protocol semantics of formal mod-
els: most models only allow for modeling a single protocol
and its requirements.

Modifying semantics and tools for such analysis was al-
ready pointed out as an open research question in [9], and
has been addressed partially in e.g. [23, 26]. A seman-
tics which can handle multi-protocol analysis in an intuitive
way, is the operational semantics for security protocols by

Cremers and Mauw in [10]. Based on these semantics, the
Scyther tool [8] has been developed. Using this tool, we
have been able to verify two- and three-protocol composi-
tion of 30 protocols from literature. The tests have revealed
a significant number of multi-protocol attacks. Because this
particular problem has not been addressed before, all at-
tacks we find are previously unreported.

We proceed as follows. In Section 2 we will define
Multi-Protocol attacks and we describe the conducted ex-
periments. The results of the experiments are analysed in
Section 3, and two feasible attack patterns are analysed in
Section 4. We discuss preventive measures in Section 5 and
draw conclusions in Section 6.

Acknowledgements The author would like to thank
Sjouke Mauw for suggesting the research problem in the
first place, and Gijs Hollestelle for his work on classifying
the attacks.

2. Multi-Protocol Attacks

In order to define what a multi-protocol attack is, we as-
sume that there exists some model to describe a security
protocol and its properties. In particular, we assume that
there exists a predicate attack(ps, c) for all sets of protocols
ps and all security properties c, that is true if and only if
there is an attack possible on the security property c, in an
environment where only the protocols in the set ps are be-
ing executed. As stated in the introduction, there are many
formalisms and tools that can help in establishing the value
of attack(ps, c) for all singleton sets ps. For sets with more
than one element, we define Multi-Protocol attacks.

Definition 1 A Multi-Protocol Attack is a tuple (ps, c),
where ps is a set of protocols, and c is a security property,
iff the following property holds:

|ps| > 1 ∧ attack(ps, c) ∧ ∀ps′ ⊂ ps : ¬attack(ps′, c)

In other words: the set ps contains more than one proto-
col, there exists an attack on the security property c in an
environment with the protocols in ps, and furthermore all
protocols in ps are required for the attack.

Note that this definition does not put any constraints on
the intruder behaviour. Therefore, it is more general than
the definition given in [13], where only replaying a message
from one protocol into another is allowed.

The question we set out to address was:
Given a set of security protocols, investigate whether

multi-protocol attacks occur. If they occur, assess their fea-
sibility and try to extract any typical attack patterns.

The set of protocols included in our test is shown in Ta-
ble 1. The protocols were selected from literature: the Clark
and Jacob library in [7], the related SPORE library at [25],

and the work on protocols for authentication and key estab-
lishment in [4] by Boyd and Mathuria. This resulted in a set
of 30 protocols. For these experiments, we have only con-
sidered three security properties: secrecy and two forms of
authentication: non-injective agreement and non-injective
synchronisation. Formal definitions of these properties can
be found in [10, 11].

The computational costs of verifying properties in multi-
protocol environments are exponential w.r.t. the number of
protocols. It is therefore currently impossible to verify an
environment with all these protocols in parallel. Instead, we
have chosen to test all possible combinations of two or three
protocols from this set. Using this method, it was possible
to find multi-protocol attacks that involve two or three pro-
tocols. (Because of complexity, verifying the existence of
multi-protocol attacks with four or more protocols is future
work.) When such a test yielded an attack, it was verified
automatically whether the attack actually required multiple
protocols, or could be mounted against a single protocol.

The verification results also depend on a matching pa-
rameter, that is used to make assumptions about the seman-
tics of the read events in the system, and expresses which
classes of so-called type-flaw attacks are possible. We ex-
plain this in more detail in the next section. All tests were
conducted three times, one time for each possible value of
the matching parameter. In total, over 14000 tests were per-
formed to obtain these results.

The experiments have been conducted using the Scyther
tool [8]. This tool uses a hybrid theorem-proving/model-
checking algorithm, which is an improved version of the
algorithm by Song for the Athena tool in [24]. Given a de-
scription of a (set of) protocols, it tries to construct a coun-
terexample for each security claim. Verification of small
protocols usually takes less than a second, either resulting
in an attack description or a proof of correctness in most
cases. In the remaining cases, the user can choose to bound
the search space to e.g. a finite number of role instances.
Contrary to Athena, Scyther can verify authentication prop-
erties such as synchronisation from [11], and can handle
non-atomic keys and multiple key structures.

3. Results

The tests reveal that there is a large number of multi-
protocol attacks possible on the selected set of protocols.
Out of the 30 protocols from literature, 23 had security
claims that are correct in isolation, but had attacks when
put in parallel with one or two other protocols from the set.
We classify the results into three groups, based on type-flaw
categories. A type-flaw attack makes use of the fact that in
many cases, agents cannot verify the values that they re-
ceive. As an example, suppose an agent is expecting to re-
ceive a random value, which is often called a nonce. It has

Table 1. Protocol list
Protocols with Multi-Protocol Attacks
Bilateral Key Exchange NS symm.
Boyd key agreement NS symm. amended
Denning-Sacco shared key SOPH
Gong (nonce) Splice-AS Hwang and Chena

Gong (nonce) v2 Wide Mouthed Frog (Brutus)
ISO ccitt 509 (BAN) Woo and Lam pi f
Kao-Chow Woo-Lam mutual auth.
Kao-Chow v2 Yahalom
Kao-Chow v3 Yahalom (BAN)
KSL Yahalom-Lowe
Needham-Schroeder Yahalom-Paulson
Needham-Schroeder-Lowe

Protocols for which we found no Multi-Protocol Attacks
Andrew Secure RPC (BAN) Otway-Rees
Andrew Secure RPC (Lowe) Splice-AS
ISO IEC 11770 2-13 Splice-AS Hwang and Chenb

TMN

aModified version 1
bModified version 2 (Clark and Jacob)

never encountered this value before, and therefore it cannot
be compared to previous knowledge. In the formal model-
ing of such a read event, we discern three possibilities for
the sets of terms that the agent accepts.

The agent possibly accepts: (1) only terms of the correct
type, e.g. the set of nonces, and thus no type-flaws can oc-
cur, or (2) all basic terms, but not tuples or encrypted terms,
allowing for what we call basic type-flaws, or (3) any term,
in which case all type-flaw attacks can occur. We discuss
each of these categories separately.

No type-flaws

We start off with the most restricted model, in which it is
assumed that the agents can somehow check the type of the
data they receive, and thus only accept terms of the correct
type. For the protocols from literature we found 17 two-
protocol attacks, and no three-protocol attacks. We found
attacks violating authentication as well as secrecy require-
ments. The main cause of these attacks is the way in which
challenge-response mechanisms for authentication are con-
structed. An agent proves his identity to another agent or
server by applying a key that only he knows. This can be
done in roughly two ways: either by decrypting a challenge,
or encrypting a challenge. These two methods can interfere
with each other. As a result, these attacks commonly break
secrecy of the random values. Random values revealed in
this way can be used to break authentication.

An interesting fact is that the vast majority of these
attacks involve variants of the Woo-Lam Pi protocol

Table 2. Influence of read semantics
No type-flaws possible 17 attacks
Basic type-flaws possible 40 attacks
All type-flaws possible 106 attacks

from [28]. The reason for this is that these protocols con-
tain a pattern which can be used as a so-called encryption
oracle. An encryption oracle is a protocol mechanism that
allows an intruder to encrypt arbitrary values with some key,
in this case the symmetric key shared by an agent and the
server. This enables many attacks on other protocols that
involve this shared key.

The remainder of the attacks involves something that is
similar to what we call ambiguous authentication, which
will be explained in detail in Section 4.

Basic type-flaws

If a random value that is read can contain any basic term,
the number of possible attacks for the intruder increases dra-
matically. Attacks in this category are called basic type-flaw
attacks. Specifically, many attacks can now use the fact that
keys and random values can mistakenly be accepted in each
others’ place, which enables attacks revealing the session
keys. This can also cause new authentication attacks. In our
tests, we found 40 attacks using basic type-flaw mistakes.

All type-flaws

As expected, the situation gets worse when any kind of
type-flaw attacks is possible. Typically, random values can
now be mistaken for any tuple term or encrypted term. This
enables attacks where large parts of messages are read as
random values, and revealed at some other point. In fact, we
found 106 multi-protocol attacks based on all type-flaws.

We also found examples of three-protocol attacks. For
example, the Yahalom-Lowe claim of the secrecy of the re-
ceived session key, is correct in isolation, is correct in com-
bination with any other protocol from the test, but can be
broken in the presence of the Denning-Sacco shared key
and Yahalom-BAN protocols if all type-flaws are possible.

To conclude, we have summarized the influence of the
read semantics (and thus the susceptibility to type-flaw at-
tacks) in Table 2.

Attack example

As an example of a basic type-flaw two protocol attack, we
show an attack on the Woo-Lam mutual authentication pro-
tocol from [28] and the Yahalom-Lowe protocol from [22].
Before we explain the example attack in detail, we first give
a brief introduction to the way we model security protocols.

We define a security protocol by means of a Message Se-
quence Chart, as in Figure 1. This protocol is known as the
Yahalom-Lowe protocol. There exists a claimed proof of
correctness for the isolated version of Yahalom-Lowe.

The protocol in this example uses symmetric encryption.
We use the notation {m}k to denote the encryption of a
message m with a key k. For a symmetric key k, we have
that m = {{m}k}k. We assume perfect encryption: a mes-
sage can only be decrypted by someone who has the key.

The protocol has three roles. There is a server role S,
which shares symmetric keys of the form K(I, S) with all
the agents in the system. Such assumed initial knowledge
is mentioned above the protocol role. The objective of this
protocol is to have the server generate and distribute a secret
session key for two agents. The two agents execute the roles
I (initiator) and R (responder).

K(I,S)

I

K(R,S)

R

K(I,S),K(R,S)

S

nonce ni

I,ni

nonce nr

{I,ni,nr}K(R,S)

key k
{R,k,ni,nr}K(I,S)

{I,k}K(R,S){I,R,S,nr}k

secret k secret k

protocol Lowe’s modified version of Yahalom

Figure 1. Yahalom-Lowe

Communication of a message is represented by an ar-
row. Because agents only execute instances of single roles,
and communication is asynchronous, this is interpreted as
two separate events: the arrow represents the event of send-
ing of the message into the network by the sender, and also
the event of reading a message from the network by the re-
ceiver. The receiver verifies messages to see whether they
match with the information he already has. We use the
hexagons to denote security claim events: when an agent
executes a protocol role up to such an event, the claim must
hold. Thus, in this example, when an agent completes the I

role, the key k must be secret and remain so.
We also model an intruder, which has full control over

the network. Any message that is sent can be intercepted
by the intruder, and the intruder can construct messages and
inject them into the network. The intruder has some initial
knowledge, which can include the knowledge of compro-
mised agents. When the intruder intercepts a message, he
extends his knowledge with the message and anything he
can derive from it by e.g. decryption. The full details of the

operational semantics that we use are described in [10].

We now return to the attack example. The attack in-
volves the Yahalom-Lowe protocol, and also the Woo-Lam
mutual authentication protocol, which is shown on the left
in Figure 2. Both protocols use symmetric encryption and
a trusted server to generate a fresh session key. They oper-
ate in a similar way: the initiator I and responder R both
create a nonce (a fresh random value), which they send to
the server. The server creates a new session key k, and dis-
tributes the key, combined with the nonces, back to I and
R. They check the nonces, to confirm that the key is indeed
fresh.

On the right hand side in Figure 2 we show a multi-
protocol attack on these protocols, exploiting a basic type
flaw. This attack is possible if the agent cannot distinguish
between a session key and a nonce, assuming that he has
not encountered either before.

The attack proceeds as follows. An agent a starts the
Woo-Lam protocol in the I role, wants to communicate with
another instance of a, and sends a fresh nonce n1. The in-
truder intercepts the nonce. The agent starts a Yahalom-
Lowe session in parallel, in the I role. a creates and sends
a second nonce n2. This is also intercepted by the intruder.

The intruder now sends the nonce n2 to a in the Woo-
Lam protocol, as if it was sent by a Woo-Lam responder
role. The agent responds with a server request with the
names of both agents and the nonces {a, a, n1, n2}K(a,s).
This message is intercepted, concatenated with itself, and
sent to the Woo-Lam server s. The server generates a
fresh session key and sends back two (identical) messages
{a, n1, n2, k}K(a,s). One of these is redirected to the
Yahalom-Lowe I role. This role is expecting a message
of the form {a, Key, n2, Nonce}K(a,s), where Key is a new
key and Nonce is a nonce, which he has not encountered
before. Thus, he cannot tell the difference. Because of
type confusion, he accepts the message, under the assump-
tion that n1 is the fresh session key, and that k is the re-
sponder nonce. Thus, he encrypts the key using the nonce,
sends {a, a, n2, k}n1 and claims that n1 is secret. Because
the intruder knows n1, this is clearly not the case. This is
an attack on the Yahalom-Lowe I role. However, we can
continue the attack. The intruder intercepts this last mes-
sage. Because he knows n1, he can decrypt the message,
and learns the key k. This enables him to create the last
message that is expected by the Woo-Lam I role. This role
then claims claim secrecy of k, which is also known to the
intruder.

This basic type-flaw attack enables an intruder to break
two protocols at the same time. Furthermore, it is an at-
tack against Yahalom-Lowe, for which no attack had been
known previously.

K(I,S)

I

K(R,S)

R

K(I,S),K(R,S)

S

nonce ni
I,ni

nonce nr
R,nr

{I,R,ni,nr}K(I,S) {I,R,ni,nr}K(I,S),{I,R,ni,nr}K(R,S)

key k

{R,ni,nr,k}K(I,S),{I,ni,nr,k}K(R,S){R,ni,nr,k}K(I,S),{ni,nr}k

{nr}k

secret k secret k

protocol Woo and Lam Mutual Authentication

K(a,s)

Woo-Lam

a : role I
Intruder

K(a,s)

Yahalom-Lowe

a: role I

nonce n1
nonce n2a,n1

a,n2

learns n1,n2
a,n2

{a,a,n1,n2}K(a,s)

K(a,s)

Woo-Lam

s: role S

{a,a,n1,n2}K(a,s), {a,a,n1,n2}K(a,s)

key k

{a,n1,n2,k}K(a,s), {a,n1,n2,k}K(a,s)

type confusion
{a,n1,n2,k}K(a,s)

{a,a,s,k}n1

learns k
{a,n1,n2,k}K(a,s), {n1,n2}k

secret k secret n1

trace Attack on Woo-Lam and Yahalom-Lowe

Figure 2. Attack on two protocols

4. Attack patterns

The experiments have revealed that although many multi-
protocol attacks can occur, their scope is limited if type-flaw
attacks are prevented. But even if such attacks are excluded,
two main scenarios remain in which multi-protocol attacks
are likely to occur. We discuss the scenarios in this section,
and we discuss preventive measures in the next section.

Protocol updates

The experiments have shown that multi-protocol attacks
are likely on protocols that use similar messages. We de-
scribe here a feasible scenario where such similarities arise
in practice.

It often occurs that security protocols are broken in some
way, and that this is discovered after the protocol is de-
ployed. The problem can be fixed by issuing a security up-
date. This is effectively a second protocol, that shares the
same key structure, which is very similar to the first one.
Such a situation makes multi-protocol attacks very likely.

As an example, we show in Figure 4 a broken authenti-
cation protocol. It is susceptible to a man-in-the-middle at-
tack, similar to the one described in [20], which we will not
show here. For our purposes, we only assume this protocol
has been distributed to and is being used by clients, and that
we need to update it with a security fix. The easiest way to
fix the protocol is to replace the name in the first message,
resulting in the protocol in Figure 4. This protocol is also
known as the Needham-Schroeder-Lowe protocol (typically
abbreviated to NSL), and can be proven to be correct when
run in isolation.

If the broken protocol is updated in such a way that the
old version of the protocol can still be running as well on
some clients, then there is a multi-protocol attack possible
on the new protocol, as shown in Figure 3. In this attack,
the intruder uses two instances of the old protocol (denoted
by “Broken I” and “Broken R”) to learn the value of a nonce
na. Then, an instance of the responder role of the new pro-
tocol (“NSL R”) is completed using the initiator role of the
old protocol. Thus, an agent completing the responder role
of new protocol claims that the nonces na and nb are se-
cret. Because the nonce na was already leaked by the old
protocol version, this claim is false.

The cause of the problems is that the messages of the up-
dated protocol often closely resemble the messages of the
original protocol. Because of this, many possibilities are
available for an intruder to insert messages from one proto-
col at unforeseen places in the other protocol, which opens
the door for multi-protocol attacks.

Ambiguous authentication

Authentication protocols are often used to set up session
keys for other protocols. The resulting protocol then con-
sists of the sequential composition of the authentication
protocol and the protocol that uses the session key. Often
the same protocols is used for authentication, which is then
composed with different follow-up protocols. In such cases
ambiguous authentication can occur: although the authenti-
cation protocol is correct in isolation, there can be a multi-
protocol attack involving different follow-up protocols.

We give an example of this phenomenon. Consider the
protocol pattern “Service 1”, as shown in Figure 4. In the

I R

nonce nI

{R,nI}PK(R)

nonce nR

{nI,nR,R}PK(I)

{nR}PK(R)

secret nI,nR secret nI,nR

protocol Exchanging secrets

I R

nonce nI

{I,nI}PK(R)

nonce nR

{nI,nR,R}PK(I)

{nR}PK(R)

secret nI,nR secret nI,nR

protocol Needham-Schroeder-Lowe

Broken I
a (R: b)

SK(e)

Intruder
e

Broken R
b (I:e)

nonce na

{b,na}PK(b)

{b,na}PK(b)

nonce nb′

{na,nb′,b}PK(e)

learns na

NSL R
b (I: a)

{a,na}PK(b)

nonce nb

{na,nb,b}PK(a)

{nb}PK(b)

secret na,nb

protocol Protocol Update Attack

Figure 3. NSL attack using the broken variant

left of this figure, there is a large rectangle denoted as pro-
tocol P . For this rectangle, we can substitute any protocol
that authenticates the partners and generates a fresh shared
secret. (For example we could insert here the Needham-
Schroeder-Lowe protocol from Figure 4, and take either of
the nonces as the fresh secret x.) This protocol P is then
extended by a single message, that sends the secret Y , en-
crypted with the fresh secret value from the protocol P ,
from the initiator I to the responder R. Given that the pro-
tocol P is correct, we can prove that the complete protocol
for Service 1 is correct.

Now we re-use the protocol P to implement a protocol
for Service 2, as in the centre of the figure. Here we again
use the same base protocol, but we extend it by sending
a session identifier and some message m. For the session
identifier, we use the fresh random value x from the base
protocol. (If we substitute Needham-Schroeder-Lowe for
P , the protocol for Service 2 is secure in isolation.)

If we run Service 1 in parallel with Service 2, the com-
bined protocols are broken. The attack is shown in on the
right in Figure 4. In this attack, the intruder simply re-routes
the initial messages from Service 1 to Service 2. After this
initial phase a is halfway into Service 1, and b is halfway
into Service 2. Therefore b will now use the random value
x as a session identifier, effectively revealing it to the in-
truder. Then, when a uses this value x as a session key for
the secret Y , the intruder can decrypt it. Thus the security
claim of Service 1 is violated.

5. Preventing Multi-Protocol Attacks

The experiments have also revealed what is required to
effectively prevent multi-protocol attacks. We discuss
two methods: context-aware tagging, which completely
prevents multi-protocol attacks, and type-flaw prevention,
which partially prevents such attacks. We furthermore dis-
cuss verification of multi-protocol attacks.

CATS: context-aware tagging scheme

As has been shown in [15], if two protocols are sufficiently
different, their composition will not introduce new attacks.
Ensuring that two protocols are different can be easily en-
forced by introducing e.g. a unique tagging scheme. As an
abstract mechanism, this is sufficient to prevent all multi-
protocol attacks. In realistic settings however, it can be un-
clear how to enforce uniqueness for the tags.

In particular, there are two elements that are easily over-
looked in a tagging scheme, which can be derived directly
from the attack patterns in the previous section. The first
element is the protocol version: if a protocol is updated,
the new version of the protocol often runs in parallel with
the old version. Because their messages are very similar,
there is a high probability that multi-protocol attacks exist.
A second element is the context, uniquely identifying the
follow-up protocol as already described in Section 4. Base
protocols such as the ISO standard protocols are often used
in multiple contexts: they often occur prefixed before sev-
eral different follow-up protocols. This can easily lead to
multi-protocol attacks. A good tagging scheme should in-

I R

Authentication protocol P

I and R agree over the fresh

shared secret x

{Y}x

secret Y secret Y

protocol Service 1

I R

Authentication protocol P

I and R agree over the fresh

shared secret x

x,m

shared session ID x

protocol Service 2

Service 1 I
a(R: b) Intruder

Service 2 R
b(I: a)

Protocol P
Role I

Protocol P
Role R

x,m

learns x
{Y}x

learns Y

secret Y

protocol Ambiguous authentication attack

Figure 4. Attack on combined services

corporate these two elements. We propose a Context-Aware
Tagging Scheme (CATS), that explicitly incorporates these
two elements, as well as the protocol identifier.

Definition 2 A CATS tag string is defined as

tag = [identifier, version, context]

where identifier uniquely identifies a protocol (e.g. ”Need-
ham Schroeder public key with Server”), version signifies
the version of the protocol as used here, and context denotes
the context in which the protocol is used (e.g. ”Authentica-
tion for service 1”), thereby uniquely identifying the follow-
up protocol. We require that the three fields of the tag are
either of fixed length, or that they are clearly terminated by
some end-of-field data item.

We transform a security protocol into a CATS tagged
protocol by means of the following procedure. Given a pro-
tocol, we transform it by modifying all term encryptions. At
each point in the protocol where a term m is encrypted by a
key k, we substitute it by an encryption of the tuple (tag, m)
by the key k. This will ensure the requirements are met
for disjoint encryption as described in [15], and ensures no
multi-protocol attacks can occur. However, we must warn
that in a multi-protocol environment, any single protocol
can break the security of all others. Thus, it must be ensured
the CATS tagging scheme is enforced everywhere where the
same key infrastructure is used.

Although this scheme prevents all multi-protocol at-
tacks, it can be costly in terms of increased message size.
We therefore also discuss a second option, which prevents
type-flaw attacks.

Strict type detection

As noted in [16], it is possible to prevent type-flaw attacks
by adding type information to the messages occurring in a
protocol. This significantly reduces the number of possi-
ble attacks on a single security protocol, and is therefore
advisable even when not considering a multi-protocol envi-
ronment.

The experiments detailed here have shown that making
sure no type-flaw attacks can occur prevents many multi-
protocol attacks. In fact, 84 percent of the attacks in the
test set can not occur in a setting without type-flaw errors.
Ensuring all messages are typed is therefore also a good
preventive measure for multi-protocol attacks. For details of
preventing type-flaw attacks we refer the reader to [16, 19].

Verification

In some cases it is undesirable to modify a set of protocols,
unless it can be proven that a vulnerability exists. In such
cases verification of (multi-protocol) attacks is a feasible
option. We have shown here that using suitable tools such
as Scyther [8] it is possible to perform automated analysis
of concurrent protocols.

6. Conclusion

By conducting these experiments, we have found 163 multi-
protocol attacks. This shows that multi-protocol attacks on
protocols from literature exist in large numbers, and are fea-
sible. All attacks found here are previously unreported.
We have discovered many more attacks than we had ex-
pected: the possibility of multi-protocol attacks is there-
fore a much larger threat than we assumed. The problem
of multi-protocol attacks is not limited to a small subset of

the protocols. Out of the 30 protocols, we found that 23
of them had security claims that are correct in isolation but
for which multi-protocol attacks existed. Furthermore, we
found multi-protocol attacks on combinations of protocols
for which no attacks were known previously.

Some of the security claims of the protocols are cor-
rect in isolation, and are even correct when put in paral-
lel with any other protocol from the set, but are broken by
a 3-protocol attack. This proves that it is not sufficient to
check for 2-protocol attacks only. Many of the attacks that
are intricate and we would not have been able to find them
without tool support. Using formal models and tools has
proven invaluable to assess the feasibility of these attacks,
and has allowed us to conduct such large scale tests.

The tests have yielded a large amount of data on possi-
ble attacks, and we consider mining all possible information
from this data to be future work. This involves e.g. auto-
mated classification of attacks, as initiated in [17]. From
the data we identified two likely attack patterns: protocol
updates and ambiguous authentication.

We have sketched a context aware tagging scheme
(CATS), that can be used to prevent multi-protocol attacks if
it is consistently applied to all protocols that share the same
key infrastructure. The proposed tagging scheme addresses
issues raised by the identified attack patterns.

For multi-protocol environments, it is absolutely neces-
sary to address the interaction between the protocols. This
can only be done by looking at all the protocols in the en-
vironment: a single protocol can cause all others to break.
Taking protocols from literature, that have been proven to
be correct in isolation, gives no guarantees at all for multi-
protocol environments.

References

[1] J. Alves-Foss. Multiprotocol attacks and the public key in-
frastructure. In Proc. 21st National Information Systems Se-
curity Conference, pages 566–576, Arlington, Oct 1998.

[2] A. Armando, D. Basin, Y. B. Y. Chevalier, L. Compagna,
L. Cuellar, P. Drielsma, P. Heám, O. Kouchnarenko, J. Man-
tovani, S. Mödersheim, D. von Oheimb, M. Rusinowitch,
J. Santiago, M. Turuani, L. Viganò, and L. Vigneron. The
AVISPA tool. In Proc. of CAV’2005, LNCS 3576. 2005.

[3] B. Blanchet. An Efficient Cryptographic Protocol Verifier
Based on Prolog Rules. In 14th IEEE Computer Security
Foundations Workshop (CSFW-14), pages 82–96, Cape Bre-
ton, June 2001. IEEE Computer Society.

[4] C. Boyd and A. Mathuria. Protocols for Authentication and
Key Establishment. Information Security and Cryptography.
Springer, 2003. ISBN: 3-540-43107-1.

[5] R. Canetti. Universally composable security: A new
paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067.

[6] R. Canetti, C. Meadows, and P. Syverson. Environmental
requirements for authentication protocols, 2002.

[7] J. Clark and J. Jacob. A survey of authentication protocol
literature. Technical report.

[8] C. Cremers. Scyther documentation.
[9] C. Cremers. Compositionality of security protocols: A re-

search agenda, 2004.
[10] C. Cremers and S. Mauw. Operational semantics of secu-

rity protocols. In S. Leue and T. Systä, editors, Scenarios:
Models, Transformations and Tools Workshop 2003, Revised
Selected Papers, volume 3466 of LNCS. Springer, 2005.

[11] C. Cremers, S. Mauw, and E. de Vink. Defining authenti-
cation in a trace model. In T. Dimitrakos and F. Martinelli,
editors, FAST 2003, pages 131–145, Pisa, September 2003.
IITT-CNR technical report.

[12] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Se-
cure protocol composition. In Proc. of Mathematical Foun-
dations of Programming Semantics, volume 83 of ENTCS,
2003.

[13] X. Didelot. Cosp-j: A compiler for security protocols, 2003.
[14] L. Gong and P. Syverson. Fail-stop protocols: An approach

to designing secure protocols. In Proc. of the 5th Interna-
tional Working Conference on Dependable Computing for
Critical Applications (DCCA-5), pages 44–55, 1995.

[15] J. Guttman and F. Thayer. Protocol independence through
disjoint encryption. In PCSFW: Proc. of the 13th Computer
Security Foundations Workshop. IEEE, 2000.

[16] J. Heather, G. Lowe, and S. Schneider. How to prevent type
flaw attacks on security protocols. Journal of Computer Se-
curity, 11(2):217–244, 2003.

[17] G. Hollestelle. Systematic analysis of attacks on security
protocols, Nov 2005. Master’s Thesis.

[18] J. Kelsey, B. Schneier, and D. Wagner. Protocol interactions
and the chosen protocol attack. In Security Protocols Work-
shop, pages 91–104, 1997.

[19] Y. Li, W. Yang, and C.-W. Huang. On preventing type
flaw attacks on security protocols with a simplified tagging
scheme. J. Inf. Sci. Eng., 21(1):59–84, 2005.

[20] G. Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. In Proceedings of TACAS,
volume 1055, pages 147–166. Springer Verlag, 1996.

[21] G. Lowe. Casper: A compiler for the analysis of security
protocols. In Proc. CSFW ’97, Rockport. IEEE, 1997.

[22] G. Lowe. Towards a completeness result for model checking
of security protocols. In PCSFW: Proc. of the 11th Com-
puter Security Foundations Workshop. IEEE, 1998.

[23] M. Maffei. Tags for multi-protocol authentication. In Proc.
SECCO 2004, Electronic Notes in Theoretical Computer
Science, August 2004. To appear.

[24] D. Song, S. Berezin, and A. Perrig. Athena: A novel
approach to efficient automatic security protocol analysis.
Journal of Computer Security, 9(1/2):47–74, 2001.

[25] Security protocols open repository (SPORE).
[26] F. Thayer, J. Herzog, and J. Guttman. Mixed strand spaces.

In Proc. of the 1999 Computer Security Foundations Work-
shop, page 72. IEEE, 1999.

[27] W. Tzeng and C. Hu. Inter-protocol interleaving attacks on
some authentication and key distribution protocols. Inf. Pro-
cess. Lett., 69(6):297–302, 1999.

[28] T. Woo and S. Lam. A lesson on authentication protocol
design. SIGOPS Oper. Syst. Rev., 28(3):24–37, 1994.

