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ABSTRACT
We present a new verification algorithm for security proto-
cols that allows for unbounded verification, falsification, and
complete characterization. The algorithm provides a num-
ber of novel features, including: (1) Guaranteed termination,
after which the result is either unbounded correctness, fal-
sification, or bounded correctness. (2) Efficient generation
of a finite representation of an infinite set of traces in terms
of patterns, also known as a complete characterization. (3)
State-of-the-art performance, which has made new types of
protocol analysis feasible, such as multi-protocol analysis.

Categories and Subject Descriptors
C.2.2 [Computer-communication Networks]: Network
Protocols—Protocol verification

General Terms
Security, Theory, Verification

Keywords
Security protocol analysis, unbounded verification, falsifica-
tion, characterization

1. INTRODUCTION
The formal analysis of security protocols, which started

from works such as [10, 17], has led to the development of
(semi-)automatic methods for the analysis of abstract se-
curity protocols. The seminal work of Meadows and Lowe
[21, 23] showed that it was feasible for automatic tools to
find attacks on security protocols that had gone unnoticed
by experts for years. In the following years many algorithms
were developed, e. g. [16,23,28], and a significant number of
tools were made publicly available [1, 4, 6, 8, 11, 21, 31] for
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the analysis of security protocols. The security properties
that these tools can verify include confidentiality and various
forms of authentication. However, even under the assump-
tion of perfect cryptography, verification of such properties
is undecidable [18]. We can roughly distinguish two classes
of algorithms and corresponding tools, based on how they
deal with this undecidability.

The vast majority of algorithms and tools deals with the
undecidability by performing so-called bounded verification:
instead of verifying the properties for all possible behaviours
of the protocol, only a finite subset of behaviours is consid-
ered. At best, such tools can establish that a property holds
within the finite subset considered. These methods usu-
ally bound either the message size, the number of freshly
generated values (Nonces), the number of protocol sessions
considered, or combinations of these.

In contrast, other algorithms and tools aim for unbounded
verification [2, 3, 6–8, 19, 28], and try to establish that the
security properties hold for all possible behaviours of a pro-
tocol in the presence of a Dolev-Yao style intruder. The
current state-of-the-art tool for unbounded verification by
overapproximation is ProVerif by Blanchet [6]. ProVerif has
proven to be a very efficient tool: in most cases it is able
to perform unbounded verification of small (e. g. Needham-
Schroeder-Lowe) to medium sized protocols (e. g. TLS), or
find attacks such as the man-in-the-middle attack on the
Needham-Schroeder protocol, in less than a second. How-
ever, for some protocols and properties, ProVerif may either
never terminate, or when terminating, it may not be able to
make a statement about the property.

Closely related to the concept of unbounded verification
is the recently introduced notion of complete characteriza-
tion, found in e. g. [16]. Given a protocol role, for example
the initiator or the responder role, a complete characteriza-
tion is a finite set of representatives of all possible protocol
behaviours that include an instance of the role. The rep-
resentatives are constructed in such a way that they allow
for verification of certain security properties. Hence, if these
properties hold for each of these representatives, they must
hold for all possible protocol behaviours. For a restricted
class of security properties, analysis by characterization is
equivalent to performing unbounded verification. Like the
other unbounded algorithms, the algorithm sketched in [16],
called CPSA, is in certain cases unable to provide a state-
ment about the protocol properties. Another drawback of
the CPSA algorithm is that it is strongly connected to the
notion of authentication tests, and restricts the class of pro-
tocols and properties that can be handled.



Our contributions. We unify and solve the problems
above by presenting a new algorithm for the analysis of se-
curity protocols. Our algorithm allows for unbounded verifi-
cation and falsification of security properties, as well as com-
plete characterization, and builds on ideas developed in [28].
For the vast majority of the verification problems, the al-
gorithm is able to efficiently falsify or verify the property.
Unlike ProVerif and CPSA, our algorithm is guaranteed to
terminate, and in the case that the algorithm is not able
to establish unbounded verification, it establishes a form of
bounded verification that is similar to the guarantees pro-
vided by tools such as OFMC [4]. The algorithm uses no
abstraction techniques, and therefore it can always gener-
ate counterexamples, as well as verify intricate authentica-
tion properties such as synchronisation [15]. To the best of
our knowledge, it is the only unbounded verification algo-
rithm that provides a meaningful statement about the secu-
rity property in all cases. Also, the algorithm can efficiently
compute a complete characterization [16] of protocol roles,
for a larger class of protocols than can be handled by CPSA.
An instance of the algorithm has been implemented in the
Scyther tool which exhibits state-of-the-art performance [14]
and has made new types of protocol analysis feasible, such
as multi-protocol analysis [12].

The remainder of the paper is structured in the following
way. In Section 2 we describe an abstract protocol model,
which serves as a basis for our exposition. In Section 3 we
introduce patterns, which are used to represent infinite sets
of execution traces. In Section 4 we describe the algorithm.
We discuss related work in Section 5. Future work is dis-
cussed in 6 and we conclude in Section 7.

2. SECURITY PROTOCOL MODEL
In this section we present a generic protocol model which

will serve as a basis for the exposition in the following sec-
tions. The model is generic in the sense that it is compatible
with most existing protocol formalisms that assume perfect
cryptography.

The fundamental structure in the protocol model is the set
of terms, used to represent the messages that are exchanged
during a protocol session. We define the set of basic terms
as the union of the set of global constants Const , the set
of terms freshly generated during protocol execution Nonce,
and the set of variables Var . The set of terms Term includes
the basic terms and any term constructed by one of the two
constructors: tupling written as (t, t′) and encryption of a
term t with a key t′, written as {| t |}t′ . The set ID denotes
the set of thread identifiers, which is explained below.

BasicTerm ::= Const | NonceID | Var ID

Term ::= BasicTerm | (Term,Term) | {|Term |}Term

Both symmetric and asymmetric cryptography are captured
by the encryption constructor. For each term, we define the
inverse key function ·−1 from terms to terms, and write t−1

to denote the inverse key of a term t. For symmetric keys,
we have that t−1 = t. Any term can be used as a key,
including composed terms. We define an auxiliary function
unpair : Term → P(Term), that is used to decompose tuples
into sets of non-tuple terms. unpair is defined as unpair(t) =
unpair(t1) ∪ unpair(t2) iff t = (t1, t2), and {t} otherwise.

Variables are by definition typed, but we explicitly allow
for variables of type Term. This allows us to e. g. capture

type flaw attacks, or handle ciphertext forwarding (tickets).
For convenience, we define a type for all terms, given by
the function type : Term → P(Term), where we have that
t 6∈ Var ⇒ type(t) = {t}, and furthermore we have that for
all t the elements of type(t) are ground terms, i. e. they do
not contain variables as subterms.

A substitution σ = [u1, . . . , uN/t1, . . . , tN ] is said to be
well-typed iff ∀i : 1 ≤ i ≤ N : type(ui) ⊆ type(ti). A variable
v is called a basic variable iff type(v) ⊆ BasicTerm. We
assume each variable has a type with infinite domain and
that we can always construct a fresh term of that type; in
particular, the intruder has this ability. We call a well-typed
substitution σ a unifier of term t and term t′ iff σ(t) = σ(t′).
We call σ the most general unifier of two terms t, t′, notation
σ = MGU (t, t′), iff for any other unifier σ′ there exists a
substitution σ′′, such that σ′ = σ ◦ σ′′.

We assume protocols from the set Protocol define a finite
set of roles. Each role is defined as a finite list of protocol
events.

ProtEvent ::= sendID(Term) | recvID(Term)

In general, protocol descriptions may include other types of
events (e. g. claims or control flow) but we abstract from
them here.

A protocol role may be executed any number of times
by each agent: each such execution is called a thread. (In
other formalisms threads may be called strands, runs, or
role instances.) A thread is identified by a unique identifier
from the set of thread identifiers ID . This set consists of a
placeholder τ used in protocol definitions, and an unbounded
number of identifiers that is used in execution traces. In
traces, we substitute in each event the placeholder τ from the
protocol definition by an identifier that uniquely identifies
the thread.

We assume a Dolev-Yao style intruder, which has full con-
trol over the network. Hence every sent message is immedi-
ately observed by the intruder, and any received message is
supplied by the intruder. We assume the intruder can gen-
erate any number of constants of the type of each variable,
and also possesses a finite set of terms stemming from the
compromised agents with whom he conspires. This includes
the private keys of these agents, and as a result the intruder
can impersonate these agents.

In order to reason about the intruder knowledge in ex-
ecution traces, it is common to either use implicit infer-
ence rules and closure over the events performed by agents
(e. g. [26]), or introduce explicit events that represent the tu-
pling and encryption performed by the intruder (e. g. [30]).
Here we choose the middle ground as in [28]: we handle
tupling implicitly, but handle encryption explicitly, by in-
troducing explicit encr and decr events. The set of events
that can occur during protocol executions consists of the
protocol events, and the events of the intruder, consisting
of init events that correspond to terms stemming from the
initial intruder knowledge, events to denote encryption and
decryption, and know events that indicate that a term is in
the intruder knowledge.

IntruderEvent ::= init | encr | decr | know
Event ::= ProtEvent | IntruderEvent(Term)

Given a protocol Q, we assume there is a definition of the
set of possible execution traces, i. e. traces(Q), for example
as given by the operational semantics in [15].



We require from the protocol semantics that the set of
traces is constrained by the protocol on the basis of (1) pro-
tocol order, i. e. an event can only occur in a specific thread
if the previous events have happened in the same thread as
indicated by the protocol, and (2) event enabling, i. e. re-
ceive events can only be executed if the expected message
is available, and all other events can always be executed.
Similarly, the intruder can only decrypt an encrypted term
if he has previously learnt both the encrypted term and the
key. In order for the substitution refinement (as defined in
the next section) to be sound, we require that variables are
assigned a value only once (no re-assignment of variables)
by pattern matching. Note that e. g. recent versions of the
Strand Spaces model [16] also satisfy these requirements.

We assume that traces are finite, and that the events in a
trace are unique; if not, a form of labeling can be applied.
For convenience, we regard each trace tr as a set of events
with an associated total order, denoted as tr = (E,≤). For
convenience, we often write trE to denote the set of events
in a trace tr, and tr≤ to denote their order. Traces do not
contain variables.

In order to capture the interaction between events and the
intruder knowledge, we define two functions for each event:
the input function in yields the terms that are required to
be in the intruder knowledge to enable the event, and the
output function out that yields the terms that are added to
the intruder knowledge after an event. The functions in and
out are both of type Event → P(Term), and are defined as
in Table 1.

Table 1: in and out functions

e in(e) out(e)
send(t) or init(t) ∅ unpair(t)
recv(t) or know(t) unpair(t) ∅
encr({| t |}t′) unpair((t, t′)) {{| t |}t′}
decr({| t |}t′) {{| t |}t′} ∪ unpair(t′

−1
) unpair(t)

The events of a trace tr are enabled iff ∀e ∈ Etr, t ∈ in(e) :
∃e′ ≤tr e : t ∈ out(e′).

3. PATTERNS
We introduce the notion of patterns in order to reason

about infinite sets of traces of a protocol. A pattern is a
tuple pt = (E,→), where E is a set of events, and → is a
relation on the events from E. A pattern forms a labeled
directed acyclic graph (DAG). The relation → induces a
partial order on the events, which generalizes the total order
on the events occurring in traces. An edge → is either said

to be unlabeled (written as e
·→ e′) or labeled with a term

t (e
t→ e′). Unlabeled edges are used to represent the order

of the events within a single role instance, whereas labeled
edges are used to capture the earliest point at which a certain
message is known to the intruder. Labeled edges are also

referred to as bindings, where the term t in the edge e
t→ e′

is said to be bound to e.
Given a pattern (E,→), we define →∗ to be the reflexive,

transitive closure of → (including both the labeled and un-
labeled variants). We explicitly choose →∗ to be reflexive
(and thus cyclic) to simplify some of the definitions.

We say that a directed acyclic graph (E,→) is a pattern
of a protocol Q if and only if:

1. Bindings denote message causality:

e
t→ e′ ⇒ t ∈ out(e) ∧ t ∈ in(e′).

2. Terms are bound to the earliest possible event:

∀e, e′, e′′, t : (e→∗ e′ ∧ e′ t→ e′′ ∧ t ∈ out(e))⇒ e = e′.

3. The pattern is consistent with the protocol Q, i. e.

∀e ∈ ProtEvent ∩ E :(
∃r ∈ Q, e′ ∈ r, σ :

(
e = σe′ ∧

(∀e′′ : e′′ 4r e
′ ⇒ σe′′ →∗ e)

))
,

where 4r denotes the order on the events of a role r
of Q.

We can interpret a trace as a pattern, if we interpret the
trace order ≤ as a set of unlabeled edges. Conversely, a
pattern pt can be considered as a filter on the traces of Q,
representing the set of traces of Q that exhibit the pattern.
We extend the function traces to capture this set, by defining

traces(Q, pt) =
{
tr
∣∣∣ tr ∈ traces(Q) ∧ ∃σ : ∀e, e′, e′′ :(

(e→∗ e′ ⇒ σe ≤tr σe′) ∧(
(e

t→ e′ ∧ e′′ ≤tr σe ∧ σt ∈ out(e′′))⇒ e′′ = σe
))}

,

where σ is a well-typed substitution from variables to terms.
For some patterns one can directly construct traces of the

protocol that contain the pattern. We call these patterns
realizable patterns, i. e. the realizable patterns are those pat-
terns for which the following predicate is true:

realizable((E,→)) ≡
∀e ∈ E : ∀t ∈ in(e) \Var : ∃e′ →∗ e : t ∈ out(e′) .

Note that here we use the assumption that the intruder can
generate sufficiently many terms of each type, which allows
us to ignore the elements of in(e) that are variables.

From such realizable patterns, we can trivially generate
traces of Q that exhibit the pattern, which is captured by
the following lemma.

Lemma 1. Let pt = (E,→) be a realizable pattern of Q.
Then traces(Q, pt) is non-empty, in particular for any total
extension ≤ of→∗, and any well-typed substitution σ of vari-
ables to terms that does not violate the earliest-binding re-
quirement on patterns, we have that σ(E,≤) ∈ traces(Q, pt).

For patterns that do not satisfy the realizable predicate, it is
not immediately clear whether they represent any traces of
the protocol. We introduce the notion of pattern refinement
that allows us to manipulate patterns, with the ultimate
goal of arriving at realizable patterns.

Patterns can be refined by adding events, adding edges, or
by performing well-typed substitutions. Given a protocol Q,
we say pt′ refines pt, notation pt′ ⊆ pt, iff traces(Q, pt′) ⊆
traces(Q, pt). Given the definition of realizable patterns,
we can deduce that some patterns of a protocol can never
be refined in to realizable patterns, which implies that they
represent the empty trace set. The following lemmas capture
typical cases in which a pattern is not contained in any trace
of the protocol.



Lemma 2. Let pt be a pattern of Q. Then we have that(
∃e, e′, e′′, t : e→∗ e′ t→ e′′ ∧ e 6= e′ ∧

t ∈ in(e)
)
⇒
(
traces(Q, pt) = ∅

)
.

Lemma 3. Let pt be a pattern of Q, and let t be a Nonce
that is sent out first at event e, i. e., according to the protocol
specification, there is no earlier event than e in the same role
that sends t as a subterm. Then,(
∃e′ : e′ →∗ e ∧ e′ 6= e ∧ t ∈ in(e′) ∪ out(e′)

)
⇒
(
traces(Q, pt) = ∅

)
.

4. VERIFICATION ALGORITHM
We first give an overview of the functionality of the algo-

rithm before giving a more detailed description.

4.1 Algorithm overview
The basic idea of the algorithm is to take a pattern repre-

senting a set of traces, such as all traces violating secrecy or
all traces that include an execution of a specific role. Then,
this pattern is refined into a finite (possibly empty) set of
realizable patterns, that represent the same set of traces as
the original pattern. For properties such as checking for se-
crecy of a term, where the pattern can directly represent all
attacks, a non-empty set of realizable patterns implies that
the property is violated.

The algorithm Refine has signature

Protocol × Pattern × N→ P(Pattern) ∪ {usedm}

and has the following functionality. Given a protocol Q, a
pattern pt of Q, and an integer m, the algorithm returns a
set S, i. e.,

Refine(Q, pt,m) = S,

such that the following three equations hold. First, all pat-
terns in S are realizable.

∀pt′ ∈ S ∩ Pattern : realizable(pt′) (1)

Second, in case the flag usedm is not present, the set of
realizable patterns represents the same set of traces as the
input pattern.

usedm 6∈ S ⇒ traces(Q, pt) =
⋃
pt′∈S

traces(Q, pt′) (2)

Third, if usedm is present and the terms in the events of Q
contain only basic variables, any trace of the original pattern
is either captured by the result, or it exceeds the parameter.

usedm ∈ S ⇒ ∀tr ∈ traces(Q, pt) :(
tr ∈

⋃
pt′∈S\{usedm}

traces(Q, pt′) ∨ threadCount(tr) > m
)
(3)

The parameter m effectively limits the maximum size of the
realizable patterns (in terms of the number of events), but
nevertheless allows for unbounded verification, because for
the vast majority of protocol patterns all possible traces are
captured by a small set of realizable patterns. Furthermore,
unlike e. g. CPSA or ProVerif, the algorithm always provides
useful information about the absence of “small” attacks, cor-
responding to the verification result provided by bounded

model checking tools such as OFMC [4]. Hence, in the case
that usedm is present, the algorithm also provides useful
results, based on equation (3).

The function threadCount is not the only possible pruning
function that can be used. It can be replaced by any func-
tion f from Pattern → N that is monotonically increasing
over pattern refinement by event extension as used in the al-
gorithm, i. e. we must have that f((E ∪F,→)) > f((E,→))
each time a non-empty set of events F is added in the al-
gorithm. For example, f((E,≤)) can also be defined as the
number of agent events in E, corresponding to trace length
in other formalisms.

4.2 Pattern refinement
For the algorithm, we try to refine patterns into realiz-

able patterns. If a pattern pt = (E,→) is not realizable,
and traces(Q, pt) 6= ∅, there exists an event whose in re-
quirements are not satisfied. Using a heuristic selectOpen,
we pick one of these, i. e. we select a tuple (ge, gt) such that

ge ∈ E, gt ∈ in(ge) and there is no e such that e
gt→ ge. We

call such a tuple an open goal. The heuristic influences the
efficiency of the algorithm, and is described in Section 4.4.

If traces(Q, pt) is not empty, then there exist patterns pt′

that refine pt by some order →pt′ and some σ, and contain

an event e such that e
σgt→pt′ σge, and hence σgt ∈ out(e).

In case that e is a decryption event, there must exist a term
{| t1 |}t2 such that σgt ∈ unpair(t1). This is an essential ob-
servation for the algorithm. We can repeatedly apply case
distinction until we end up at the first non-decrypt events
from which gt can be inferred by using combinations of un-
pairing and decryption. To capture all the ways in which
a term t1 can be unified with a (sub)term of another term
t2 (possibly after repeated decryption and projection oper-
ations), we generalize the notion of unification to so-called
decryption unification. We write [ ] to denote the empty list.

Definition 1 (Most General Decryption Unifier).
Let σ be a well-typed substitution. We call (σ, L) a decryp-
tion unifier of a term t1 and a term t2, notation (σ, L) ∈
DU(t1, t2), if either

1. L = [ ] ∧ σ(t1) ∈ unpair(σ(t2)), or

2. L = L′ · [{| t |}k], {| t |}k ∈ unpair(σ(t2)) ∧ (σ, L′) ∈
DU(t1, t).

We call a set of decryption unifiers S the most general de-
cryption unifiers of t1,t2, notation S = MGDU (t1, t2), iff

1. for all (σ, L) ∈ S we have that (σ, L) ∈ DU(t1, t2),
and

2. for any decryption unifier (σ, L) ∈ DU(t1, t2), there
exists a decryption unifier (σ′, L′) ∈ MGDU and a
substitution σ′′, such that σ′ = σ ◦ σ′′.

We use the function chain to compute the set of most general
decryption unifiers.

chain(t1, t2) ={
(σ, [ ])

∣∣ t′ ∈ unpair(t2) ∧ σ = MGU (t1, t′)
}
∪{

(σ, L·[{| t |}k])
∣∣ {| t |}k ∈ unpair(t2)∧(σ, L) ∈ chain(t1, t))

}
The procedure chain terminates. If all variables occurring
in t2 are basic variables, then we have that chain(t1, t2) =



MGDU (t1, t2). If t2 contains non-basic variables, chain
might not cover all options. We mitigate this problem in
the majority of cases by application of Lemma 2, and the
choice of heuristics in the algorithm. In cases where these
both fail for a given protocol, the results are marked incom-
plete, as in the bounded verification case, and the remaining
finite possibilities are unfolded similar to [5]. Unlike [5], here
we only need to consider the finite case for unfolding of en-
cryptions.

If we add protocol events to the pattern, we must ensure
the pattern meets the protocol consistency requirements.
For this purpose we define an auxiliary function prefixClose,
which ensures for all events that the preceding events from
that same role also occur in the same thread.

Algorithm 1 Refine(Q,pt,m)

Require: Q is a protocol, pt is a pattern, and m is an integer.
Ensure: Returns a set of realizable patterns. The set may in-

clude the special symbol ’usedm’ when the complete set of re-
alizable patterns can not be determined.

if threadCount(pt) > m then
return {usedm}

else
if prune(Q, pt) then // Prune checks for the preconditions
of Lemma 2 and 3.

return ∅
else

if realizable(Q, pt) then
return {pt}

else // pt is not realizable.
(ge, gt) ⇐ selectOpen(pt) // Apply heuristic to select
an unbound term, and apply case distinction on possi-
ble earliest bindings of gt.
result1, result2, result3⇐ ∅, ∅, ∅
for all (e, C) ∈

{
(e, chain(t, gt))

∣∣ e ∈ Ept∧t ∈ out(e)
}

do

pt′ ⇐ σC(pt ∪ {e Cn→ · · · decr(Ci) · · ·
gt→ ge})

result1⇐ result1 ∪Refine(Q, pt′,m)
end for
if gt = {| t1 |}t2 then

pt′ ⇐ pt ∪ {encr(gt) gt→ ge}
result2⇐ Refine(Q, pt′,m)

end if
for all (pt′, e, C) ∈

{
(pt′, e, chain(t, gt))

∣∣ t ∈ out(e) ∧
e ∈ ev(Q) ∧ pt′ ∈ prefixClose(Q, e)

}
do

if e is not an init event then
newid⇐ a thread identifier that does not occur in pt.
for all x ∈ threadIDs(pt) ∪ {newid} do
σ′ ⇐ σC ∪ [x/τ ]

pt′′ ⇐ σ′(pt∪pt′∪{e Cn→ · · · decr(Ci) · · ·
gt→ ge})

result3⇐ result3 ∪Refine(Q, pt′′,m)
end for

end if
end for
return result1 ∪ result2 ∪ result3

end if
end if

end if

The resulting procedure Refine, shown as Algorithm 1, is
guaranteed to terminate. Each iteration either decreases the
number of terms in the in(e) set of an event e which have
no corresponding incoming edges, or increases the number
of honest agent events. From these two elements we can
construct a non-increasing invariant (measure) that ensures
termination.

The correctness of unbounded verification, corresponding
to Formula (2), depends on the algorithm exploring all pos-
sibilities for enabling the receive events.

Theorem 1. Let pt be a pattern of a security protocol Q,
and let m be an integer. Let S = Refine(Q, pt,m) such that
usedm 6∈ S. Then

traces(Q, pt) =
⋃
pt′∈S

traces(Q, pt′).

Proof sketch: If the refinement algorithm returns a non-
empty set S of realizable patterns, it is straightforward to
see that any trace of one of these realizable patterns also ex-
hibits the original pattern pt, based on the notion of pattern
refinement. The converse, that all traces of pt are captured
in S, depends on the observation that any trace that exhibits
pt must be realizable. Let t be a trace of traces(Q, pt). The
algorithm refines the pattern pt for all possible traces of Q,
such that one of the refinements must contain t. In partic-
ular, all receive events in t must be enabled by a (set of)
preceding events. These preceding events must have non-
empty out sets, and hence must be either send, decr, encr,
or init events. Branching is done on the type of event, and
for all possible thread identifiers. These include the thread
identifiers occurring in the pattern as well as a fresh (i. e.
not occurring in the pattern yet) thread identifier. In the
case that a decr event is assumed to be the enabling event,
there must exist a finite chain of decrypt events, preceded
by a non-decrypt event.

4.3 Verifying security properties using pattern
refinement

Next we show how the algorithm is used for verification,
falsification and characterization.

Verification and falsification of confidentiality proper-
ties.

Confidentiality properties are commonly of the form “for
all traces of the protocol, if an honest agent executes a role
R of a protocol Q, and the intended communication partners
are honest, then the intruder should never learn a particular
term”. We construct a pattern pt that captures exactly all
traces that violate this confidentiality property. The pat-
tern represents all traces in which the property is false, and
therefore it consists of the following:

1. the events of the role R, along with the order induced
by the role specification, and including only honest
agent names (captured by the typing system, by sub-
stituting the agent variables by variables that may be
substituted only by honest agent names),

2. the initial intruder knowledge, including the private
keys of compromised agents, represented by init events,

3. the event know(t) that expresses the intruder knows t
at some point.

In a pre-processing step of the algorithm, security properties
are automatically turned into a pattern that represents all
traces that violate the property.

Next, the refinement algorithm is applied to Q, pt,m for
some m and returns the result set S. We distinguish three
cases.



1. S ∩ Pattern 6= ∅: Following Lemma 1 we can directly
construct traces of Q that exhibit pt from each element
of S∩Pattern, which represent attacks. Hence secrecy
is violated, and the property is falsified.

2. S = ∅: From equation (2) we have that there exist no
traces exhibiting the pattern, hence no attacks exists.
This constitutes unbounded verification.

3. S = {usedm}: Based on equation (3) we conclude that
there are no attacks with m or less threads, consti-
tuting bounded verification. Increasing m may yield
unbounded verification or falsification.

Characterization of security protocols.
Characterization, as described in [16], provides a concise

finite representation of all possible protocol behaviours. The
approach essentially consists of giving for all roles a finite
representation of all traces that include an instance of that
role. This corresponds directly to the functionality of the al-
gorithm presented here, and can be performed by applying
the algorithm to a pattern that consists of (1) the events of
the role R, with the order induced by the role specification,
and including only honest agent names, (2) initial intruder
knowledge events init. The result of the algorithm, if it does
not contain usedm, provides a complete characterization. If
the result contains usedm, it only characterizes all traces
which can be represented by realizable patterns that do not
have more than m threads. An example of a complete char-
acterization in our algorithm is provided in Appendix A.

Note that the characterizations generated by our refine-
ment algorithm differ slightly from those in [16]. We elabo-
rate on the differences in Section 5.1.

Verification and falsification of authentication proper-
ties.

We first apply the characterization process and then check
whether the authentication property holds for each realiz-
able pattern. This allows for verification of e. g. aliveness,
non-injective agreement. It also allows us to efficiently es-
tablish ordering related properties such as non-injective syn-
chronisation.

4.4 Heuristics
The heuristic selectOpen used in the algorithm influences

both the effectiveness and efficiency of the algorithm. Recall
that an open goal is a tuple (ge, gt), where gt ∈ in(ge), that
needs to be connected by an incoming edge labeled with
gt in order to arrive at a realizable pattern. The heuristic
selects one of possibly many such open goals, which is used
for case distinction and pattern refinement. Although the
algorithm will try to bind any other open goals in further
iterations, any substitutions made by the case distinctions
and refinement steps influence the branching factors further
on. Furthermore, for some heuristics, contradictory states
(corresponding to patterns with empty trace sets) may occur
earlier in the iteration process. This means the heuristic is
important not only for the speed of the verification, but also
for improving the number of cases in which verification is
complete. Note that a similar heuristic must exist in the
Athena algorithm [28], but has not been elaborated by the
authors.

As our main goal is to establish falsification or unbounded
verification, we choose a heuristic that is optimal for the ef-
fectiveness of the algorithm: to achieve, even with a low
choice for the parameter m, unbounded verification for as
many protocols as possible. Note that this may be less effi-
cient for particular protocols where unbounded verification
is not achieved (and hence cause the algorithm to be slower).

Observe that the choice of heuristic influences efficiency
and effectiveness of the algorithm, but it does not influence
the correctness of the algorithm.

We devised over 20 candidate heuristics and investigated
their effectiveness. Here we report our main findings and
illustrate them by means of a few selected heuristics, ordered
according to their effectiveness.

• Heuristic 1: Random. An open goal is selected ran-
domly for case splitting.

• Heuristic 2: Constants. For each open goal term t,
the number of local constants that are a subterm of
t, is divided by the number of basic terms that are
a subterm of t. The goal with the highest ratio is
selected.

• Heuristic 3: Open goals that correspond to the keys
needed for decrypt events are given higher priority, un-
less these keys are in the initial intruder knowledge.

• Heuristic 4: Give priority to goals that contain a pri-
vate key as a subterm; next, give priority to goals that
contain a public key ; all other terms have lower pri-
ority.

• Heuristic 5: A combination of heuristics 2, 3 and 4,
where first heuristic 4 is applied. If this yields equal
priorities for a goal, heuristics 2 and 3 are applied.

Regarding heuristic 4, we observe that not all security pro-
tocol semantics explicitly mention such concepts as ’private’
or ’public’ key (there might be no such terms, or multiple
key infrastructures). We derive these from the initial in-
truder knowledge and role descriptions by identifying func-
tion names which are never sent as a subterm, but only as
keys. This will typically include the asymmetric key func-
tions sk and pk. Second, we observe that for some functions,
all applications are in the initial intruder knowledge, usually
the public keys such as pk, whereas for others only a strict
subset of the domain is part of the initial intruder knowl-
edge, usually the private keys sk.

For all heuristics, we have that if two open goals are as-
signed the same priority value, the open goal that was added
first is selected. Tests have shown this to be slightly more
effective for all heuristics involved.

The first heuristic acts as a reference point for establishing
relative effectiveness of each heuristic. The second heuristic
corresponds to the intuition that terms which contain more
local constants of particular threads, can only be bound to
very particular send events (as opposed to terms with many
globals or variables), resulting in less case distinctions. We
believe a similar heuristic was used in a version of the Athena
tool. The third heuristic captures the intuition that there
should be few ways in which the intruder can gain access to
a decryption key, as in general keys should not be known to
the intruder. (Unless it concerns signatures, in which case
the decryption key is the public key, which is part of the



initial intruder knowledge.) For the fourth heuristic, a strict
priority is given to cases where e. g. the intruder decrypts
something with a key that is never sent by the regular agents,
usually corresponding to long-term keys, as these branches
often lead to contradictory states. Finally, the fifth heuristic
is a combination of the previous three heuristics, using a
lexicographic order. For the fifth heuristic various weighting
functions were also considered, of which the lexicographical
order performed best in general.
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Figure 1: The impact of the heuristics on the effi-
ciency (number of states traversed, for 518 claims)

Given a fairly low setting of the parameter, in particu-
lar we set m = 4, we have investigated how each heuristic
performed, when applied to a test set of 128 protocol de-
scriptions, with 518 security claims. The test set includes
the vast majority of the protocols in the SPORE library [29],
various protocols from scientific papers, some variations on
existing protocols, and new protocols, as modeled by users
of the Scyther tool. A time limit was set for the iteration
procedure, which was only used to abort tests for the first
two heuristics. In Figure 1 we show the impact of the heuris-
tics on the number of states explored. From the graph it is
clear that heuristic 5 explores almost 40 times less states
than the random heuristic 1. Intuitively, this corresponds
to avoiding unnecessary branching, and a tendency to arrive
at contradictory trace patterns in less iterations.

Because the effectiveness of the heuristics depends to a
large degree on the particular protocol under investigation,
it is difficult to give an analytical explanation of the results
for the complete test set. However, it seems that the heuris-
tics 2, 3 and 4 can be used to support each other, as is shown
by the performance of heuristic 5.
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Figure 2: The impact of the heuristics on the effec-
tiveness (for 518 claims, m = 4)

The heuristic also has a direct result on the completeness
of the results, which is depicted in Figure 2. For heuristic 1,
we get a complete result (based on complete characteriza-
tion) for less than 30 percent of the claims. This improves
for each heuristic, leading to an 82 percent rating for heuris-
tic 5. In other words, if we use heuristic 5, we have that
for 82 percent of the claims in the test set, the algorithm
is able to either find an attack, or verify correctness for an
unbounded number of threads. In the remaining 18 percent
of the cases the algorithm determines that there are no at-
tacks involving four threads or less, but it might be possible
that there are attacks involving five or more threads. We
conclude that heuristic 5 is to be preferred from the set of
investigated heuristics.

5. RELATED WORK AND PERFORMANCE

5.1 Related algorithms and tools
Although there are a large number of algorithms and tools

for the bounded verification of protocols, e. g. [1, 4, 11, 22],
there are only a few methods suitable for unbounded verifi-
cation. The techniques used for unbounded verification are
usually based on overapproximations of the protocol execu-
tion model. This includes using methods based on static typ-
ing, e. g. [9,19], overapproximation of nonce generation [6,8] ,
or more recently by causality-based abstraction of multiplic-
ity [2,3]. The methods based on overapproximation are often
efficient for protocols in which each protocol message can be
uniquely identified, e. g. in the case for protocols that are suf-
ficiently tagged for methods based on typing information.
On the other hand, these methods commonly suffer from
two problems. First, except for ProVerif, these methods in
general do not allow for the generation of counterexamples
(attacks), and their scope is restricted, in the sense that the
techniques often fail for common protocols that are not suf-
ficiently tagged. The current state-of-the-art in unbounded
verification based on overapproximation is ProVerif, which
can generate valid counterexamples in some cases when the
unbounded verification fails. However, all these methods
have cases in which the algorithms fails to produce any re-
sults, i. e. in which the tool can make no statement about
the property, or does not terminate.

The algorithm presented here is most closely related to
the Athena algorithm as described in e. g. [28], but the as-
sociated tool has never been publicly released. The Athena
algorithm has been reported to be efficient. However, the
algorithm as described in [28] suffers from the requirement
of untyped variables (which is needed to model the intruder
roles in the strand spaces). As a result, the set of “interm”
unifiers is by definition infinite for the intruder roles, which
causes infinite branching at each “split” step of the Athena
algorithm. This problem has been acknowledged by Berezin
in [5]. Furthermore, the strand space framework underlying
the Athena tool does not allow for composed keys, and the
algorithm does not allow for verification of ordering related
security properties such as synchronisation.

In [16] a method is developed to compute the complete
characterization of a protocol role, using an extended ver-
sion of the strand spaces model. In this work, characteriza-
tions correspond to ordered sets events of honest agents only,
with information-preserving homomorphisms and confiden-
tial keys. The homomorphisms are an alternative way of
dealing with both equivalence up to renaming and variable



instantiation. The confidential keys are an alternative way
of expressing honesty assumptions on agents. The charac-
terizations of CPSA have three main drawbacks. First, not
all homomorphisms (or variable instantiations) may lead to
executable traces, and they therefore correspond to an over-
approximation of realizable patterns. Second, the strong
connection to authentication tests means that protocols that
can not be analysed using authentication tests, cannot be
characterized, even when they may have meaningful charac-
terizations. (As a trivial example, consider a possibly flawed
protocol that does not use encryption at all.) Third, the
CPSA algorithm is not guaranteed to terminate. Further-
more, to the best of our knowledge CPSA cannot provide
a complete characterization in cases where Scyther can pro-
vide it, e. g. for the Otway-Rees protocol, even though this
protocol should fall into the domain of protocols that CPSA
can characterize.

5.2 Performance
The refinement algorithm implemented in Scyther pro-

vides state-of-the-art performance in terms of efficiency. In
Table 2 we provide an impression of the performance of
the Scyther tool. In the table, the NSPK, NSPK-FIX and
Otway-Rees protocols has been modeled according to SPORE
[29]. The two versions of the TLS protocol are taken from
a paper [27] and the AVISPA library of protocols [20]. The
fngn protocols are instances of a family of protocols de-
scribed in [25]. The protocols from this family are not in-
tended for practical usage, but are explicitly designed to ex-
hibit an attack involving n+ 1 threads, but no attack with
fewer threads.

Table 2: Verification times (1.66 GHz Intel Centrino
processor, 1GB ram, Linux)

Protocol Time Details
NSPK 0.1s attack
NSPK-FIX 0.1s verified
Otway-Rees 0.1s verified (typed variables)
Otway-Rees 0.0s attack (type flaw)
TLS (Paulson) 0.2s verified
TLS (Avispa) 0.2s attack (“Alice talks to Alice”)
NSPK-FIX || 0.3s attack (multi-protocol attack)
NSPK-alt

f10g10 0.2s attack using 11 threads

f30g30 10.1s attack using 31 threads

f50g50 110.1s attack using 51 threads

The efficiency of the algorithm has made new types of pro-
tocol analysis possible, including multi-protocol analysis as
performed in [12]. In such an analysis, the assumption that
a protocol is the only protocol running in the environment
is dropped. Because security properties do not compose in
general, it can be the case that a security protocol that is
correct in isolation, becomes incorrect when composed (e. g.
sequentially, or in parallel) with another security protocol.
However, the complexity of such an analysis, when compared
to traditional (single) protocol analysis, is exponential in the
number of composed protocols. Using a version of the re-
finement algorithm presented here, the author of [12] was
able to efficiently perform large scale multi-protocol anal-
ysis tests involving up to three composed protocols, which
was not feasible with any other tool.

The performance of the Scyther tool has also been com-
pared to a number of other state-of-the-art protocol verifi-
cation tools, including ProVerif, and the four AVISPA tools:
TA4SP [8], OFMC [4], Cl-AtSe [31], and SatMC [1]. These
tests are described in [14]. In the tests, Scyther outper-
formed the bounded tools, OFMC, Cl-AtSe, and SatMC. As
a result, to the best of our knowledge, Scyther is the fastest
available tool that does not use approximation techniques.

Two of the compared tools in [14] can also perform un-
bounded verification. These are ProVerif and TA4SP. In our
tests, ProVerif and Scyther often perform similarly. In the
single case where Scyther cannot perform unbounded ver-
ification, its execution time is exponential with respect to
the parameter m. Both Scyther and ProVerif outperform
TA4SP both in speed as well as in scope.

Two other related tools, Athena [28] and CPSA [16], have
not been publicly released. We are therefore not able to
provide any performance comparisons. The minimal sets of
reported execution times in papers suggest that Athena has
similar execution times to Scyther, whereas CPSA seems
significantly slower.

6. FUTURE WORK
As future work, it will be of interest to investigate how

algebraic properties can be efficiently integrated in the algo-
rithm, allowing for handling of e. g. exclusive-or or modular
exponentiation. If we restrict the algebraic properties such
that the set of unifiers of two terms is finite, integration is
straightforward. However, if the set of unifiers is infinite,
additional techniques are required to extend our algorithm
to include these algebraic properties.

As already suggested in [28], the exploration of the search
space by backwards search may serve as a useful basis for
applying automatic theorem proving. This would turn the
unbounded verification result of the tool in to a machine-
checked proof of correctness. (Note that this would only be
a proof of the security property of the protocol model in the
abstract execution model, not an “absolute” proof of secu-
rity.) However, for excluding bugs in the verification tool,
as well as certification purposes, this would be a valuable
result. Work in this direction has already started [24].

Other future directions include strengthening the Dolev-
Yao intruder model underlying the verification mechanism
along the lines of e. g. guessing attacks.

7. CONCLUSIONS
We have presented an algorithm for the unbounded veri-

fication, falsification, and characterization of security proto-
cols. The algorithm provides a number of novel features as
well as state-of-the art performance.

The algorithm builds on ideas from [28]. Our contribu-
tions include a generalized algorithm that results in a wider
scope of protocol models that can be handled. By improving
pruning rules and a different way to deal with the intruder
events, we are able to deal with variables that can contain
tuples and encryptions. We provide a means to ensure ter-
mination whilst still proving a meaningful verification result
(i. e. bounded verification), and we allow for verification of
a larger class of security properties.

Our contributions also include an alternative way to gen-
erate complete characterizations as in [16], not only provid-
ing a very efficient way to generate characterizations, but



also for a larger class of protocols than handled by CPSA.
Our reformulation of characterization in terms of realizable
patterns is independent of concepts such as authentication
tests.

The implementation of the algorithm in the Scyther tool
provides state-of-the-art performance, shown in [14]. In
combination with the semantics from [15], it has made novel
types of analysis feasible, such as multi-protocol analysis [12].
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symbolic model checker for security protocols.
International Journal of Information Security,
4(3):181–208, 2005.

[5] S. Berezin. Extensions to Athena: Constraint
satisfiability problem and new pruning theorems based
on type system extensions for messages. http://www.
sergeyberezin.com/papers/athena-extensions.ps

(unpublished manuscript), 2001.

[6] B. Blanchet. An Efficient Cryptographic Protocol
Verifier Based on Prolog Rules. In Proc. 14th IEEE
Computer Security Foundations Workshop (CSFW),
pages 82–96, Cape Breton, June 2001. IEEE
Computer Society.

[7] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and
H. Nielson. Static validation of security protocols.
Journal of Computer Security, 13(3):347–390, 2005.

[8] Y. Boichut, P.-C. Héam, O. Kouchnarenko, and
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APPENDIX
A. THE SCYTHER TOOL

An instance of the algorithm presented in this paper was
implemented in the Scyther tool [13]. The tool uses a se-
curity protocol model with operational semantics from [15],
and can verify security properties such as secrecy of terms
and various authentication properties, including synchroni-
sation [15]. Additionally, the tool can establish complete
characterization [16] of protocol roles. The tool is freely
available for Windows, Linux, and Mac OS X, and can be
downloaded from http://people.inf.ethz.ch/cremersc/

scyther/.
The input in the left of Figure 3 shows the description

of the Needham-Schroeder protocol, including its security
properties, which can be loaded by the Scyther tool. The
input format is essentially a role-based description of a pro-
tocol, and is based on the operational semantics for security
protocols as defined in [15]. In this formalism, security prop-
erties are denoted by so-called claim events. These are con-
sidered to be part of the protocol description. The Scyther
tool can establish whether these claims are satisfied (verifi-
cation) or not (falsification).

// PKI infrastructure

const pk: Function;

secret sk: Function;

inversekeys (pk,sk);

// The protocol description

protocol ns3(I,R) {

role I {

const ni: Nonce;

var nr: Nonce;

send_1(I,R, { ni,I }pk(R) );

read_2(R,I, { ni,nr }pk(I) );

send_3(I,R, { nr }pk(R) );

claim_I1(I,Secret,ni);

claim_I2(I,Secret,nr);

claim_I3(I,Nisynch);

}

role R {

var ni: Nonce;

const nr: Nonce;

read_1(I,R, { ni,I }pk(R) );

send_2(R,I, { ni,nr }pk(I) );

read_3(I,R, { nr }pk(R) );

claim_R1(R,Secret,ni);

claim_R2(R,Secret,nr);

claim_R3(R,Nisynch);

}

}

const Eve: Agent;

untrusted Eve;

compromised sk(Eve);

Figure 3: Left: Input file for the Scyther tool, de-
scribing the Needham-Schroeder protocol. Right:
Role I complete characterization: a single pattern.

In order to give an impression of what a complete char-
acterization looks like, we show a complete characterization
of the two roles of the Needham-Schroeder protocol.

The complete characterizations are produced automati-
cally by the Scyther tool. In particular, using the graphical
user interface of Scyther, the characterization graphs can be
reproduced by simply loading the file ns3.spdl (shown in
the left of Figure 3) and pressing the “Characterize roles”
button found in the “Verify” menu. This produces the right
of Figure 3 and Figure 4.

In the graphs, the boxes and ellipses represent events.
Vertical downwards arrows, which are unlabeled, represent
the ordering of events within a thread (or “run” in these
graphs). Thread identifiers have a ’#’ prefix. Boxes rep-
resent events executed by honest agents, or elucidate the
details of a thread, if they are the first box on a thread.
Ellipses represent intruder events, or are used to elucidate
implicit intruder behaviour (such as “fake sender”).

For the initiator role of the Needham-Schroeder protocol,
there is only one trace pattern, shown in the right of Fig-
ure 3. Thus, all traces that include the initiator role, must
also include the structure in the graph, which exactly cor-
responds to a valid protocol execution. As a result, any
authentication claim (including synchronisation) at the end
of the initiator role is correct.

For the responder role, there are exactly two explicit trace
patterns, shown in Figure 4. The first of these corresponds
to the expected protocol execution, whilst the second is
exactly the man-in-the-middle attack originally found by
Lowe.

Figure 4: Needham-Schroeder, role R complete
characterization: two patterns.

This characterization effectively shows that every attack
on the authentication properties of Needham-Schroeder in-
cludes the man-in-the middle attack, as the two patterns
represent a complete characterization of the responder role.
Each execution history of the protocol that includes an in-
stance of the responder role, either contains also a partner
to synchronize with, or it contains the man-in-the-middle
attack.


