
Examining Indistinguishability-Based
Security Models for Key Exchange Protocols:

The case of CK, CK-HMQV, and eCK

Cas Cremers
∗

Department of Computer Science, ETH Zurich
8092 Zurich, Switzerland

cas.cremers@inf.ethz.ch

ABSTRACT
Many recent key exchange (KE) protocols have been proven
secure in the CK, CK-HMQV, or eCK security models. The
exact relation between these security models, and hence
the relation between the security guarantees provided by the
protocols, is unclear. We show first that the CK, CK-HMQV,
and eCK security models are formally incomparable. Second,
we show that these models are also practically incomparable,
by providing for each model attacks on protocols from the
literature that are not considered by the other models. Third,
our analysis enables us to find previously unreported flaws in
protocol security proofs from the literature. We identify the
causes of these flaws and show how they can be avoided.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—protocol verification; D.4.6 [Management of
Computing and Information Systems]: Security and
Protection—cryptographic protocols, authentication

General Terms
Theory, Security

Keywords
Security Models, Authenticated Key Exchange, Session-state,
Ephemeral-key, Perfect Forward Secrecy, weak Perfect For-
ward Secrecy, Key Compromise Impersonation, Matching
sessions, Partnering

1. INTRODUCTION
Key Exchange (KE) protocols form a crucial component in

many network protocols. During recent years, numerous new

∗This work was supported by the Hasler Foundation within
the ComposeSec project and by the ETH Research Grant
ETH-30 09-3.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’11, March 22–24, 2011, Hong Kong, China.
Copyright 2011 ACM 978-1-4503-0564-8/11/03 ...$10.00.

protocols have been developed that are more efficient than
their predecessors and provide stronger security guarantees.
This has led to the development of increasingly stronger
security models in which these protocols have been proven
secure. Some examples are the 2-pass ISO signed Diffie-
Hellman protocol in the CK model from [5, 6], the HMQV
protocol in a closely related model CKHMQV in [16], and the
Naxos protocol in the eCK model [17, 18]. The underlying
idea is that the newer security models are stronger, and hence
protocols proven in the newer models are at least as secure
as the protocols proven in earlier models. Such claims occur
often in the literature, e. g., in [8, 17, 18, 20, 21, 24, 26, 27].
However, given the subtle differences among the models,
this conclusion is not obvious. In fact, the many technical
differences suggest that the models are formally incomparable.
Such claims have also been made, e. g., in [4,11], contradicting
the works cited above. To further complicate matters, we
observe that even if two models are incomparable for minor
technical reasons, it may still be the case that one model is
stronger than another model for all realistic protocols.

The fact that the relation between recent strong KE secu-
rity models has not been made precise, combined with the
unproven assumption that some models are stronger than
others in practice, hinders the objective comparison of the
security properties of the various protocol proposals. We
address this situation by analysing and relating three recent
(and closely related) security models for indistinguishability-
based proofs of KE security that have been used for the
analysis of a large number of protocols. Our observations
refute several claims made previously in the literature.

There is a limited amount of related work investigating
various notions of KE security. Some earlier models for key
exchange have been compared in [9]. The use of session
identifiers in KE models has been studied in [10]. The CK [5]
model has been related to one of its variants with respect
to specification of peers before or after the session in [22].
Several authors have suggested that the eCK model is the
strongest security model, e. g., [8, 17, 18, 20, 21, 24, 26, 27].
In [11] it was shown that this is not the case. In contrast
to [11], our work focusses not on a single query difference
between two models but on the full security models, and
relates multiple models in detail.
Contributions. First, we show that the CK, CKHMQV,
and eCK models are formally incomparable, based on their
security prerequisites, adversary model, and application do-
main. Our analysis reveals many previously unreported
subtleties in the interaction between the elements of the

models.
Second, we show the practical differences, by showing

attacks on protocols from the literature that are detected
in one model but are not considered in the others, and vice
versa. Our findings imply that the three models are not only
formally but also practically incomparable.

Third, we identify common sources of errors in protocol
security proofs based on these models. We analyze recent
protocol security proofs and find previously unreported flaws.
We show how such errors can be avoided when developing
security proofs.

We proceed as follows. In Section 2 we recall the ideas
underlying indistinguishability-based KE security models,
and describe the eCK, CK and CKHMQV models. In Section 3
we show formal incomparability of the models. In Section 4
we show practical incomparability of the three models. In
Section 5 we identify several subtleties in recent proofs and
related KE security models, and show how to avoid common
problems. We consider possible practical interpretations of
each model in Section 6. We draw conclusions and discuss
future work in Section 7.

Acknowledgements
The author is grateful to Berkant Ustaoğlu and Alfred Menezes,
whose constructive comments and insightful discussions have
lead to a complete rewrite of an earlier version of this paper,
to Michèle Feltz for many constructive suggestions, and to
the anonymous reviewers.

2. THREE SECURITY MODELS FOR KEY
EXCHANGE PROTOCOLS

We first provide a high-level overview of KE models before
describing three models in detail.

2.1 Elements of Indistinguishability-based se-
curity models for key exchange

KE security models define properties of protocols when
executed in the presence of an active adversary. We distin-
guish between three main aspects: the execution model, the
security property that should be satisfied, and the adversary
model.

The execution model defines how protocols are executed
by regular participants. The execution model defines gen-
eral aspects of protocol execution that are not mentioned
in the protocol specification. For example, the details of
session creation or session termination may involve setting
up session identifiers, accepting or rejecting particular incom-
ing requests, or erasing session state. Between KE security
models there are many technical differences in the execution
models that have implications for the judgements made on
protocols.

The security property defines what the combined system,
consisting of the interaction between participants and the
adversary, should satisfy. In KE security models the main
properties of interest are that (1) intended communication
partners compute the same key, and that (2) the adversary
is not able to distinguish the exchanged session key from a
random bit string with more than non-negligible probability.

The adversary model describes the capabilities of the ad-
versary, in whose presence the protocol should satisfy the
security property. We assume that the adversary has com-
plete control over the network and can eavesdrop, remove,

or insert messages. Additionally, the adversary may have ad-
ditional powers, such as revealing some long-term or session
keys, revealing the random numbers generated by partici-
pants, or revealing parts of the session-state of some sessions.

One important element of KE models is the definition
of matching sessions (sometimes referred to as partnering),
which aims to capture when two sessions are “intended com-
munication partners”. Matching sessions are used in KE
models in two distinct ways. First, they are used to define a
minimal form of protocol correctness: matching sessions are
required to compute the same key. Second, they are used
to define the adversary capabilities (e. g., the adversary can
reveal the session key of non-matching sessions). Note that
earlier KE models such as [3] simply assumed the existence
of a matching session definition: however, as we will show in
Section 5.3, only assuming existence is not sufficient when
the adversary can perform queries on incomplete sessions, as
is the case for the models considered here.

Some elements of the KE models we present below seem
to be strongly connected to (unspecified) domain-specific
knowledge. For example, one unstated assumption of the
CKHMQV and eCK models seems to be that each role of the
protocol creates fresh values and includes these in outgoing
messages as well as the key computation. Without such an
assumption, matching sessions might not be unique, and one
would need to consider replay attacks.

In our descriptions of the security models below, we try
to stay close to their original formulations, and give detailed
page references where possible. We reformulate the models
slightly to provide a more uniform structure among the
models to facilitate comparison later on.

2.2 Preliminaries and notational conventions
A protocol consists of two or more roles, such as initiator,
A, or responder, B. We assume any number of participants
(A, B, . . .) execute role instances. We call each such instance
of a protocol role, as executed by a participant, a session.
Participants can execute multiple sessions concurrently.

During a normal protocol run (without adversary interfer-
ence) between two participants A and B, there is a session
at A and a session at B. For KE protocols, we require that
both sessions compute the same session key. The KE mod-
els that we consider in this paper all include a notion of
matching sessions (sometimes called partnering) that aims
to make precise when two sessions are partners, and thus
should compute the same key.

A protocol is said to be role-symmetric, or have symmetric
roles, when the messages of each role are computed or handled
by the same algorithm when abstracting away from the
order in which they are sent or received. Many implicitly
authenticated 2-message KE protocols such as MQV are
role-symmetric: In both roles sending a message consists
of generating a random ephemeral key z and sending gz.
Receiving a message is also dealt with in the same way
in both roles. In contrast, most variants of signed Diffie-
Hellman are not role-symmetric. For signed Diffie-Hellman
protocols, the first message obviously does not depend on any
previously communicated messages, but the second message
usually contains an element of the first message that was
received, such as the initiators ephemeral public key.

Note that role-symmetry does not imply that the key is
computed in the same way for both roles. For example, the
Naxos protocol [18] is role-symmetric because its messages

are computed and handled using the same algorithm for
both roles, except for their order. However, in the key
computation, an agent in the initiator role puts his name
as the one-before-last parameter of the input to the hash
function H2, while an agent in the responder role puts his
own name as the last parameter.

The security notions are defined in terms of a game or
security experiment in which a probabilistic polynomial-time
(PPT) adversary must have a negligible advantage of winning.
In this game the adversary chooses a so-called test session
and tries to distinguish the session key of the test session
from a random bit string from the key space.

For a session s, we write sR to denote the role (initiator,
responder) performed by the session. We write sA to de-
note the participant that executes s, and sB to denote the
intended peer of the session. Furthermore, ssend denotes
the concatenation of the messages sent by s and srecv the
concatenation of the messages received. In the context of
the CK model we write ssid to denote the session identifier
of the session.

2.3 The CK model
Canetti and Krawczyk proposed in [5, 6] a security model

for key-exchange protocols, accompanied by a proof method-
ology for a class of protocols.

In this paper we write “the CK model” or “CK” to refer to
Definition 4 from [5]. In the original paper the CK model is
called the “SK-security” model in the “unauthenticated links
model (UM)” [5, p. 14]. A protocol that is secure in the CK
model is said to be “SK-secure in the UM” (often abbreviated
to “SK-secure”).
Remark. In this paper we focus only on the CK model
(SK-security in the UM), but for clarity we briefly mention
the role of the other models defined in [5]. This includes the
SK-security model in the authenticated links model (AM) [5, p.
14], which we denote here by CKAM. The CKAM model is
used in an intermediate step of the proof methodology that
is proposed in [5]. The purpose of the methodology is to
construct proofs of protocol security in the CK model. It
applies to a class of protocols that use authentication mech-
anisms to prevent the adversary from modifying network
traffic. In particular, the methodology applies to protocols
whose authentication mechanisms correspond to the defini-
tion of MT-authenticators [2]. Let P be such a protocol.
The methodology is to prove that P is secure in CK by the
following steps. First, Consider a simpler protocol P ′, which
is obtained by “peeling off” the MT-authenticators from P .
Second, prove that this protocol is CKAM-secure, i. e., secure
in a model that is similar to CK but has a passive network
adversary. Third, apply MT-authenticators to P ′ to obtain
protocol P . This way of constructing P from the CKAM-
secure protocol P ′ guarantees its security in CK by a generic
theorem [5, p. 16]. Additionally, in [5] variants of both mod-
els are defined that do not consider perfect forward secrecy.
In these alternative models sessions cannot be expired. This
restriction implies that a reveal of the long-term keys of the
actor or the peer exposes the test session, which effectively
disallows the reveal of these keys.

Analysis of a protocol in the CK model requires that the
protocol includes session identifiers. There are two require-
ments on session identifiers [5, p. 4]. First, two different
sessions at the same party A are required to have different
session identifiers [5, p. 11]. Second, if two parties wish to

exchange a key, the calling protocol must make sure they
activate matching sessions.1

The session identifiers are used to define when two sessions
are matching in CK. As we will see below, the notion of
matching sessions plays a crucial role in the security definition.
Two sessions s and s′ are said to be CK-matching if and
only if sA = s′B ∧ s′A = sB ∧ ssid = s′sid [5, p. 11]. Note that
CK-matching sessions may be performing the same role.2

In the CK security experiment, the participants start by
initializing their secret/private keys and disclosing any public
information (such as the public keys) to the adversary. Next,
the adversary is allowed to perform a sequence of queries
from the following set [5, p. 9].

• activate session s, which can take two forms. The
first form, action request q, models communication in-
ternal to sA between the KE protocol and other pro-
cesses. For KE protocols, a crucial action request is
establish-session(A,B, sid, r). If the session identifier
sid has not been activated before by party A, start
a new session s and set sA := A, sB := B, ssid :=
sid, srole := r.

The second form, incoming message m with sender sb,
models messages coming from the network. The pro-
tocol description determines how incoming messages
are dealt with, and which (if any) response message is
returned. For each session s, depending on the mes-
sage m, the session may either be aborted execution
or completed [5, p. 11]. If the session is aborted, the
session-state of s is erased. If the session is completed,
the party computes the session key k and erases the
session-state except for k.

• session expiration can be scheduled for completed ses-
sions s [5, p. 11]. Expiration erases the session state,
i. e., erases the session key k.

• session-state reveal session s. This reveals the internal
state of s. The CK model does not specify the con-
tents of the internal state of a session, but requires KE
protocols to specify the internal state explicitly. It is
only required that the session-state does not contain
the long-term secrets of the party.

• corrupt party A. This reveals all secrets of A (e. g.
private keys) as well as the internal states of all of A’s
unexpired sessions.

• session-key reveal3 a completed session s, revealing s’s
session key.

• test-session query a completed but unexpired session s.
Additionally s must not be exposed : this notion will be

1It is unclear how the calling protocol can ensure the second
requirement by communicating over an insecure network in
the presence of an active adversary without an additional
security mechanism. Furthermore, the second requirement
does not seem to play a role in the technical description of
CK or the proofs, so it is possibly superfluous.
2The informal description of the models [5, p. 4] may seem to
suggest that the roles of CK-matching sessions are different,
but the technical description [5, p. 11] clearly mentions that
this is not required.
3This query is called session-output query at [5, p. 9], but
later renamed in the context of KE-protocols [5, p. 11].

defined below. A coin b is tossed, i. e., b is randomly
drawn from {0, 1}. If b = 0 the query returns s’s session
key, otherwise the return value is randomly chosen from
the probability distribution of keys [5, p. 13/14].

In Figure 1 we illustrate the lifetime of a session and the
timing of reveal queries that apply to sessions.

The security experiment considers a subset of all possible
sequences of queries. To define the subset of considered
sequences, two additional predicates on sessions in the context
of an experiment are introduced. A session s is said to be
locally exposed [5, p. 11/12] if and only if the adversary
performed one of the following queries:

• a session-state reveal query on s,

• a session-key query on s, or

• corrupted sA before s expired (including when sA was
corrupted before s is invoked or completed).

The session s is said to be exposed if it is locally exposed or
it has a CK-matching session that is locally exposed. [5, p.
12].

A sequence of queries in an experiment must satisfy the
following constraints [5, p. 14].

• The test-session query can only be performed once.

• The test-session must not be exposed by the time the
test query is issued and the adversary is not allowed to
expose it until the end of the experiment.

Definition 1. (Secure in the CK model) [5, p. 14] A pro-
tocol P is said to be secure in the CK model, if and only if
for all PPT adversaries M as defined above, we have that

1. when two uncorrupted parties complete CK-matching
sessions, they output the same key, and

2. the probability that M guesses the bit b (i. e., outputs
b′ = b) from the test-session query correctly is no
more than 1/2 plus a negligible fraction in the security
parameter.

2.4 The CKHMQV model
Krawczyk uses in [16] variants of the CK model to prove

the security of the HMQV protocol. The security of HMQV
is proven in two phases. First, HMQV is proven secure in a
basic security model [16, p. 28], which we call CKbasic

HMQV here,
that removes a number of adversarial capabilities from the
CK model. Second, HMQV is shown to be secure in three
stronger versions of the CKbasic

HMQV model [16, p. 40].

The CKbasic
HMQV model is identical to the CK model except

for the following modifications.

• There is no session identifier available after session
activation. Rather, matching is defined in terms of
sent and received messages: Two completed sessions s
and s′ are said to be CKHMQV-matching if and only if
sA = s′B∧s′A = sB∧ssend = s′recv∧s′send = srecv [16, p.
28]. For incomplete sessions, no definition for matching
is provided in [16].

• All occurrences of CK-matching are replaced by CKHMQV-
matching.

• The adversary is not allowed to expire sessions. Be-
cause the test session must not become exposed, this
effectively prevents the adversary from corrupting the
parties that execute the test session and its matching
session, and corresponds to not checking for Perfect
Forward Secrecy [5, p. 17], [16, p. 29].

• Whereas in CK the adversary can only learn the long-
term key of the peer after the end of the partner session,
the CKHMQV model allows the adversary to learn the
long-term keys of the peer even before the start of
the partner session, as long as the adversary does not
actively interfere with the communication between the
test session and its partner session (in particular when
checking for PFS, [16, p. 42]).

• The session-state contents are defined to consist of
information known to the adversary (names, sent and
received messages) and the session key. The session-
state does not include the ephemeral keys used in a
Diffie-Hellman style exchange [16, p. 29]4

In the extended analysis of HMQV, three additional security
models are considered, described below.

A session s is said to be CKHMQV-clean [16, p. 41] in an
experiment if no session-state reveal query was performed
on s and no session-key reveal query was performed on s.

• CKKCI
HMQV [16, p. 41]: In addition to the CKbasic

HMQV

queries, the adversary is allowed to reveal the long-
term key of the actor sA of the test session s, if (i) s is
CKHMQV-clean, and (ii) sB is not corrupted.

• CKwPFS
HMQV [16, p. 42]: In addition to the CKbasic

HMQV

queries, the adversary is allowed to reveal the long-term
keys of the actor sA and peer sB of the test session s, if
(i) s is CKHMQV-clean, and (ii) a CKHMQV-matching
session of s exists5, and (iii) all CKHMQV-matching
sessions of s are CKHMQV-clean.

• CKeph
HMQV [16, p. 44/45]: In addition to the CKbasic

HMQV

queries, the adversary is allowed to reveal the ephemeral
secret keys of all sessions.

The basic security proof of HMQV in the CKbasic
HMQV model

depends on the computational Diffie-Hellman (CDH) assump-
tion. The main reason to consider multiple models is that
the security of HMQV in the CKeph

HMQV model depends on
stronger assumptions (Gap Diffie-Hellman and KEA1) [16, p.
45].

4In the context of the HMQV proof in the wCKbasic
HMQV model,

the CKHMQV definition of session-state seems to render the
session-state reveal query useless, because it can only be
performed on sessions that are not completed, i. e., before
computation of the session keys, and thus before the session
keys (or any intermediate computations for the key) are
part of the revealable session state. The only non-public
information in incomplete sessions of HMQV is the ephemeral
key, but this is explicitly excluded from the state [16, p. 29],
and therefore performing the session-state reveal query does
not seem to provide the adversary with any information he
did not know before. Note that the leakage of the ephemeral
keys is analyzed separately in the CKeph

HMQV model.
5The existence of the CKHMQV-matching session of s models
the adversary being passive during the test session, and pre-
vents the adversary from learning or modifying the ephemeral
secrets used in the test session.

establish−session incoming message

initialize session−state

update session−state

output response message;

(abort)

erase session−state

(complete) expire

erase kcompute session key k;

erase session−state

except k

session−state reveal queries session−key reveal queries

Figure 1: Lifetime of a session in CK. Although session-state reveal queries are allowed after the session is
completed, the returned state will be empty [5, p. 11], and we omit these from the graph.

We say that a protocol is secure in the CKHMQV model
if and only if it is secure in all four variants, i. e., secure in
CKbasic

HMQV, CKKCI
HMQV, CKwPFS

HMQV, and CKeph
HMQV.

Remark. The notion of weak perfect forward secrecy
(wPFS) is introduced in [16] because the basic version HMQV
belongs to a class of protocols that cannot satisfy PFS. A
generic attack is sketched by Krawczyk [16, p. 15] but no
proof is given. The class of protocols seems to cover all
implicitly-authenticated two-message KE protocols. Note
that contrary to several statements made in the literature,
this result does not hold for all two-message KE protocols.
Remark. wPFS is defined by requiring that the adversary
is passive during the interaction between the test session and
its matching session. This prevents Krawczyk’s attack [16, p.
15]. In the context of KE protocols, in which each role
generates fresh values and includes them in their outgoing
messages, this requirement can be enforced by requiring that
a session exists that CKHMQV-matches the test session. This
requirement is slightly too strong: CKHMQV-matching also
requires that the matching session of the initiator role has
received the final message. This is not needed to prevent the
attack.
Remark. The CKHMQV model is presented in [16] as if it
were a specialization of the CK model. However, it is not
a specialization in any technical sense but rather a closely
related but incomparable model. Correctness of a protocol in
either model does not imply correctness in the other model.

2.5 The eCK security model
The eCK security model (”extended-CK”) was defined by

LaMacchia, Lauter, and Mityagin in [17] and [18]. There are
minor differences between these two works. Because [17] was
published significantly before [18], we choose to consider the
latter as the proper definition of the eCK model.

We say that two sessions s and s′ are eCK-matching if
and only if sA = s′B ∧ s′A = sB ∧ ssend = s′recv ∧ s′send =
srecv∧srole 6= s′role [18, p. 7/8].6 Observe that eCK-matching
is equal to (CKHMQV-matching ∧ srole 6= s′role).

In the eCK model, the adversary can perform the following
queries [18, p. 8].

• Send(A,B,m). Sends a message m to A on behalf of

6In the original formulation the sequence of exchanged mes-
sages is required to be equal. Because the roles are distinct,
and we only consider executable two-party protocols, this is
equivalent to our reformulation.

B and returns the response. Additionally, this query
allows the adversary to establish a new session. Af-
ter receiving the sequence of messages as specified by
the protocol, sessions compute a session key and are
considered to be completed.

• Long-Term Key Reveal(A). Reveals a long-term key of
A.

• Ephemeral Key Reveal(s). Reveals an ephemeral key of
a session s.7

• Reveal(s). Reveals a session key of a completed session
s.

• Test(s) can be performed on a completed session s. A

coin b is tossed, i. e., b
$← {0, 1}. If b = 0, returns a

session key of s. If b = 1, a random bit string from the
key space is returned.

• Guess(b′). If b′ is equal to b from the test query, return
1, otherwise return 0.

As in the previous models, only a subset of all possible query
sequences is considered in eCK.

A session s is said to be not eCK-clean (analogous to the
concept of “exposed” in CK) if any of the following conditions
hold: [18, p. 8/9]

• sA or sB is adversary-controlled, i. e., the adversary
chooses or reveals both the long-term and ephemeral
keys of the participant and performs on its behalf.

• The experiment includes Reveal(s).

• A session s′ exists that is eCK-matching with s, and
the experiment includes Reveal(s′).

• The experiment includes both Long-term Key Reveal(sA)
and Ephemeral Key Reveal(s).

• A session s′ exists that is eCK-matching with s, and
the experiment includes both Long-term Key Reveal(sB)
and Ephemeral Key Reveal(s′).

7In the original description [18] sessions are identified by a
unique session identifier (role, actor, peer,m1, . . . ,mn). With-
out loss of generality we can replace the session identifiers in
our reformulation of eCK by the abstract session s, which
helps us to avoid confusion with the session identifiers from
the CK model (which are shared among matching sessions).

• No session exists that is eCK-matching with s, and the
experiment includes Long-term Key Reveal(sB).

An eCK experiment must satisfy the following constraints [18,
p. 8/9]:

• The Test query can only be performed once.

• The test session is eCK-clean.

• The Guess query is performed exactly once, as the last
query of the experiment.

An adversary M wins the eCK experiment if the Guess(b′)
bit b′ is equal to the bit b from the Test(s) query.

Definition 2. (eCK security) [18, p. 9] A protocol P is
said to be secure in the eCK model, if and only if for all PPT
adversaries M as defined above, we have that

1. when two uncorrupted parties complete eCK-matching
sessions, they compute the same key, and

2. no efficient adversary M has more than a negligible
advantage in winning the experiment, where the ad-
vantage of the adversary is defined as AdvKE

P (M) =
Pr[M wins]− 1

2
.

3. FORMALLY RELATING THE THREE SE-
CURITY MODELS

We describe the main differences between the three models
with respect to (i) the security prerequisites and (ii) the
adversary capabilities. We summarize the differences in
Table 1.

3.1 Differences in security prerequisites
The three models differ in one main aspect, which depends

both on the application domain and the adversary model.
In each model, certain generic attacks exist: some classes of
KE protocols are by definition insecure in the model. We
refer to this aspect as the security prerequisites of a model.
If these prerequisites are met, one can attempt a proof in
the model (which may then still succeed or fail).

We focus on two requirements:

• Matching sessions must compute the same key.

• The session key of the test session must be indistin-
guishable from the keys computed by non-matching
sessions (as the latter may be revealed).

The second condition implies that for protocols that are
secure in a security model, two completed sessions that com-
pute the same key must (with overwhelming probability) be
matching sessions. Hence, the definition of matching sessions
is strongly connected to the key derivation functions used in
protocols.

We define four relations between sessions, which we will
use to classify protocols and models.

Definition 3. (Relations ≈A,≈B,≈C ,≈D) Given two com-
pleted sessions s and s′, we define

s ≈A s′
def
=

(
sA = s′B ∧ s′A = sB ∧ ssend = s′recv ∧ s′send = srecv

)
(1)

s ≈B s′
def
=

(
s ≈A s′ ∧ (sR 6= s′R ∨ sA = sB)

)
(2)

s ≈C s′
def
=

(
s ≈A s′ ∧ sR 6= s′R

)
(3)

s ≈D s′
def
=

(
sA = s′B ∧ s′A = sB ∧ ssid = s′sid

)
(4)

In the CKHMQV model two completed sessions s and s′ are
matching iff s ≈A s′ [16, p. 10]. For role-symmetric protocols,
this definition allows two initiator sessions to be partners,
because ≈A ignores the order in which messages were sent.
Hence, the messages of two initiators can cross and they may
have matching sessions even though they are both in the
same role. Relation ≈B is a variant of ≈A and does not occur
in matching session definitions of the models described here.
Instead, as we will see later, this relation occurs for some
key derivation functions. Relation ≈C corresponds to the
matching sessions definition in the eCK model [18, p. 7]. It
explicitly requires the roles to be distinct, thereby excluding
two initiators from having matching sessions. Relation ≈D

corresponds to the matching sessions definition in the CK
model [5, p. 11]. It allows two initiators of role-symmetric
protocols to have matching sessions.

The above definitions allow us to categorize the KE models
and describe generic attacks, by characterizing the notion
of matching sessions in each of the models, e. g., two com-
pleted sessions s and s′ match iff s ≈A s′. We relate the
characteristics of matching sessions to classes of protocols
with particular key derivation functions.

Definition 4. (Key type) Let P be a KE protocol and let
≈ be a relation on completed sessions. Let KDFP (s) denote
the key computed by the key derivation function of P for
any completed session s. We say that P has key type ≈ iff
for all completed sessions s and s′, we have that

s ≈ s′ ⇒ KDFP (s) = KDFP (s′)

and also that, with overwhelming probability,

KDFP (s) = KDFP (s′)⇒ s ≈ s′.

As examples, we observe that MQV [19] has key type ≈A,
the NIST-variant of MQV [1] has key type ≈B , Naxos [18]
has key type ≈C , and the signed Diffie-Hellman from [5] has
key type ≈D.

Note that in this section we focus on the differences in
matching with respect to completed sessions. We will return
to the differences in matching with respect to incomplete
sessions in Section 5.2.

3.1.1 CK security prerequisites.
In CK, completed sessions s and s′ are matching iff s ≈D s′

[5, p. 11].8 Protocol messages are required to include the
session identifier [5, p. 11], which is provided by the calling
application.

Theorem 1. Role-symmetric protocols with key type ≈B

or ≈C are insecure in CK.

Proof. Let P be a role-symmetric protocol with key
type ≈B or ≈C , i. e., P has a role-symmetric execution. The
adversary establishes sessions s and s′, performed respectively
by Alice and Bob, that together form a role symmetric
execution: both Alice and Bob perform the initiator role
and their messages cross. Because the messages contain the
session identifier in the CK model, and each session accepts
the messages of the other session, the session identifiers of
both sessions must be equal. Furthermore, the names of

8Note that although the informal introduction of the CK
model [5, p. 4] suggests that roles must be distinct, the
technical description of the model clearly states that roles
are not required to be distinct [5, p. 11].

CK CKHMQV eCK

domain restrictions protocol messages contain ses-
sion identifier

behaviour restrictions adversary passive during com-
munication between test ses-
sion and its eCK matching ses-
sion

sessions that should compute
the same key

CK-matching (≈D) CKHMQV-matching (≈A) eCK-matching (≈C)

incompatible key equivalence
types for role-symmetric proto-
cols

≈B , ≈C ≈B , ≈C ≈A, ≈B

reveal long-term key of testA if test has expired, testA can
be corrupted

[wPFS]: if session matching
test exists, and both
CKHMQV-clean; [KCI]: if test
session CKHMQV-clean, and
testB not corrupted;
[basic,eph]: never

ephemeral keys of test not re-
vealed

reveal long-term key of testB if the session that CK-matches
test has expired, testB can be
corrupted

[wPFS]: if session that
CK-matches test exists, and
both test and the matching
session are CKHMQV-clean;
[basic,KCI,eph]: never

if eCK-matching sessions ex-
ist, and the ephemeral keys of
these sessions are not revealed

reveal ephemeral keys of s if ephemeral keys are in
session state and s 6= test and
s is not CK-matching test

[basic,KCI,wPFS]: never [eph]:
anytime

if s = test, the long-term key
of sA must not be revealed; if
s eCK-matches test, the long-
term key of sB must not be
revealed; otherwise allowed

reveal session keys of s 6= test if s is not CK-matching test if s is not CKHMQV-matching
test

if s is not eCK-matching test

reveal other session state of s
(e. g. intermediate
computations)

if s 6= test and s is not
CK-matching test

if s 6= test and s is not
CKHMQV-matching test

never

Table 1: Summary of formal differences between the models. For the CKHMQV model we identify the relevant
submodels in square brackets.

the participants of each session correspond to the names
of the other session in reverse order, i. e., (Alice,Bob) and
(Bob,Alice). Hence s and s′ are matching in the CK model (as
can be seen from the definition ≈D). Observe that sA 6= sB
and sR = s′R and the key type is ≈B or ≈C . This implies
that the matching sessions s and s′ compute different keys
with overwhelming probability, which violates condition 1 of
SK-security in the CK model [5, p. 14]. Therefore P is not
secure in the CK model.

3.1.2 CKHMQV security prerequisites.
In CKHMQV, completed sessions s and s′ are matching iff

s ≈A s′ [16, p. 10].

Theorem 2. Role-symmetric protocols with key type ≈B

or ≈C do not satisfy CKHMQV security.

Proof. The proof is similar to the proof of Theorem 1,
except that the reason that s and s′ are matching in CKHMQV

is based on the relation ≈A, and the violated condition is (1)
in Def. 11 of [16, p. 11].

3.1.3 eCK security prerequisites.
In eCK, completed sessions s and s′ are matching iff s ≈C

s′ [18, p. 7].

Theorem 3. Role-symmetric protocols with key type ≈A

or ≈B are insecure in eCK.

Proof. Let P be a role-symmetric protocol with key type
≈A or ≈B . First consider the case in which P has key type
≈A. Let s be the test session in the initiator role, executed
by Alice communicating with Bob. Let s′ be an initiator
session of Bob communicating with Alice. Because P has
symmetric roles, it is possible that the messages sent by s
are received by s′ and vice versa. Because the definition of
matching sessions in eCK follows ≈C , which requires roles
to be distinct, s and s′ are not matching in the eCK model.
Thus the adversary can do a Reveal(s′) query to reveal the
session key of s′. However, because the key type is ≈A,
we have that s and s′ compute the same keys. Thus, the
adversary trivially breaks the security definition [18, p. 9]
and therefore P is not secure in the eCK model. For the
second case, in which P has key type ≈B , we define s and s′

are executed by Alice while communicating with Alice, and
proceed analogously.

3.2 Differences in adversarial capabilities

3.2.1 CK adversary capabilities.
The CK model allows for state-reveal queries. These allow

the adversary to learn the contents of the local state of all
sessions except for the test session and its matching session.
The state contents act as a parameter of the security model.
The only requirement is that the local state does not contain
the long-term private keys [5, p. 6]. The compromise of

the long-term private key of the actor (the participant that
executes the test session) before the test session expires, is
not allowed in the CK model [5, p. 14]. As a result, the
CK model is not able to detect key compromise imperson-
ation (KCI) attacks [13]. After the test session expires, the
adversary is allowed to corrupt the participant that executes
the test session [5, p. 12]. Similarly, after the session that
matches the test session expires, the adversary is allowed to
corrupt the participant that executes the matching session.
Unlike in the CKHMQV and eCK models, this is allowed re-
gardless of whether the adversary actively interferes with
the communication between the test session and its partner.
This corresponds to checking for Perfect Forward Secrecy
(PFS). Attacks on regular protocol sessions (during which
the adversary is passive with respect to the test session and
its partner) in which Alice talks to Alice are not considered
in the CK model. This is a side effect of the definition of the
session identifiers: Once Alice starts a session with identifier
s and sends a message m (that contains s), other sessions
of Alice cannot accept this incoming message, as a session
identifier can only occur once at each participant [5, p. 11].

3.2.2 CKHMQV adversary capabilities.
The CKHMQV model allows for state-reveal queries [16, p.

6] as in the CK model. In order to detect KCI attacks
[13], the CKKCI

HMQV model allows the compromise of the long-
term private key of the actor (also before the test session

ends) [16, p. 41]. The CKeph
HMQV model [16, p. 54] allows

for revealing the ephemeral key of the test session and its
matching session, provided that the long-term private key of
the agent that generated the revealed ephemeral key, remains
secret. The corruption of the actor or the peer (the intended
partner participant) in the CKwPFS

HMQV model is allowed if a
matching session exists [16, p. 42]. Secrecy with respect
to this definition is known as weak Perfect Forward Secrecy
(wPFS).

3.2.3 eCK adversary capabilities.
The eCK model does not include the state-reveal query

but instead defines the ephemeral-key reveal query. This
reveals the ephemeral secrets, i. e., the randomness, of a
session [18, p. 6]. The ephemeral-key reveal query allows for
revealing the ephemeral secrets of a session s that computes
the same key as the test session (i. e., the test session or
its matching session), provided that the long-term private
key of the participant executing s is not revealed. The eCK
model allows for the reveal of the long-term private key of
the actor before the end of the test session [18, p. 9] and
thus can be used to detect KCI attacks. The corruption of
the peer is allowed if a matching session exists [18, p. 9] but
the ephemeral keys of this session are not revealed. This
includes checking for wPFS.

4. PRACTICALLY RELATING THE THREE
SECURITY MODELS

Even if two key exchange models are theoretically incompa-
rable, it may still be the case that, for all practical protocols,
correctness in one model implies correctness in the other
model and vice versa. In this section we show practical
incomparability of the models, i. e., we show that in each
model, attacks on protocols from the literature exist that are
not considered in the other models.

(1) eCK security does not imply CKHMQV security.
We provide two attacks in the CKHMQV model on the two-
message Naxos protocol [18], which was proven secure in the
eCK model. Recall that the eCK model does not consider
attacks that involve intermediate computations of the pro-
tocol, whereas the CKHMQV model allows the session-state
reveal query for this purpose. In [11] an attack on Naxos is
described that exploits revealing intermediate computations.
The first attack occurs when the session-state of the protocol
contains the inputs to the hash function H2 that is used in
the final step of the session key computation. This attack is
also possible in the CKHMQV model. Second, the Naxos pro-
tocol is role-symmetric and has key type ≈C and is therefore
insecure in the CKHMQV model: matching initiators do not
compute the same key.
(2) eCK security does not imply CK security. The
first attack given above in (1), which exploits session-state
reveal to attack the Naxos protocol, also applies in the CK
model.
(3) CK security does not imply eCK security. A
counterexample using the reveal of ephemeral keys of the test
session is described in [18]. The basic signed Diffie-Hellman
protocol from [5] provides CK-security, but is subject to a
straightforward attack if the adversary learns the ephemeral
key of one of the participants by means of an Ephemeral
Key Reveal query. This allows the adversary to compute the
session key.
(4) CK security does not imply CKHMQV security.

The counterexample from (3) also applies in the CKeph
HMQV

model.
(5) CKHMQV security does not imply eCK security.
The HMQV protocol is insecure in eCK because the adver-
sary can trivially reveal the session key in the two-initiators
scenario, as in the proof of Theorem 3. The insecurity is
based on a mismatch between the equivalence type of match-
ing sessions and the equivalence type of derived keys.
(1) CKHMQV security does not imply CK security.
As a counterexample, we observe that the HMQV protocol
[16] was proven secure in CKHMQV, does not provide perfect
forward secrecy. If we add CK-model style session identifiers
to each message and the key derivation function, the resulting
protocol is still secure in the CKHMQV model. However, it
is not secure in the CK model: the generic attack on PFS
sketched in [16] applies to this protocol in the CK model.

5. ANALYSIS OF PROOFS AND RELATED
KE MODELS

Although security models based on the CK model have
been used for almost a decade, many recent proofs still con-
tain basic flaws. These flaws do not directly imply practical
attacks, but show that some elements of the KE models
are still not well understood. We discuss two of these ele-
ments: first, the interaction between key equivalence types
and matching sessions in role-symmetric protocols, and sec-
ond, the interaction between queries that can be performed
on incomplete sessions and the definition of matching ses-
sions.

5.1 Matching sessions and key equivalence types
for role-symmetric protocols

We applied the observations described in Section 3.1 and
Table 1 to several role-symmetric protocols from the liter-

protocol
key equivalence type

of protocol

matching sessions
equivalence type in

proof
comments

HMQV [16, p. 3] ≈A ≈A Matching initiators compute the same
key

MQV [19, p. 131] ≈A n.a. Matching initiators compute the same
key

MQV (NIST) [1, p. 46] ≈B n.a. Matching initiators do not compute the
same key (unlike MQV)

HMQV variant [16, p. 54] ≈B n.a. Matching initiators do not compute the
same key (unlike basic HMQV), there-
fore insecure in CKHMQV

Okamoto [24] ≈C ≈A Flaw in proof: Matching sessions do not
always compute the same key

CMQV [26] ≈C ≈A Flaw in proof: Matching sessions do not
always compute the same key

HuangCao [12] ≈C ≈A Matching sessions do not always com-
pute the same key (but requirement
omitted from the model)

Table 2: Key equivalence versus matching sessions in protocols

ature, and summarized the results in Table 2. If the key
equivalence type defined by the protocol differs from the
matching sessions equivalence type used in the proof, the
protocol is technically insecure in the model. The cause of
the problem is either that side cases were missed in the proof,
or an inappropriate definition of matching was used.

The basic MQV and HMQV protocols allow for two match-
ing initiators to compute the same key, which allows them
to communicate. In variants of these protocols, such as the
NIST version of MQV, the agents’ names are included in a
particular order in the key derivation function. This changes
the key derivation function to type ≈B , which implies that
these variants are insecure in CKHMQV and eCK. Further-
more, in practice, these variants offer less functionality than
the originals: two matching initiators cannot communicate.

The Okamoto [24] and CMQV [26] protocols use key deriva-
tion functions of type ≈C but their respective proofs use
matching session definitions of type ≈A. As a result, partners
may compute different keys, violating the security definition.
A user of these protocols might falsely assume from the
security model that a matching-initiators functionality is
provided.

We assume that a protocol designer can choose either
behaviour ≈A or ≈C for a role-symmetric protocol: either the
symmetric behaviour is intended and used in practice, leading
to≈A, or the symmetric behaviour is only a theoretical option
and should not allow for shared key exchange, leading to ≈C .
We do not see immediate reasons for choosing ≈B or ≈D.
This choice should not lead to a different security model:
rather, one would expect both options to be alternatives
of a single security model. Protocol designers could state
these choices explicitly to avoid confusion for users and avoid
mistakes in proofs.

5.2 The relevance of matching for incomplete
sessions

In the KE security models, there is no requirement that
all sessions in an experiment are completed. In fact, this
might not be possible, e. g., because the adversary injects fake
messages such that the final message required to complete a

session cannot be constructed.
Some adversary queries, can be performed on incomplete

sessions and depend on the definition of matching. For ex-
ample, session-state reveal in CK and CKHMQV can only be
performed on sessions that are not the test session and do
not match the test session. Thus, the definition of matching
for incomplete sessions influences whether session-state reveal
queries are possible. Similarly, for statements like “a match-
ing session exists” in eCK when revealing the long-term key
of the peer, the status of incomplete sessions is also relevant.

In the CK model, matching is defined in terms of the
session identifier and the identities, which are all fixed once
a session is established, and the session identifier does not
change during session execution. This is different in the
CKHMQV and eCK models.

In CKHMQV, the notion of matching is only defined for
completed sessions [16, p. 29]. As a result, it is undefined
whether session-state reveal queries, which are only allowed
on incomplete sessions, are allowed in CKbasic

HMQV. However,
as observed earlier, the session-state query is redundant in
the security proof of HMQV in CKbasic

HMQV, and the ephemeral-

key leakage is handled separately in the CKeph
HMQV model

[16, Section 7], and therefore this underspecification has no
consequences for HMQV.

In eCK, matching is defined in terms of communicated
messages; this implies that an incomplete session can never
match the (completed) test session. In follow-up works to the
security models presented here, some authors have closely
followed the original eCK formulation, e. g. [23, 24]. Other
authors have adapted the definition of matching sessions,
e. g., [12,14,20,21,26], with the result that incomplete ses-
sions that could be completed to a matching session (by
adding additional queries), are considered to be matching
sessions as well. This modification strengthens the adversary
model slightly: Consider the case in which there exists an
incomplete session that might be completed to a session that
matches the test session, but no (completed) sessions exist
that eCK-match the test session. In the original eCK model,
the long-term keys of the peer may not be revealed in such a
situation because no eCK-matching session exists. If incom-

plete sessions may be matching, as in some of the follow-up
works, then the long-term keys of the peer can be revealed
in this situation.

5.3 On assuming only existence of the match-
ing relation

In the security model of [3], no explicit definition is given
for when two sessions match (in [3], matching is called part-
nering). Instead, the existence of a matching relation is
simply assumed in the KE model. Because the adversary is
allowed to reveal the session-keys of non-matching sessions,
the matching relation (for any protocol that is correct in
the model) must ensure that non-matching sessions compute
different keys. This setup may sometimes lead to unintuitive
matching definitions, but seems reasonable in the case that
reveal queries are only considered on completed sessions.

However, when considering reveal queries that depend on
partnering and that may be performed on incomplete ses-
sions, such as the session-state reveal query in the CK and
CKHMQV models, only assuming existence is not adequate.
The reason is that the requirements on the existence only
provide constraints for completed sessions. Thus, the require-
ments on the matching relation can be met by a matching
relation that considers all incomplete sessions to be matching
to all other sessions. This effectively disallows the adversary
from performing any session-state reveal queries on incom-
plete sessions. In other words, a security proof in a model
that assumes only the existence of a suitable partner rela-
tion in this way may not provide any guarantees against
session-state reveal queries on incomplete sessions.

5.4 Avoiding matching problems
The above observations suggest a straightforward three-

step procedure to construct appropriate matching definitions
and help to define session key derivation functions.

First, determine the intended behaviours for the protocol
in terms of completed sessions: given a completed session s,
which other completed sessions are intended to compute the
same key? In the case of two-party protocols this boils down
to deciding whether role-symmetric functionality is desired.
The matching definition for completed sessions should be
specified accordingly.

Second, ensure that the key derivation function computes
the same key for two completed sessions if and only if the
sessions are matching.

Finally, define matching for incomplete sessions in the
following way. For all complete sessions s1, s2 that are
matching, we define that all prefixes s′2 of s2 also match s1,
i. e., all incomplete sessions s′2 that can be extended to s2
are also considered matching.

The first two steps ensure that the intended functionality is
reflected in the security definition and key derivation function.
The third step effectively gives the adversary access to all
sessions not involved in the intended behaviour.

In [15], it is proposed to define matching (called partnering
in [15]) based on the key derivation, thereby ensuring that
mismatches between the partnering of complete sessions and
key derivation cannot occur. However, they do not provide
a definition of partnering for incomplete sessions. In the
models considered here, such a definition is needed to deal
with queries such as session-state reveal or ephemeral-key
reveal, which can also occur in incomplete sessions.

6. POSSIBLE PRACTICAL INTERPRETA-
TIONS OF THE SECURITY MODELS

In this section we give some possible practical interpreta-
tions of concepts that occur in KE security models.

It is not immediately clear how to interpret the definition of
session identifiers in the CK model. In [5] it is suggested that
the application that invokes the protocol instance supplies
the session identifier s. In practical applications, CK seems
to imply that an information exchange mechanism precedes
the actual protocol steps, e. g., by exchanging nonces between
the participants and defining s as the concatenation of these
nonces. An alternative interpretation (suggested by the
examples in CK) is that the initiating participant chooses
a fresh s and includes it explicitly in the cryptographic
operations of the transmitted messages. On receipt of the
first message, the responder checks whether s was used by
him as a session identifier before. If so, he aborts. If not,
s is stored as the session identifier of the current session.
One way to implement this behaviour requires storage of
previously observed session identifiers (at least in the order
of magnitude of the security parameter).

The Ephemeral-key Reveal query from the eCK model cor-
responds to an adversary capable of learning the ephemeral
key after it was generated (but not any other elements of the
state) of any session. A corresponding practical scenario is
a random number generator (RNG) that leaks values upon
generation. This may be due to the fact that the values
can be retrieved, e. g., by eavesdropping communications
or side-channel attacks. The RNG is not malicious in the
sense that values can be manipulated, i. e., the adversary
cannot choose the values. Furthermore, the RNG is also
not predictable, because the adversary can only learn the
ephemeral keys after they have been generated.

The Session-State reveal query of the CK and CKHMQV

models allows the adversary to learn part of the session state.
Two elements of the definition are that (1) the session state
contents should not reveal the long-term keys of the partici-
pant, and (2) the adversary only passively learns the contents
and cannot manipulate the state. Thus a practical scenario
would be an implementation of the protocol using a Tamper-
Proof Module, Hardware Security Module, or cryptographic
coprocessor, which protects at least the long term keys, while
other parts of the protocol are executed in unprotected mem-
ory. The adversary then is able to gain read-only access to
this memory, e. g., by side channel attacks, or by attacks such
as freezing the memory. The model does not realistically
model an adversary gaining administrator/root access to the
machine or the presence of malware, as this would require
modeling active manipulation of the session-state.

It is common to define the KE security model in terms
of a game that involves a reactive system, in which the
adversary is given access to a Send query. A Send query
triggers a participant to perform three actions atomically,
i. e., without being interrupted: receive a message, perform
internal computations, and send a response. Consequently,
the adversary is not allowed to compromise session-state
contents or ephemeral keys during these three actions. Thus,
if one faithfully models the evolving session-state contents,
any intermediate computations that are only needed during
these three steps and erased afterwards can never be revealed
by the adversary. This restriction on the adversary is at least
debatable from a practical point of view.

The CKHMQV security notion was developed from the
CK model, in tandem with the HMQV protocol, and it
seems that the requirements on HMQV have influenced the
security model. Relaxing the condition of Perfect Forward
Secrecy to weak Perfect Forward Secrecy seems driven by
the requirement of implicit authentication, which in turn
helps to achieve deniability [25]. The change of partnering
function seems to be driven by the symmetry of the roles
and the fact that pre-established session identifiers may not
be available.

7. CONCLUSIONS AND FUTURE WORK
The complexity of strong KE security models makes them

hard to compare or to relate to practice. This complexity
seems to be caused by the aim of making the security notion,
and thus the adversary, as strong as possible, such that any
stronger adversary would be able to break all protocols. How-
ever, mainly because there is no total order on adversaries,
there is no single strongest model for which there are still
secure protocols. As a result, multiple “strong” models can
coexist. However, if the practical implications of a security
model are made clear, it becomes possible to choose among
the security models based on the target application domain.

In this paper we have shown that the CK, eCK, and
CKHMQV models for KE security are not only formally but
also practically incomparable, thereby refuting several claims
made in the literature, e. g. in [17,24,26,27]. For each model,
there are attacks on protocols from the literature that it
detects but which are not detected by the other models.

Our analysis of the relations between the key derivation
function and the definition of matching sessions reveals subtle
mistakes in existing security proofs, e. g., for the Okamoto [24]
and CMQV [26] protocols. Additionally, we show that a
simple operation such as adding ordered names to the key
derivation function can cause loss of functionality, as for
example the NIST version of MQV [1], or even invalidate
proofs, as for example in the case of the HMQV variant in [16].
We have shown subtleties of matching for incomplete sessions,
and have given a procedure to construct specifications of
matching sessions that avoid these problems.

The flaws we detect in recent proofs show that the sub-
tleties of strong KE models are not yet widely understood.

As future work it would be of interest to determine the
exact relation between the guarantees provided by simula-
tion based KE security notions [7] and the security models
considered here.

8. REFERENCES
[1] E. Barker, D. Johnson, and M. Smid. NIST special

publication 800-56A: Recommendation for pair-wise
key establishment schemes using discrete logarithm
cryptography (revised). Technical report, NIST, March
2007.

[2] M. Bellare, R. Canetti, and H. Krawczyk. A modular
approach to the design and analysis of authentication
and key exchange protocols (extended abstract). In
STOC ’98: Proceedings of the thirtieth annual ACM
symposium on Theory of computing, pages 419–428,
New York, NY, USA, 1998. ACM.

[3] M. Bellare and P. Rogaway. Provably secure session key
distribution: the three party case. In STOC ’95:
Proceedings of the twenty-seventh annual ACM

symposium on Theory of computing, pages 57–66, New
York, NY, USA, 1995. ACM.

[4] C. Boyd, Y. Cliff, J. M. G. Nieto, and K. G. Paterson.
One-round key exchange in the standard model.
IJACT, 1(3):181–199, 2009.

[5] R. Canetti and H. Krawczyk. Analysis of key-exchange
protocols and their use for building secure channels.
Cryptology ePrint Archive, Report 2001/040, 2001.
http://eprint.iacr.org/.

[6] R. Canetti and H. Krawczyk. Analysis of key-exchange
protocols and their use for building secure channels. In
EUROCRYPT’01, volume 2045 of LNCS, pages
453–474. Springer, 2001.

[7] R. Canetti and H. Krawczyk. Universally composable
notions of key exchange and secure channels. In
EUROCRYPT’02, Lecture Notes in Computer Science,
pages 337–351. Springer-Verlag, 2002.

[8] Q. Cheng, G. Han, and C. Ma. A new efficient and
strongly secure authenticated key exchange protocol.
Information Assurance and Security, International
Symposium on, 1:499–502, 2009.

[9] K.-K. Choo, C. Boyd, and Y. Hitchcock. Examining
indistinguishability-based proof models for key
establishment proofs. In ASIACRYPT, volume 3788 of
Lecture Notes in Computer Science, pages 624–643.
Springer, 2005.

[10] K.-K. Choo, C. Boyd, Y. Hitchcock, and G. Maitland.
On session identifiers in provably secure protocols. In
SCN, volume 3352 of Lecture Notes in Computer
Science, pages 351–366. Springer-Verlag, 2004.

[11] C. Cremers. Session-state Reveal is stronger than
Ephemeral Key Reveal: Attacking the NAXOS key
exchange protocol. In ACNS’09, Lecture Notes in
Computer Science, 2009.

[12] H. Huang and Z. Cao. Strongly secure authenticated
key exchange protocol based on computational
Diffie-Hellman problem. Cryptology ePrint Archive,
Report 2008/500, 2008. http://eprint.iacr.org/.

[13] M. Just and S. Vaudenay. Authenticated multi-party
key agreement. In Advances in
Cryptology-ASIACRYPT 1996, volume 1163 of Lecture
Notes in Computer Science, pages 36–49, 1996.

[14] M. Kim, A. Fujioka, and B. Ustaoğlu. Strongly secure
authenticated key exchange without NAXOS’ approach.
In IWSec, volume 5824/2009 of Lecture Notes in
Computer Science, pages 174–191. Springer-Verlag,
2009.

[15] K. Kobara, S. Shin, and M. Strefler. Partnership in key
exchange protocols. In ASIACCS ’09: Proceedings of
the 4th International Symposium on Information,
Computer, and Communications Security, pages
161–170, New York, NY, USA, 2009. ACM.

[16] H. Krawczyk. HMQV: A high-performance secure
Diffie-Hellman protocol. In CRYPTO 2005, volume
3621 of Lecture Notes in Computer Science, pages
546–566. Springer-Verlag, 2005.

[17] B. LaMacchia, K. Lauter, and A. Mityagin. Stronger
security of authenticated key exchange. Cryptology
ePrint Archive, Report 2006/073, 2006.
http://eprint.iacr.org/.

[18] B. LaMacchia, K. Lauter, and A. Mityagin. Stronger
security of authenticated key exchange. In ProvSec,

volume 4784 of Lecture Notes in Computer Science,
pages 1–16. Springer, 2007.

[19] L. Law, A. Menezes, M. Qu, J. Solinas, and
S. Vanstone. An efficient protocol for authenticated key
agreement. Designs, Codes and Cryptography,
28:119–134, 2003.

[20] J. Lee and C. S. Park. An efficient authenticated key
exchange protocol with a tight security reduction.
Cryptology ePrint Archive, Report 2008/345, 2008.
http://eprint.iacr.org/.

[21] J. Lee and J. H. Park. Authenticated key exchange
secure under the computational Diffie-Hellman
assumption. Cryptology ePrint Archive, Report
2008/344, 2008. http://eprint.iacr.org/.

[22] A. Menezes and B. Ustaoğlu. Comparing the pre- and
post-specified peer models for key agreement. In
Proceedings of ACISP 2008, volume 5107 of Lecture
Notes in Computer Science, pages 53–68, 2008.

[23] D. Moriyama and T. Okamoto. An eCK-secure
authenticated key exchange protocol without random
oracles. In ProvSec, volume 5848 of Lecture Notes in
Computer Science, pages 154–167. Springer-Verlag,
2009.

[24] T. Okamoto. Authenticated key exchange and key
encapsulation in the standard model. In ASIACRYPT,
volume 4833 of Lecture Notes in Computer Science,
pages 474–484, 2007.

[25] M. D. Raimondo, R. Gennaro, and H. Krawczyk.
Deniable authentication and key exchange. Cryptology
ePrint Archive, Report 2006/280, 2006.
http://eprint.iacr.org/.

[26] B. Ustaoğlu. Obtaining a secure and efficient key
agreement protocol from (H)MQV and NAXOS. Des.
Codes Cryptography, 46(3):329–342, 2008.

[27] J. Xia, J. Wang, L. Fang, Y. Ren, and S. Bian. Formal
proof of relative strengths of security between
ECK2007 model and other proof models for key
agreement protocols. Cryptology ePrint Archive,
Report 2008/479, 2008. http://eprint.iacr.org/,
retrieved on April 1st, 2009.

