
On the Protocol Composition Logic PCL

Cas Cremers
∗

ETH Zurich
Switzerland

cremersc@inf.ethz.ch

ABSTRACT
A recent development in formal security protocol analysis is
the Protocol Composition Logic (PCL). We identify a num-
ber of problems with this logic as well as with extensions
of the logic, as defined in [9, 13, 14, 17, 20, 21]. The identi-
fied problems imply strong restrictions on the scope of PCL,
and imply that some claimed PCL proofs cannot be proven
within the logic, or make use of unsound axioms. This in-
cludes the proofs of the CR protocol from [13, 14] and the
SSL/TLS and IEEE 802.11i protocols from [20, 21]. Where
possible, we propose solutions for these problems.

Categories and Subject Descriptors
C.2.2 [Computer-communication Networks]: Network
Protocols—Protocol verification; F.3 [Logics and mean-
ings of programs]: Specifying and Verifying and Reason-
ing about Programs

General Terms
Security, Theory

Keywords
Security protocol analysis, logic, composition

1. INTRODUCTION
Formally establishing properties of security protocols has

been investigated extensively during the last twenty years,
but a definite model and a corresponding method for security
protocol analysis has remained elusive thus far.

The most successful approaches to security protocol anal-
ysis have been focused on tools for finding attacks, which
are often based on bounded model checking or constraint
solving, e.g. [1,22]. When such tools find an attack, one can

∗This work was supported by the Hasler Foundation, under
ManCom project 2071.

To appear in the Third ACM Symposium on Information, Computer and
Communications Security (ASIACCS’08), March 2008, Tokyo.

easily verify manually whether or not the attack actually ex-
ists on the protocol. Some tools even allow for unbounded
verification of protocols, e.g. [4,7]. If no attack is found with
such tools, correctness of the protocol follows. However, this
provides little insight into why a protocol is correct.

An alternative approach is to develop a logic for reasoning
about security protocols. When a protocol is proven cor-
rect in such a logic, the derivation steps can provide insight
into the mechanisms that make the protocol work. Despite
the obvious promise of such an approach, several attempts
have failed, most notably the BAN logic from [6]. One of
the stumbling points seems to be to provide a logic that is
sound with respect to the complicated semantics of security
protocol execution in the presence of an active intruder, and
is able to provide concise formal proofs.

A recent attempt to develop such a logic is the Proto-
col Composition Logic (PCL) from e.g. [14]. This logic has
evolved from a protocol model to express protocol composi-
tion and refinement, into a model with an associated logic
that can be used to formally prove security properties of pro-
tocols [9,13,17]. Variants of PCL have been applied to many
case studies and offer several interesting features. For exam-
ple, one can reason about security protocols without explic-
itly reasoning about the (complex) intruder by means of a
special kind of invariant reasoning captured by the honesty
rule. This kind of reasoning also allows the protocol logic
to deal with protocol composition and refinement, where
proofs can be reused. PCL has been extended with several
features in further work, such as an extension for hash func-
tions in [21] that was used for a modular correctness proof
of IEEE 802.11i and TLS.

In this paper, we identify a number of problems with PCL
as defined in [9, 13, 14, 17, 20, 21]. They have implications
for the scope of PCL, a number of claimed formal proofs,
and several extensions to the base model. In particular,
we show that in contrast with the claims in e.g. the intro-
duction of [14], PCL as defined in [9, 13, 14, 17] cannot be
used to prove common authentication properties of proto-
cols that do not include signatures. We show that a num-
ber of claimed proofs in PCL cannot be correct because (a)
there is no way to establish preceding actions in a thread,
and (b) there is no way to express type restrictions in PCL.
With respect to existing PCL extensions, we identify two
problems: the Diffie-Hellman extension from [9, 13, 14, 17]
does not correctly capture the algebraic behaviour of Diffie-
Hellman-like protocols, and the extension for hash functions
from [20, 21] is not sound. Some of these problems can be
resolved by minor modifications to PCL, but other problems

require further investigation. Our observations suggest that
it is at least required to make changes to existing axioms, to
introduce new axioms, and to add a mechanism for a type
system.

The purpose of this paper is to identify some of the chal-
lenges that need to be addressed in order to make a logic like
PCL work. We hope it will contribute to the improvement
of PCL, and will lead to a better understanding of some of
the pitfalls of designing a compact and usable formal logic
for security protocols.

The scope of this paper. The presentation of this paper
is inherently difficult, not least because there are a number
of different papers on PCL, which vary in notation and tech-
nical details. Many ideas were already present in precursors
of PCL, e.g. [18,19], but these variants use different concepts
than later versions of PCL. These early variants in [18, 19]
have no notion of thread (a.k.a. process, run, or role in-
stance), and events are bound to agents. More recent ver-
sions of PCL bind events to threads of agents, and therefore
distinguish between several threads of the same agent. PCL
versions of the latter type can be found in [10–12,16]. Subse-
quently, [10–12,16] have been claimed to be either subsumed,
or revised and extended, by more recent works [9,13,14,17].
Hence we choose here to focus on [9, 13, 14, 17], which con-
tain similar descriptions of PCL. Throughout this paper we
write basic PCL to refer to [9, 13, 14, 17]. The publications
on basic PCL describe the fundamental part of PCL that fo-
cusses on authentication. In general, the comments in this
paper apply to basic PCL. The comments in Section 4.2 ap-
ply only to the extensions found in [20, 21]. Our comments
here do not cover the recent extensions to basic PCL for the
analysis of secrecy, as found in [24], nor the computational
variants of PCL, as found in e.g. [15].

Syntax and page references. In order to pinpoint our
observations to specific formulas, we select a specific version
of PCL to refer to. We have chosen the most recent descrip-
tion of PCL from 2007 as found in [14]. In particular, we
will use [14] as a reference for the syntax of PCL formulas,
and to provide specific page references. Hence we use [14] as
the reference paper to present the problems with basic PCL
from the papers [9, 13,14,17].

For the technical details, in particular the formulas, we
assume the reader is at least somewhat familiar with one
of the papers from [9, 13, 14, 17] or [20, 21]. However, the
main points should be clear to readers familiar with formal
security protocol analysis.

The remainder of the paper is structured in the following
way. We start off by recalling some PCL notation and con-
cepts in Section 2. Then, in Section 3 we discuss problems
with the basic definition of PCL. In Section 4 we identify
two problems with existing PCL extensions. We conclude
in Section 5.

Acknowledgements.
The author would like to thank David Basin, Anupam

Datta, Felix Klaedtke, Sjouke Mauw, Simon Meier, John C.
Mitchell, Arnab Roy and the anonymous referees for useful
discussions and feedback on earlier versions of this paper.

2. PRELIMINARIES
The purpose of this section is to recall some PCL notions

that are required to interpret the forthcoming sections. We
use the syntax from [14]. This partial summary of PCL is

incomplete, and we encourage the reader to use the original
papers for reference.

The structure of PCL is as follows: first notation is in-
troduced to define terms, which in turn are used to define
protocols. For such protocols, an execution model is defined,
assigning to each protocol a set of possible execution histo-
ries, called runs. Then, a protocol logic is defined in order to
reason about (sets of) runs of a protocol. This logic is proven
sound with respect to the execution model. This means that
if one proves a property in terms of the protocol logic, such
as Receive(. . . ,m), then a similar property should hold for
the corresponding set of runs in the execution model, such
as “receive . . . ,m has occurred in the protocol run”. We
touch upon these elements below.

Terms. A term system is introduced that contains con-
stants (nonces, names, keys, etc.), variables, and compound
terms such as tuples, encryptions, and signatures.

Protocols. In PCL, a protocol Q is defined as a set
of roles. Each role ρ ∈ Q is defined as a list of actions.
Examples of possible actions can be found in the actions
column of Table 1, and correspond respectively to sending
terms, receiving terms, generating fresh terms, encryption,
decryption, and signature verification. Each role is parti-
tioned into a set of basic sequences. A basic sequence BSi
of a role ρ is a contiguous subsequence of ρ that starts with
either the first action of ρ or a receive action, and of which
the other actions are not receive actions. The basic se-
quences intuitively represent the idea that agents only block
at receive actions, and execute all other actions immedi-
ately, allowing one to regard basic sequences as atomic ac-
tions in some respects. The notion of basic sequences there-
fore roughly corresponds to the notion of step-compression
in other models, e.g. [2]. The basic sequences of a protocol
are defined as the union of the basic sequences of each of its
roles, and hence each action of a role of a protocol occurs in
exactly one of its basic sequences.

Observe that although some versions of PCL have two dis-
tinct actions receive (for reading a term from the network
without parsing) and match (for parsing a term and block-
ing if it is not as expected), these two actions are in many
proofs collapsed together into a single receive action that
receives and matches terms at the same time.

Execution model. An execution model is defined for
protocols (in terms of cords). Actions are executed by agents,

with names like X̂, Ŷ . A subset of these agents, defined as
HONEST(C) (where C is the initial configuration of the sys-
tem), are called the honest agents, and execute their proto-
col roles as expected. The agents may execute each protocol
role any number of times; each such instance of a role is
called a thread (in other formalisms, this notion is known
as a strand, or a process, or a run). Threads are usually
denoted by symbols such as X,Y, Z: a sequence of actions
P executed within a thread X is written as [P]X . The no-

tation X̂ is often1 used to denote the agent executing the

1The hat notation ˆ is used in at least two different inter-
pretations in both [13] and [14]. In some cases X is used

to denote a particular thread, and X̂ is then interpreted as
the agent that executes that thread, as e.g. can be seen in
the usage of Y in the SEC axiom [14, page 327], replicated
here in Section 3.1. Thus, in one interpretationˆcan be re-
garded as a function from a thread to an agent. However, in

other cases X̂ is used to denote a particular agent, and X is

then interpreted as “any thread executed by the agent X̂”,

Action Associated term Predicate
structure (in thread X)

send X̂, Ŷ ,m Send(X,m)

receive X̂, Ŷ ,m Receive(X,m)
new x Gen(X,x)
enc m,K t = ENCK{|m |} Encrypt(X, t)
dec t,K t = ENCK{|m |} Decrypt(X, t)
verify t,m,K t = SIGK{|m |} Verify(X, t)

Has(X,m)

Honest(X̂)
Contains(t, t′)

Table 1: Some examples of PCL actions, action
predicates, terms, and their relations. Here X̂, Ŷ de-
note agents, m,x, t, t′ denote terms, and X denotes a
thread.

thread X. Informally, if the agent X̂ is honest, [P]X is a
sequence of actions from a protocol role. The agents that
are not part of HONEST(C) can execute so-called intruder
roles, in line with the common Dolev-Yao intruder model.
In the context of this execution model, the protocol descrip-
tion Q gives rise to a set of runs denoted by Runs(Q). A run
is typically denoted by R, and corresponds to a sequence of
actions as executed by threads. A run represents a possible
execution history of the system.

Protocol logic. For each of the actions that can occur
in a run, a corresponding action predicate is defined. Some
examples are given in the right column of Table 1. The pro-
tocol logic is extended with logical connectives, a predicate
to reason about the ordering of actions in a run (<), as well
as predicates to reason about the knowledge of threads.

One of the predicates of the logic is the Honest predicate,
which is closely related to the set HONEST(C). For a run

R, Honest(X̂) is used to denote that X̂ ∈ HONEST(C) and

“all threads of X̂ are in a ‘pausing’ state in R” [14, page 325].
This is a technicality2 that is needed to make the honesty
rule (which is not described here) work.

One predicate of interest for this paper is the Contains
predicate, which is used to reason about the relation be-
tween two terms. In particular, Contains(t1, t2) is defined
by means of the subterm relation ⊆ in [14, page 323], stat-
ing that t1 contains t2 as a subterm. The subterm relation
⊆ is never formally defined. Here we assume that the sub-
term relation is defined syntactically3. In particular, we
assume that a signature such as SIGX̂{|m |} contains m,
i.e. Contains(SIGX̂{|m |},m) holds. Note that this assump-
tion only plays a role in the construction of a particular

as in the honesty rule HON [14, page 329], and the VER
axiom [14, pp. 329–330], replicated here in Section 3.1. In
this second interpretation, X is a variable that ranges over

all threads executed by the agent X̂, and X̂ effectively ex-
presses a domain restriction on X.
2The Honest predicate serves within the honesty rule as an
encoding of the atomic nature of basic sequences.
3Observe that if we would alternatively assume that the sub-
term relation involves only tuple projection, as seems to be
suggested by the CON axiom [13, page 444], i.e. t ⊆ t′ ≡
(t = t′)∨ (∃t′′.t′ = (t, t′′)∨ t′ = (t′′, t)), then e.g. the P2 and
VER axioms in [13, 14] are unsound, because respectively
the fresh value and the signature might be sent as part of
an encrypted term, and decrypted by an agent that knows
the key.

counterexample in Section 3.3, and does not influence any
of our general observations.

Using the protocol logic, one aims to establish properties
of all runs of a protocol. A run R of a protocol Q that
satisfies a property φ is denoted as Q,R |= φ. If all runs of
a protocol Q satisfy φ, we write Q |= φ. If a formula φ is
provable using the logic by using any PCL axioms except the
honesty rule, we write ` φ, which expresses that φ holds
for all protocols. For formulas provable using the axioms
and the honesty rule for a protocol Q, we write `Q φ, which
expresses that φ holds for the protocol Q.

In the remainder of this paper we use the following con-
vention: All formulas that are numbered are ours. All un-
numbered formulas, including the named axioms, are copied
from PCL papers, in which case the source paper and page
number is given.

3. PROBLEMS WITH BASIC PCL
In this section, we address two problems with basic PCL

as defined in [9,13,14,17]. First, we identify in Section 3.1 a
strong restriction on the scope of basic PCL. Then, we iden-
tify two missing proof mechanisms that seem to be necessary
to prove simple protocols correct in Sections 3.2 and 3.3.

3.1 Authentication properties only provable
for signature protocols

In basic PCL [9, 13, 14, 17], the possibility of proving au-
thentication properties is limited to protocols that use sig-
natures.

Proving an authentication property such as aliveness or
agreement requires a proof of existence of actions of another
agent. In basic PCL, there is only one axiom that allows
for a conclusion of that type. The precondition of this ax-
iom can only be met by protocols that use signatures. As a
consequence, if a protocol does not use signatures, the exis-
tence of a communication partner cannot be proven within
the logic.

This is surprising, as PCL was“initially designed as a logic
of authentication” [14, page 313], and it is stated in the ab-
stract of the paper that “PCL [. . .] has been applied to
a number of industry standards including SSL/TLS, IEEE
802.11i [. . .]” [14, page 311, abstract]. These protocols con-
sist of many subprotocols that do not rely only on signatures,
but also rely on symmetric key cryptography and symmetric
MACs.

The problem occurs for all authentication properties that
imply the existence of a communication partner. This in-
cludes aliveness or any form of agreement from [23], match-
ing conversations from [3], or synchronisation from [8]. The
matching conversations property is the authentication prop-
erty used within basic PCL [14, page 331]. All these prop-
erties are of the form:

φ(X) ⊃ ∃Y.ψ(Y) (1)

where typically, φ(X) denotes that thread X executes a role
that authenticates another role. Such a property states that
if a thread X executes actions of a certain role (e.g. all ac-
tions of an initiator role), then there exists a thread Y that
has executed some actions of another role (e.g. the first two
actions of a responder role), and possibly some further con-
dition holds. This is captured in ψ(Y). Note that both

the weak and strong authentication properties in the exam-
ple of [14, page 331] belong to this class of authentication
properties.

In order to prove such a property, it is required to prove
the existence of a thread. Examination of all axioms of the
logic reveals that only one axiom allows for the conclusion of
the existence of a thread, which is the VER axiom [14, page
327]:

VER Honest(X̂) ∧ Verify(Y,SIGX̂{|x |}) ∧ X̂ 6= Ŷ ⊃
∃X.Send(X,m) ∧ Contains(m,SIGŶ {|x |})

Because this axiom has the signature verification predicate
Verify in the precondition, it can only be used for signature
protocols. Hence there is no way to prove the existence of
another thread for protocols without signatures.

Other comments regarding non-signature protocols.
Whilst introducing new axioms for establishing thread

existence for non-signature protocols is non-trivial, there
is a related problem with the inconsistent use of symmet-
ric/asymmetric cryptography. In basic PCL, there is only
one type of encryption operator, and only a single key set, in
the sense that the rules for encryption and decryption do not
distinguish between different types of keys. This suggests
that either only symmetric, or only asymmetric encryption
is supported.

The definitions of the reaction rules [14, page 318], the
action formulas [14, page 324] and the Has predicate [14,
pp.324–325] all indicate that one encrypts and decrypts a
message using the same key, e.g.:

Hasi+1(A,ENCK{|m |}) if Hasi(A,m) and Hasi(A,K)

Hasi+1(A,m) if Hasi(A,ENCK{|m |}) and Hasi(A,K)

The same assumption, that one encrypts and decrypts with
the same key, can be found in axiom AR3 [14, page 327].
Without explaining the full details of the notation of this
axiom, we want to point out that the key K is used as the
key to decrypt a message encrypted with K:

AR3 a(x) [y := dec x,K]X a(ENCK{| y |})

However, the idea that symmetric encryption is intended
seems to be contradicted by the SEC axiom [14, page 327],
which states that there is only one agent that can decrypt a
message encrypted with a key, along the lines of asymmetric
encryption:

SEC Honest(X̂) ∧ Decrypt(Y,ENCX̂{|x |}) ⊃ (Ŷ = X̂)

Combined with the definition of the Has predicate, one is
lead to conclude that the only one who can create the en-
crypted message that occurs in the SEC axiom, is the agent
that can decrypt it.

3.1.1 Implications
In order to prove any authentication property of the form

of (1) for a protocol that does not use signatures, one needs
to introduce consistent machinery for symmetric and asym-
metric cryptography and several new axioms.

In basic PCL, protocols like Needham-Schroeder-Lowe4

and many key establishment protocols cannot be modeled,
4Observe that in a precursor of PCL in [19] there is a proof of
Needham-Schroeder-Lowe, but this logic has only asymmet-
ric cryptography, and has no notion of threads or processes.

and even if they could be, no authentication proofs could
be given for them. Similarly, it is impossible to use basic
PCL as defined in [9, 13, 14, 17] to prove the authentication
properties of the protocols “SSL/TLS, IEEE 802.11i” [14,
page 311, abstract]. In order to prove authentication of these
protocols, one is required to introduce additional axioms.

3.1.2 Resolving the problem
The problem can be split into three subparts. First, sym-

metric and asymmetric cryptography must be dealt with
consistently. Second, basic PCL must be extended with
axioms that enable proving authentication properties (ex-
istence of a thread) for symmetric cryptography. Third,
resolving the problem for public-key encryption protocols
(which includes many key agreement protocols, and the well-
known Needham-Schroeder-Lowe protocol) requires the in-
troduction of additional theory. We first address the two
easier problems before turning to public-key encryption.

Dealing consistently with symmetric and asymmetric
cryptography.

The first requirement for resolving this problem is to split
symmetric and asymmetric encryption either by having two
types of encrypt/decrypt actions as in e.g. [1], or by splitting
the key set as in e.g. [7]. Either choice impacts the action
sets, the action formulas, the Has predicate, and requires the
addition of further ARx axioms and an alternative for the
SEC axiom. Most of the additions are trivial, but introduce
additional complexity into the logic and possibly also the
execution model.

Proving authentication for protocols using symmetric
encryption or keyed hashes.

The axiom for signature protocols deals with the simplest
possible case of authentication by cryptography: the signa-
ture of an honest agent can be used immediately to conclude
that there exists a thread executed by this agent. If that
agent differs from any agent executing the currently known
threads, this implies the existence of another thread. This
conclusion is based on the fact that only one agent has the
private key needed to perform the signature.

For symmetric encryption and keyed hashes there is usu-
ally a notion of symmetry: in most cases, two agents share
a symmetric key. Thus, if a symmetric key K shared by
two honest agents X̂ and Ŷ , occurs in a message of a thread
X, there are two candidates for the agent who created the
message. If we can exclude that the message was generated
in thread X executed by X̂, we can derive the existence of
another thread Y that must have created it.

The authors of PCL have explored a variant of this route
for e.g. the extensions needed for the keyed-hash based pro-
tocols in [21]. We discuss the merits of those extensions in
detail in Section 4.2.

Proving authentication for public-key encryption pro-
tocols.

If we assume that basic PCL is extended to consistently
deal with public-key encryption, the authentication proper-
ties still cannot be proven, as we lack an axiom for establish-
ing thread existence as pointed out previously. Contrary to
signatures or symmetric-key cryptography, there is no easy
solution with an axiom based on honest agents only, because
the public keys are also known to the intruder. If a message

encrypted with the public key of an honest agent X̂ occurs,
no conclusion can be drawn about the sender or creator of
the message. Thus we must also consider the possibility that
the message was sent by the adversary.

A first step towards a solution would be to introduce an
axiom in the protocol logic, along the lines of Lemma 2.3 [14,
page 321] of the execution model. In fact, such an axiom was
present in a precursor of basic PCL. In [19, page 701] one
can find axiom AR1 which, when recast in the basic PCL
model, would read

AR1 [receive t]X∃Z.Send(Z, t)

(This axiom is not in basic PCL) (2)

A second axiom that might be adapted for proving these
properties is the SRC axiom in [19, page 703].

Unfortunately, for either of these axioms, authentication
proofs would require either further machinery to prove that
Z is executed by an honest agent, or explicit reasoning about
the intruder, as the sender thread Z need not be executed
by an honest agent. This type of reasoning is not supported
by basic PCL, and would require a significant amount of
additional machinery.

3.2 No means to establish preceding actions in
a thread

By the definition of the PCL execution model, threads of
honest agents start at the beginning of a role description,
and always execute the actions in the order given by the
role. Thus, if one can establish that a thread of an honest
agent has executed the nth action of a role, it should also
be possible to conclude a similar result about preceding ac-
tions within the logic: in particular, one should be able to
conclude that the preceding n−1 actions have also occurred
in the same thread. However, there is no mechanism in the
logic of basic PCL [9,13,14,17] to draw such a conclusion.

Note that one can use the honesty rule to prove from,
e.g., a send action that a receive action must have occurred
previously, but only if both actions occur within the same
basic sequence. However, if one wants to prove that given
a basic sequence, an action has occurred from another basic
sequence, there are no rules to enable this type of reasoning.

3.2.1 Implications
The consequence of not having a means of establishing

preceding actions is that some claimed proofs do not seem
to be correct. For example, observe the initiator role of the
QCR protocol [14, page 315]. In order to prove invariants for
the protocol using the honesty rule, one has to prove that
the invariants hold for all basic sequences of the protocol.
The initiator role consists of two basic sequences BS1 and
BS2 [14, page 335]:

BS1 ≡ [new m; send X̂, Ŷ ,m;]X

BS2 ≡ [receive Ŷ , X̂, y, s; verify s, (y,m, X̂), Ŷ ;

r := sign (y,m, Ŷ), X̂; send X̂, Ŷ , r;]X

In this protocol, the basic sequence BS1 defines m as a gen-
erated value, which determines the semantics of m in BS2.
Observe that there is no way to tell if m was received or
generated from just investigating BS2.

In order to show how this makes certain proofs impossible
in basic PCL, consider a protocol Q′, that contains a role ρ

consisting of the basic sequences BS′1 followed by BS2, where
BS′1 is defined as:

BS′1 ≡ [receive ENCK{|m |}; send X̂, Ŷ ,m;]X (3)

Thus the protocol Q′ shares the basic sequence BS2 with
QCR, but in Q′, m is a received valued as opposed to a
generated value.

Now, in order to prove invariant γ1 [14, page 334] for basic
sequence BS2, we must prove that m is either generated, or
received earlier as the main message, by the same thread
that sends out the signature:

γ1 ≡
`
Send(Y, t) ∧ Contains(t,SIGŶ {| y,m, X̂ |})

´
⊃“

Gen(Y,m) ∨
`
Receive(Y, (X̂, Ŷ ,m)) <

Send(Y, (Ŷ , X̂, y,SIGŶ {| y,m, X̂ |}))
´”

In order to prove this invariant with respect to basic se-
quence BS2, one needs to prove that m is generated in the
thread Y . However, there is no mechanism to reason about
any preceding actions, and thus it has to be dealt with in
the same way for both protocols QCR and Q′. One must
therefore also consider the case m was first received, and not
generated, in a previous basic sequence as part of a bigger
term, as happens in Q′. In fact, the invariant is false for
protocol Q′.

Thus, in order to prove the invariant for QCR, we must be
able to distinguish between the different semantics of BS2

within the context of QCR and Q′. Such reasoning is not
supported by basic PCL.

Without the ability to reason about preceding actions,
the protocol descriptions are effectively cut up into inde-
pendent basic sequences, which can then only be dealt with
as separate protocols. This is evident from the formulation
of the honesty rule [14, page 329], in which the reference to
the protocol Q is only used for the definition of the basic
sequences. Thus one is required to create much stronger
proofs than would be strictly necessary. Put differently, in
basic PCL one has to reason with an over approximation
of protocol execution, in which basic sequences occur in no
fixed order in a thread.

This phenomenon can also be observed in the following
example. Let P be a protocol, and let P1 be the protocol
defined as P extended with a role consisting of the basic
sequences BS; BS′; BS′′. Similarly, let P2 be defined as P
extended with a role BS′′; BS′; BS, i.e., a role with the same
basic sequences as the role in P1, but composed in a different
order. Then, any invariant γ that can be proven for protocol
P1 using the honesty rule, must also hold for P2. In fact,
the proof is identical. Conversely, any invariant that holds
for P1 but not for P2, cannot be proven using the honesty
rule. This puts a strong restriction on the type of invariants
provable in basic PCL, because the structure (and hence the
properties) of both protocols can be very different.

These observations lead to the following result:

Theorem 1. If basic PCL as defined in [9, 13, 14, 17] is
sound, then the authentication properties of the challenge
response protocol CR from [14] cannot be proven by using
basic PCL without using protocol composition rules.

A detailed proof of this theorem is given in Appendix A.
Below we only provide a sketch of the proof.

Proof sketch. We consider a specially crafted protocol
CR′, which has the same basic sequences as the protocol
CR. Because a proof in PCL that does not use composition
rules only refers to basic sequences of a protocol, any such
proof of `QCR φ is also a proof of `QCR′ φ. We show that
the weak authentication formula φ of the initiator is false
for QCR′ . Hence, there exists no proof of `QCR φ that does
not use composition rules.

Ultimately, this problem seems to be a side effect of the
weak link between the protocol descriptionQ and the actions
of honest agents in a run R ∈ Runs(Q) in the protocol logic.
In basic PCL, the only way to make the link between a
protocol description and the actions of honest agents, is by
means of defining an invariant and then proving it with the
honesty rule. This can be seen from inspecting the protocol
logic rules: the only occurrences of a protocol name (e.g. Q)
are in the honesty rule and the composition rules. As the
honesty rule only reasons about isolated basic sequences of
the protocol, the relations among the basic sequences of the
protocol are inevitably lost.

3.2.2 Resolving the problem
Based on the semantics of PCL, it should be possible to ex-

tend the logic with a “precedence” inference rule, that would
allow one to infer that given the nth action of a role ρ oc-
curs in a thread X, also the (n−1)th action of the same role
must have previously occurred in the same thread. Such an
inference rule would allow for establishing preceding actions
that must have occurred from the existence of other actions.
This is particularly useful for proving invariants for basic
sequences.

In general one could extend basic PCL with additional
mechanisms to enable reasoning about the relation between
protocol descriptions and the actions of honest agents in a
run. However, the current weak link between the two has
one major advantage: it eases compositional proofs. For ex-
ample, because no constraints are put on any other (i.e. non-
protocol) actions of honest agents, the sequential composi-
tion of protocols allows for re-use of proofs of invariants for
basic sequences. Thus, one must be careful when introduc-
ing such links and introduce only links between the protocol
and the actions of honest agent, such that the links are in-
variant under e.g. sequential composition. A “precedence”
inference rule of the type sketched above should meet this
condition.

3.3 No formal type system
It is mentioned that in PCL,“We assume enough typing to

distinguish the keys K from the principals Â, the nonces n
and so on.” [14, page 316]. However, there are no constructs
in PCL that allow for formal reasoning about the type of
variables.

As a consequence, some claimed proofs of invariants are
not correct within the logic, as they are only true under type
assumptions, that cannot be expressed in PCL.

3.3.1 Implications
Many protocols have properties in a typed model, that

do not hold for an untyped model. In particular, some pro-
tocols are correct in a typed model, but are vulnerable to
so-called type flaw attacks in an untyped model. Such at-
tacks exploit for example that an agent could mistake an
encrypted session key for an encrypted nonce, and sends the

key unencrypted in a next step, revealing it to the intruder.
It is therefore often easier to prove properties for the typed
model, but this requires that the logic supports drawing con-
clusions based on types. This is not possible in basic PCL.

As an example, we show that invariant γ1 from [14, page
334] (reproduced in this paper in Section 3.2.1) is false when
variables are untyped. The invariant γ1 states that if a
thread (of an honest agent) sends a message that contains a
signature term S, with a subterm m, then either

1. m was generated in the thread Y , or

2. the thread Y executes a receive of m, and later a
send of the message tuple (y, S).

Now consider the basic sequence BS3 from [14, page 335]:

BS3 ≡ [receive X̂, Ŷ , x; new n; r := sign (n, x, X̂), Ŷ ;

send Ŷ , X̂, n, r;]Y

This basic sequence corresponds to the responder receiving
an unknown value, supposedly a nonce, and sending back a
signed version that includes a freshly generated nonce.

In order to show the invariant is false, consider a thread
Y ′ that is executed by agent Ŷ . If we assume that x =
SIGŶ {| y,m, X̂ |}, where m is generated by thread Y ′, the

invariant is violated: we have that x = SIGŶ {| y,m, X̂ |} ⊃
Contains(x,m) and by substitution in BS3 and the Contains
predicate, we find that Contains(r,m). As a result, the mes-
sage sent at the end of BS3 of a thread Y (Y ′ 6= Y) will
contain m. However, m is neither generated by this thread
nor is it the exact term that was received. Thus the invariant
γ1 does not hold for basic sequence BS3. Hence the example
authentication proof of the CR protocol in [14] is incorrect.

3.3.2 Resolving the problem
The model can be extended with typing information for

the variables, and an axiom could be introduced that cap-
tures the fact that variables are only instantiated by their
typing information. This would not introduce much new
machinery, but requires additional reasoning steps in most
of the proofs.

4. PROBLEMS WITH PCL EXTENSIONS
In this Section we discuss two additional mechanisms for

PCL, in particular the extension for Diffie-Hellman expo-
nentials as found in [9,13,14,17] and the extension for hash
functions from [20,21].

4.1 Diffie-Hellman exponentials
In basic PCL [9,13,14,17], axioms are provided for reason-

ing about Diffie-Hellman (DH) exponentials. To that end,
the logic is extended with four additional axioms and some
changes are made to the language and execution model.

4.1.1 Capturing Diffie-Hellman behaviour
Below we recall the three elements of the DH extension

(execution model, logic, proof system) and discuss their im-
plications.

DH extension of the language and execution model.
The programming language and execution model are ex-

tended [14, page 354] with constructs g(a) and h(a, b), rep-
resenting respectively ga mod p and (ga mod p)b mod p. In

the PCL papers, the mod p and brackets are usually omit-
ted, resulting in the abbreviations ga and gab.

This extension does not reflect the actual algebraic prop-
erties of the exponential. For Diffie-Hellman, the crucial
property is that gab = gba. This equation must be included
in the execution model: if it is not, the following sequence of
actions (denoted by their action predicates), which is per-
fectly valid DH-type behaviour, does not correspond to a
valid execution in PCL:

Send(X,h(a, b)) < Receive(Y, h(b, a)) (4)

Just extending the Has predicate in the logic is not sufficient,
as the equivalence still has no counterpart in the execution
model of PCL.

DH extension of the protocol logic.
In basic PCL, the predicate Fresh(X,x) holds for any x

generated by thread X (captured by Gen(X,x)), as long as
x is not sent as part of another term. The protocol logic
is extended with an additional rule for the Fresh predicate,
stating that Fresh(X, g(x)) is true if and only if Fresh(X,x)
is true, and Has is extended in [14, page 354] by

Has(X, a) ∧ Has(X, g(b)) ⊃ Has(X,h(a, b)) ∧ Has(X,h(b, a))

This rule is intended to capture the Diffie-Hellman equiva-
lence relation. It is not sufficient, even with the addition of
further axioms, as we show below.

DH extension of the proof system.
The proof system is extended in [14, page 354, Table A.1]

by a definition and four new axioms. We reproduce them
here:

Define Computes (DH)

Computes(X, gab) ≡
“`

Has(X, a) ∧ Has(X, gb)
´
∨`

Has(X, b) ∧ Has(X, ga)
´”

This definition captures the intuition that a thread can com-
pute the value of gab if and only if it has the required com-
ponents. Note that for a thread that just has gab but not
a or b, this predicate is false, and therefore we have that
Has(X, gab) does not imply Computes(X, gab).

Note that the definition of Computes suggests that gab 6=
gba, because of the explicit listing of both sides of the dis-
junction. If the equality would hold, one could just define
Computes(X, gab) ≡ Has(X, a) ∧ Has(X, gb) to achieve the
same result.

Using the definition of Computes, the first axiom is given
as:

DH1 Computes(X, gab) ⊃ Has(X, gab)

and corresponds to the extension of the Has predicate, which
can be seen by unfolding the definition of Computes. The
second axiom states

DH2 Has(X, gab) ⊃
“
Computes(X, gab) ∨

∃m.
`
Receive(X,m) ∧ Contains(m, gab)

´”
This axiom captures the notion that one can only possess
such a term gab by computing it from its parts, or receiv-

ing it. Effectively this restricts any agent (including the in-
truder) from knowing a term of the form gab at the start of
each run, but it also excludes that gab is used as a parameter
for a protocol.

For completeness, we also give the remaining DH axioms

DH3
`
Receive(X,m) ∧ Contains(m, gab)

´
⊃

∃Y,m′.
`
Computes(Y, gab) ∧ Send(Y,m′) ∧

Contains(m′, gab)
´

DH4 Fresh(X, a) ⊃ Fresh(X, ga)

which capture the assumption that gab must have been ei-
ther computed or received (but was not given as a param-
eter). The fourth axiom echoes the extension of the Fresh
predicate.

Summarizing, even with the extension of the Has predicate
and the additional axioms, the behaviour of the equivalence
for Diffie-Hellman is not captured in PCL, for two reasons.
First, with respect to the execution model, the sequence of
actions represented by Formula (4) cannot be enabled in the
execution model by just changing the protocol logic. Second,
we observe that given Has(X,h(a, b)), the protocol logic does
not allow us to conclude that Has(X,h(b, a)) as one would
expect (especially in the case where ¬Computes(X,h(a, b))).
Hence, the essential equivalence for any Diffie-Hellman type
protocol is not captured in the execution model, nor in the
protocol logic.

4.1.2 Implications
The Diffie-Hellman extension does not correctly capture

the algebraic properties of Diffie-Hellman exponentials. As
a result, certain possible behaviours of DH-like protocols
are not considered within the logic and its execution model.
The extension is therefore not a faithful representation of
DH-like protocols.

4.1.3 Resolving the problem
The essential feature to be captured is the equality gab =

gba. If this is introduced at the term level, e.g. by having
the equality h(a, b) = h(b, a) in the term system, this solves
at the same time the problem in the execution model, pro-
tocol logic and proof system. Some further modifications to
the axioms are required, and the current proofs have to be
modified to take the term equality into account. Alterna-
tively, one might consider introducing generalizations of the
Diffie-Hellman assumption, as e.g. in [5].

4.2 Keyed hashes
In [20] and [21] basic PCL is extended and applied to a

case study of protocols that do not rely solely on signatures.
As observed previously, such an application requires addi-
tional axioms. In particular, to prove authentication, we
need to introduce an axiom that allows us to conclude the
existence of a thread.

Appendix A of [21] gives such additional axioms and def-
initions for keyed hash functions: one definition and four
hashing axioms. We reproduce them here for convenience.

Define Computes (HASH) :

Computes(X,HASHK(a)) ≡ Has(X,K) ∧ Has(X, a)

As we will see in the following, the intention of this predicate
seems to be to express which thread computed the hashed
value from its components. However, this intuition is not
correctly captured by the definition: a typical use pattern
of a keyed hash would be to provide an integrity check for a
message m, as in

X̂ → Ŷ : m,HASHK(m) , (5)

where K is a key shared between X̂ and Ŷ . In the typical
use pattern, the HASHK(m) is received by an agent which
at that point can construct the message m himself. In this
use case, the message hash is received with (or after) the
message, and is then used to verify the integrity of the mes-
sage.

Assume we have that m (or some subterm of it) is freshly
generated byX, and we have that Computes(X,HASHK(m))
holds. However, we can also prove that once a thread Y of
the recipient Ŷ receives the message, Y not only has K, but
also m. Thus the predicate Computes(Y,HASHK(m)) holds
as well. Put differently, we have that for a typical use case,
Computes(. . .) holds for both the thread who creates as well
as the thread who receives. In particular, this is also true
for the protocols under consideration in [21]. The protocols
in the paper assume typing information (no hash mistaken
for a nonce) and receive the hashed values at a point where
they know the hash components.

Let K be a key shared between X̂ and Ŷ . Then, we can
prove5 the following property (invariant) for the protocols
in [21]:

Honest(X̂) ∧ Has(X,HASHK(m)) ⊃
Computes(X,HASHK(m)) (6)

Intuitively one can see that an honest agent either creates
the hash by having the components, or receives it. In this
last case, where an honest agent receives the hash, the mes-
sage integrity is verified using the hash, which is possible
only because the recipient also has both the key K and the
message m. We will use this result in our discussion of the
HASH4 axiom later on.

The first axiom in [21, Appendix A] that uses the defini-
tion of Computes() is the following:

HASH1

Computes(X,HASHK(x)) ⊃ Has(X,x)∧Has(X,K)

If we unfold the definition of Computes in this axiom, it re-
duces to φ ⊃ φ. The second hash axiom states the following:

HASH2

Computes(X,HASHK(x)) ⊃ Has(X,HASHK(x))

This axiom informally states that whoever computes the
hash value also has it. If we again unfold the definition of
Computes, we can see that this works as an extension of the
closure properties of the Has predicate (as defined in [14]).
Effectively, it introduces a new term structure fx(y) to the
PCL syntax, and expresses the one-way property of the hash
function.

5Note that this cannot be proven using only basic PCL,
but it can be proven using PCL combined with the meta-
reasoning required to capture the assumption that variables
are typed, as pointed out in Section 3.3.

The third hash function axiom is

HASH3 Receive(X,HASHK(x)) ⊃
∃Y.Computes(Y,HASHK(x)) ∧ Send(Y,HASHK(x)) .

This axiom is not sound. Consider the following protocol in
Alice and Bob style notation, where m is a freshly generated
nonce of the initiator, and K′ is a symmetrical key shared
by the initiator and responder:

Init→ Resp : ENCK′{|HASHK(m) |}
Resp→ Init : HASHK(m)

(7)

In a normal run of this protocol, the initiator sends the hash
as part of a bigger term, but does not send m. Thus the re-
sponder cannot compute the hash itself, but simply decrypts
the message, and sends the hash back. Thus, the precondi-
tions are fulfilled by an initiator thread of this protocol, but
the postcondition does not hold: only the initiator thread
can compute it, but it does not send it out in the required
form. (Observe that contrary to the protocols in [21], this
protocol in (7) does not satisfy the typical usage pattern,
and therefore Formula (6) does not hold here.)

The fourth axiom is

HASH4 Has(X,HASHK(x))⊃Computes(X,HASHK(x))

∨ ∃Y,m. Computes(Y,HASHK(x)) ∧ Send(Y,m) ∧
Contains(m,HASHK(x)) .

This axiom seems to express: if someone has the hash value,
she computed the hash herself, or somebody computed it
and sent it (possibly as a subterm).

With a suitable restriction on the intruder knowledge (the
intruder should not know some HASHK(x) initially without
knowing the components) this axiom can be proven sound.
However, there is a problem with the applications of the
axiom in the proofs of [14]. Each time this axiom is applied

in proofs in the paper, one assumes honesty of X̂ and Ŷ , and
that K is the key shared between them. Thus we can rewrite
the application of axiom HASH4 using Formula (6), as in
the following. First we unfold the definition of the axiom

Honest(X̂) ∧HASH4 =

Honest(X̂) ∧
`
Has(X,HASHK(x)) ⊃

Computes(X,HASHK(x)) ∨ Φ
´

, (8)

where Φ is used to denote the right-hand disjunct of the ax-
iom HASH4, starting from the existential quantifier. Now
we use Formula (6) to get

Honest(X̂) ∧HASH4 = Honest(X̂) . (9)

In other words, if X̂ is assumed to be honest when applying
axiom HASH4, the left-hand disjunct of the conclusion is
always true (rendering the right-hand disjunct inconsequen-
tial). Because the right-hand disjunct of the conclusion con-
tains the required thread existence, but is rendered useless,
the axiom cannot be used here for proving authentication
properties, based on our observations in Section 3.1.

4.2.1 Implications
The authentication proofs of the four-way handshake and

group key handshake protocols in [20, 21] are not correct in
their current form. The reason for this is that these protocols

do not contain signatures, and based on the observations
in Section 3.1, any authentication proofs for such protocols
must rely on newly introduced axioms. In this case, the
only candidates are the axioms HASH3 and HASH4. As
shown above, HASH3 is not sound, and for the protocols
in [20,21], HASH4 cannot be used to prove the existence of
a thread. Hence the authentication proofs of the handshakes
are incorrect, and therefore also the compositional proof of
authentication of IEEE 802.11i is incorrect.

4.2.2 Resolving the problem
The properties of a keyed hash function like the ones oc-

curring here are similar to the properties of symmetric-key
cryptography. Thus, once sufficient reasoning infrastructure
is in place for symmetric-key cryptography, one can devise
a straightforward definition of a non-keyed hash function.
Combining these two elements should lead to a natural def-
inition and extension of the logic for keyed hashes.

Alternatively, it might be possible to reinstate rules that
were used in older works, as e.g. found in [11, page 15].

5. CONCLUSIONS
In this paper, we have first shown that basic PCL as de-

fined in [9,13,14,17] cannot be used to prove authentication
properties of protocols without signatures. We consider this
to be a strong limitation on the scope of basic PCL. Next,
we have pointed out two reasoning tools that are missing
in basic PCL: reasoning about preceding actions of a role
within a thread, and the lack of a formal type system. With
respect to PCL extensions, we have shown that the PCL
Diffie-Hellman extension from [9,13,14,17] does not capture
the algebraic behaviour of Diffie-Hellman protocols correctly
in the execution model and protocol logic. Finally, we have
shown that the extension for protocols with keyed hash func-
tions in [20,21] is not sound.

It follows that some claimed PCL proofs cannot be proven
within the basic logic as defined in [9,13,14,17], or make use
of unsound axioms. These proofs include the authentication
proofs of the CR protocol from [13, 14] and the SSL/TLS
and IEEE 802.11i protocols from [20,21].

In the papers on PCL the proofs of the invariants are
often not given. This lack of proof details for the invariants
is surprising, as the invariants themselves are the difficult
part. Furthermore, many of the proofs seem impossible to
be completed in PCL without resorting to meta-reasoning.

Some of the problems identified here can be solved easily,
but for some problems more work is required. For exam-
ple, straightforward solutions include adding a formal type
system and adding a mechanism to reason about earlier ac-
tions. Other problems, such as establishing thread existence
of honest agents for protocols based on public-key cryptog-
raphy, do not seem to be solvable by straightforward fixes,
and suggest that more extensive modifications to PCL are
required.

It remains to be seen whether formal proofs in such a
modified version of PCL can be concise.

6. REFERENCES
[1] A. Armando, D. Basin, Y. Boichut, Y. Chevalier,

L. Compagna, L. Cuellar, P. Drielsma, P. Heám,
O. Kouchnarenko, J. Mantovani, S. Mödersheim,
D. von Oheimb, M. Rusinowitch, J. Santiago,

M. Turuani, L. Viganò, and L. Vigneron. The AVISPA
tool for the automated validation of internet security
protocols and applications. volume 3576 of Lecture
Notes in Computer Science, pages 281–285.
Springer-Verlag, 2005.

[2] D. Basin, S. Mödersheim, and L. Viganò. An on-the-fly
model-checker for security protocol analysis. In
ESORICS, volume 2808 of Lecture Notes in Computer
Science, pages 253–270. Springer-Verlag, 2003.

[3] M. Bellare and P. Rogaway. Entity authentication and
key distribution. In CRYPTO ’93: Proceedings of the
13th annual international cryptology conference on
Advances in cryptology, pages 232–249, New York,
NY, USA, 1994. Springer-Verlag.

[4] B. Blanchet. An efficient cryptographic protocol
verifier based on Prolog rules. In Proc. 14th IEEE
Computer Security Foundations Workshop (CSFW),
pages 82–96. IEEE Computer Society, 2001.

[5] E. Bresson, Y. Lakhnech, L. Mazaré, and
B. Warinschi. A generalization of DDH with
applications to protocol analysis and computational
soundness. In A. J. Menezes, editor, Proc. of Crypto
’07, volume 4622 of Lecture Notes in Computer
Science, pages 482–499. Springer-Verlag, August 2007.

[6] M. Burrows, M. Abadi, and R. Needham. A logic of
authentication. ACM Transactions on Computer
Systems, 8(1):18–36, 1990.

[7] C. Cremers. Scyther - Semantics and Verification of
Security Protocols. PhD thesis, Computer Science
Department, Eindhoven University of Technology,
November 2006.

[8] C. Cremers, S. Mauw, and E. de Vink. Injective
synchronisation: an extension of the authentication
hierarchy. Theoretical Computer Science, 2006.

[9] A. Datta. Security Analysis of Network Protocols:
Compositional Reasoning and Complexity-theoretic
Foundations. PhD thesis, Computer Science
Department, Stanford University, September 2005.

[10] A. Datta, A. Derek, J. Mitchell, and D. Pavlovic. A
derivation system for security protocols and its logical
formalization. In Proc. 16th IEEE Computer Security
Foundations Workshop (CSFW), pages 109–125. IEEE
Computer Society, 2003.

[11] A. Datta, A. Derek, J. Mitchell, and D. Pavlovic.
Abstraction and refinement in protocol derivation. In
Proc. 17th IEEE Computer Security Foundations
Workshop (CSFW), pages 30–45, Washington, DC,
USA, June 2004. IEEE Computer Society.

[12] A. Datta, A. Derek, J. Mitchell, and D. Pavlovic.
Secure protocol composition. Electron. Notes Theor.
Comput. Sci., 83, 2004. Proceedings of 19th Annual
Conference on Mathematical Foundations of
Programming Semantics.

[13] A. Datta, A. Derek, J. Mitchell, and D. Pavlovic. A
derivation system and compositional logic for security
protocols. Journal of Computer Security,
13(3):423–482, 2005.

[14] A. Datta, A. Derek, J. Mitchell, and A. Roy. Protocol
Composition Logic (PCL). Electron. Notes Theor.
Comput. Sci., 172:311–358, 2007. Computation,
Meaning, and Logic: Articles dedicated to Gordon
Plotkin. Editors: L. Cardelli, M. Fiore, and G.

Winskel.

[15] A. Datta, A. Derek, J. Mitchell, and B. Warinschi.
Computationally sound compositional logic for key
exchange protocols. Proc. 19th IEEE Computer
Security Foundations Workshop (CSFW), 0:321–334,
2006.

[16] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic.
Secure protocol composition (extended abstract). In
FMSE ’03: Proceedings of the 2003 ACM workshop on
Formal methods in security engineering, pages 11–23,
New York, NY, USA, 2003. ACM.

[17] A. Derek. Formal Analysis of Security Protocols:
Protocol Composition Logic. PhD thesis, Computer
Science Department, Stanford University, December
2006.

[18] N. Durgin, J. Mitchell, and D. Pavlovic. A
compositional logic for protocol correctness. In Proc.
14th IEEE Computer Security Foundations Workshop
(CSFW), pages 241–272, 2001.

[19] N. Durgin, J. Mitchell, and D. Pavlovic. A
compositional logic for proving security properties of
protocols. Journal of Computer Security, 11:667–721,
2003.

[20] C. He. Analysis of Security Protocols for Wireless
Networks. PhD thesis, Department of Electrical
Engineering, Stanford University, December 2005.

[21] C. He, M. Sundararajan, A. Datta, A. Derek, and
J. Mitchell. A modular correctness proof of IEEE
802.11i and TLS. In CCS ’05: Proceedings of the 12th
ACM conference on Computer and communications
security, pages 2–15. ACM Press, 2005.

[22] G. Lowe. Casper: A compiler for the analysis of
security protocols. In Proc. 10th IEEE Computer
Security Foundations Workshop (CSFW), pages
18–30. IEEE Computer Society, 1997.

[23] G. Lowe. A hierarchy of authentication specifications.
In Proc. 10th IEEE Computer Security Foundations
Workshop (CSFW), pages 31–44. IEEE Computer
Society, 1997.

[24] A. Roy, A. Datta, A. Derek, J. C. Mitchell, and J.-P.
Seifert. Secrecy analysis in protocol composition logic.
In M. Okada and I. Satoh, editors, Proceedings of 11th
Annual Asian Computing Science Conference, Lecture
Notes in Computer Science, December 2006.
Preliminary version.

APPENDIX
A. PROOF OF THEOREM 1

In this section we give a detailed proof of Theorem 1 from
Section 3.2 of this paper. The proof is by contradiction: We
show that if a proof could be given for the authentication
of the CR protocol, it would also be a proof for a similar
protocol CR′. Next, we show that the protocol CR′ does
not satisfy the authentication formula.

Lemma 1. Let φ be any PCL formula, and let Q and Q′

be PCL protocols such that the basic sequences of Q are equal
to the basic sequences of Q′. Then, a proof of `Q φ in PCL
as defined in [9,13,14,17] that does not use any composition
rules is also a proof of `Q′ φ.

Proof. By inspection of the axioms and inference rules
of the logic, the only references to a protocol are in the

honesty rule, through the set of basic sequences of all roles
of the protocol, and the composition rules. Hence a proof
for a protocol that does not use the composition rules, is a
proof for all protocols with the same basic sequences.

Next we recall the definition of the basic sequences of the
CR protocol as defined on [14, page 335]. For the initiator
role we have:

BS1 ≡ [new m; send X̂, Ŷ ,m;]X

BS2 ≡ [receive Ŷ , X̂, y, s; verify s, (y,m, X̂), Ŷ ;

r := sign (y,m, Ŷ), X̂; send X̂, Ŷ , r;]X

and for the responder role we have:

BS3 ≡ [receive X̂, Ŷ , x; new n;

r := sign (n, x, X̂), Ŷ ; send Ŷ , X̂, n, r;]Y

BS4 ≡ [receive X̂, Ŷ , t; verify t, (n, x, Ŷ), X̂;]Y

Definition 1. Let QCR′ consist of three roles ρ1, ρ2, ρ3.
The first two roles are identical to the two roles of the CR
protocol. Let ρ1 be the initiator role of CR: BS1 followed by
BS2. Let ρ2 be the responder role of CR: BS3 followed by
BS4. Now, let ρ3 be defined as BS2.

Note that as ρ3 consists of BS2 only, we have that m is not
generated nor read within this role, and must be considered
a parameter of this role. Furthermore, as QCR′ is defined by
the basic sequences of the CR protocol, we have that The
protocols QCR and QCR′ have the same basic sequences,
i.e. BS1,BS2,BS3,BS4.

Consider the weak authentication property φweak−auth of
the initiator from [14, page 331]:

φweak−auth ≡ ∃Y.
`
Receive(Y, (X̂, Ŷ ,m)) <

Send(Y, (Ŷ , X̂, y,SIGŶ (y,m, X̂))
´

which should hold in the following context [14, page 331]:

`QCR >[InitCR]XHonest(Ŷ) ∧ Ŷ 6= X̂ ⊃ φweak−auth

Observe that because the strong authentication from [14]
implies weak authentication, our results also hold for the
strong authentication property.

We refer to the modal formula to be proven as Φweak−auth:

Φweak−auth ≡ >[InitCR]XHonest(Ŷ) ∧ Ŷ 6= X̂ ⊃ φweak−auth

(10)
Informally, this formula states that if the initiator role of the
CR protocol (which consists of the basic sequences BS1 and

BS2) is executed by an agent X̂, who tries to communicate

with another agent Ŷ that is honest, then φweak−auth holds:
there exists a thread of Ŷ in which a particular send and
receive have occurred.

We construct a run Rno−auth of the QCR′ protocol, de-
scribed by Rno−auth = Ra;Rb;Rc;Rd. The run consists of
a sequence of four basic sequences BS1, BS3, BS2, BS2. We
define this run below by representing the four subsequences
in terms of the basic sequence notation. We use this notation
to clearly show the relation of the run to the basic sequences,
even though it is not the standard PCL syntax for describing
runs (one would use syntax from the cord space semantics).

Definition 2. Let Rno−auth be a run of CR′ that con-
tains the sequences below in order, and no other actions of

honest agents. Note that all variables are considered to be
instantiated in the description of Rno−auth. In particular, let
X̂, Ŷ be honest agents, where X̂ 6= Ŷ , let X,X ′ be threads
executed by X̂ and Y a thread executed by Ŷ , and let n,m
be nonces.

Ra(ρ1,BS1) : [new m; send X̂, Ŷ ,m;]X

Rb(ρ2,BS3) : [receive Ŷ , X̂,m; new n;

r := sign (n,m, Ŷ), X̂; send X̂, Ŷ , n, r;]X′

Rc(ρ3,BS2) : [receive X̂, Ŷ , n, s; verify s, (n,m, Ŷ), X̂;

r := sign (n,m, X̂), Ŷ ; send Ŷ , X̂, r;]Y

Rd(ρ1,BS2) : [receive Ŷ , X̂, n, s; verify s, (n,m, X̂), Ŷ ;

r := sign (n,m, Ŷ), X̂; send X̂, Ŷ , r;]X
(11)

In the run Rno−auth, the following happens. Ra and Rd
together form a normal thread of an agent X̂ that executes
the role ρ1, which corresponds to the initiator role of the
CR protocol. Rb corresponds to a normal execution of the
ρ2 role, analogous with the responder role of the CR proto-
col, executed by X̂. The difference between CR and CR′ is
exploited in Rc. Whereas in the context of CR, m is the pre-
viously generated nonce of the initiator role, we have that
in the context of CR′, m is a parameter of the role ρ3. This
allows for the instantiation of the parameter6 with the pre-
viously generated nonce m. All messages that are received
in Ra, Rb, Rc, Rd can be constructed on the basis of previ-
ously sent messages by using tupling and projection cords.
Hence, we have that Rno−auth is a run of QCR′ .

Lemma 2. QCR′ 6|= Φweak−auth.

Proof. We first show that the run Rno−auth does not
satisfy Φweak−auth. Within Rno−auth, Ra and Rd together
form ρ1, which is identical to the initiator role of CR. Both
agents X̂ 6= Ŷ are honest. Therefore the precondition of
the implication of Formula (10) is met, and thus the post-
condition φweak−auth should also hold. φweak−auth expresses
that Ŷ has executed a thread of the responder role. This is
not the case: The only actions performed by Ŷ in Rno−auth

are those of the role ρ3, which consists of the basic sequence
BS2, which is not part of the responder role of CR. In par-
ticular, the weak authentication property requires that Ŷ
received the term m, which does not happen in Rno−auth.

Because the run Rno−auth is a run of QCR′ , Φweak−auth

does not hold for all runs of QCR′ .

We are now able to prove Theorem 1 from Section 3.2.

Proof of Theorem 1. We prove the theorem by con-
tradiction. Assume there exists a proof of `QCR Φweak−auth

in PCL as defined in [9,13,14,17] that does not use the com-
position rules. Then, by Lemma 1 and Definition 1 this is
also a proof of `QCR′ Φweak−auth. By soundness, we have
that |=QCR′ Φweak−auth. This contradicts Lemma 2.

6In PCL, this parameter mechanism is used to facilitate se-
quential composition of protocols.

