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Abstract. We show that it is possible to achieve perfect forward secrecy in two-message or
one-round key exchange (KE) protocols even in the presence of very strong active adversaries
that can reveal random values of sessions and compromise long-term secret keys of parties.
We provide two new game-based security models for KE protocols with increasing security
guarantees, namely, eCKw and eCK-PFS. The eCKw model is a slightly stronger variant of
the extended Canetti-Krawczyk (eCK) security model. The eCK-PFS model captures perfect
forward secrecy in the presence of eCKw adversaries. We propose a security-strengthening
transformation (i. e., a compiler) from eCKw to eCK-PFS that can be applied to protocols that
only achieve security in a weaker model than eCKw, which we call eCKpassive. We show that,
given a two-message Diffie-Hellman type protocol secure in eCKpassive, our transformation
yields a two-message protocol that is secure in eCK-PFS.
We demonstrate how our transformation can be applied to concrete KE protocols. In particular,
our methodology allows us to prove the security of the first known one-round protocol that
achieves perfect forward secrecy under actor compromise and ephemeral-key reveal.

1 Introduction

The majority of recently developed key exchange protocols have been proven secure with respect
to game-based security models for key exchange protocols [2, 3, 11,25, 28]. The first such security
model was introduced by Bellare and Rogaway [3]. In their model, the adversary is modeled as a
probabilistic polynomial-time Turing machine that interacts with the protocol participants through
queries. The queries specify the capabilities of the adversary. For instance, he can send messages
to parties and reveal certain session-keys. The definition of security in the Bellare-Rogaway model
requires that (a) two parties who complete matching sessions (i. e., the intended communication
partners) compute the same session-key and that (b) the adversary cannot learn the session-key
with more than negligible probability. Building on this work, Canetti and Krawczyk [11] developed
a more complex security model that gives the adversary additional powers such as access to a
session-state query that reveals the internal state of a session. LaMacchia et al. [28] adapted the
Canetti-Krawczyk model to capture resilience to key compromise impersonation (KCI) attacks and
resilience to the leakage of various combinations of long-term and ephemeral secret keys in a single
security model. This model is known as the extended Canetti-Krawczyk (eCK) security model.

One important property of KE protocols that is not guaranteed by the eCK security model is
perfect forward secrecy (PFS). This property holds if an adversary cannot learn the session-keys of
past sessions, even if he compromises long-term keys of parties [34, p. 496]. The designers of the
eCK model claimed that this property cannot be achieved by two-message KE protocols: “As noted
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by Krawczyk [26], the PFS requirement is not relevant for 2-round AKE protocols since no 2-round
protocol can achieve PFS” [28, p. 5]. In particular, in [25, p. 15], Krawczyk sketched a generic PFS
attack, for which he claimed that it breaks the security of any “implicitly authenticated” two-message
KE protocol. This class of protocols is not formally defined in [25]. The attack is sketched on a basic
gx, gy message exchange, as used in the (H)MQV protocols. In the attack, the adversary actively
interferes with the communication between the parties by injecting self-constructed messages. This
enables him to compute the used session-key if he later learns the long-term secret keys of the
parties. To prove a slightly weaker notion of forward secrecy for the HMQV protocol, Krawczyk
introduced the notion of weak perfect forward secrecy (weak-PFS) [25]. When long-term secret keys
are compromised, weak perfect forward secrecy guarantees secrecy of session-keys, but only for
sessions in which the adversary did not actively interfere. Krawczyk’s comments seem to have led to
the incorrect belief that the best that can be achieved for two-message KE protocols is weak perfect
forward secrecy, e. g., [28, pages 2 and 5], [14, p. 213]. As a result, even though the eCK security
model [28] guarantees only weak perfect forward secrecy, it is currently described in the literature as
the strongest possible security model for two-message KE protocols [12,28,31].

Contributions. Our first contribution is to push forward the theoretical limits of key exchange
security notions. This contribution has two parts. First, we generalize the eCK security model [28]
based on the observation that a restriction on the adversary in the eCK model, whose purpose it
is to prevent Krawczyk’s PFS attack, is stronger than needed. To weaken this restriction (while
still preventing the attack) we introduce the concept of origin-session, which relaxes the notion of
matching session. The resulting model, which we call eCKw, specifies a slightly stronger variant
of weak perfect forward secrecy than the eCK model. We then integrate (strong) perfect forward
secrecy into the eCKw model, which gives rise to the eCK-PFS model. The eCK-PFS model is
strictly stronger than eCKw, and also provides more guarantees than independently considering
eCK/eCKw security and PFS. In particular, security in eCK-PFS implies perfect forward secrecy in
the presence of a fully active attacker who can even learn the actor’s long-term secret key before the
start of the attacked session, or who can learn session-specific ephemeral secret keys (i. e., random
coins generated in a session).

Our second contribution is a generic security-strengthening transformation (a so-called compiler)
that promotes the modular design approach of KE protocols. Given a two-message Diffie-Hellman
(DH) type KE protocol that is secure in eCKw or even in a weaker model that we call eCKpassive,
our transformation yields a two-message protocol that is secure in the eCK-PFS model. The
transformation introduces neither additional message dependencies nor additional protocol rounds.
Consequently, if our transformation is applied to a one-round protocol, in which all outgoing messages
can be computed before any message is received, the result is also a one-round protocol. We apply
our transformation to two concrete KE protocols. First, we show that NAXOS [28], the first KE
protocol proven secure in the eCK model, is secure in eCKw and use our transformation to construct
a protocol that is secure in eCK-PFS. Second, we show how the protocol π1-core that is insecure in
eCKw can be turned into a protocol secure in eCK-PFS by proving it secure in the weaker eCKpassive

model. Both examples illustrate how our transformation enables the modular design of protocols.

Overall, this article combines and extends results from our previous papers [16,17].

Organization. In Section 2 we recall some standard definitions used in this paper. In Section 3 we
formalize PFS and weak-PFS, and introduce our security notions eCKw and eCK-PFS. In Section 4
we provide a transformation that turns any two-message Diffie-Hellman type KE protocol secure in
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either eCKw or eCKpassive into a two-message KE protocol secure in eCK-PFS. We show how this
transformation can be applied to concrete KE protocols in Section 5. We discuss related work in
Section 6. Finally, we conclude in Section 7.

2 Preliminaries

Let ‖a‖ denote the length of the binary representation of the integer a, where log a < ‖a‖ ≤ log a+1.
Let G = 〈g〉 be a finite cyclic group of large prime order p with generator g. Similar to the

discrete logarithm experiment [22], we define the GAP discrete logarithm (GAP-DLog) experiment
for a given group-generating algorithm G, algorithm A, and parameter k as follows.
The GAP discrete logarithm experiment GAP-DLogA,G(k):

1. Run G(1k) to obtain (G, p, g) with ‖p‖ = k.
2. Choose h ∈R G. (This can be done by choosing x′ ∈R Zp and setting h := gx

′
.)

3. A is given G, p, g, h, and outputs x ∈ Zp. In addition, A is given access to a decisional Diffie-
Hellman (DDH) oracle that, for any three elements gu, gv, gw ∈ G, replies whether or not
w = uv mod p.

4. The output of the experiment is defined to be 1 if gx = h, and 0 otherwise.

Definition 1 (GAP-DLog Assumption [32]). The GAP-DLog assumption in G states that, given
gu, for u chosen uniformly at random from Zp, it is computationally infeasible to compute u with
the help of a decisional Diffie-Hellman (DDH) oracle (that, for any three elements gu, gv, gw ∈ G,
replies whether or not w = uv mod p). More precisely, we say that the GAP-DLog assumption holds
relative to G, if for all probabilistic polynomial-time algorithms A, there exists a negligible function
negl such that

P (GAP-DLogA,G(k) = 1) ≤ negl(k).

Definition 2 (GAP-CDH Assumption [35]). The GAP-CDH assumption in G states that,
given gu and gv, for u, v chosen uniformly at random from Zp, it is computationally infeasible to
compute guv with the help of a decisional Diffie-Hellman (DDH) oracle (that, for any three elements
gu, gv, gw ∈ G, replies whether or not w = uv mod p).

Definition 3 (Signature Scheme [22]). A signature scheme Σ is a tuple of three polynomial-time
algorithms (Gen,Sign,Vrfy) satisfying the following:

1. The probabilistic key-generation algorithm Gen takes as input a security parameter 1k and
outputs a secret/public key pair (sk, pk).

2. The (possibly probabilistic) signing algorithm Sign takes as input a secret key sk and a message
m ∈ {0, 1}∗. It outputs a signature σ := Signsk(m).

3. The deterministic verification algorithm Vrfy takes as input a public key pk, a message m, and
a signature σ. It outputs a bit b, with b = 1 meaning valid and b = 0 meaning invalid. We write
b = Vrfypk(m,σ).

Definition 4 (SUF-CMA [7]). A signature scheme Σ = (Gen,Sign,Vrfy) is strongly existen-
tially unforgeable under an adaptive chosen-message attack if for all probabilistic polynomial-time
adversaries A, there exists a negligible function negl such that AdvSigA (k) ≤ negl(k), where AdvSigA (k)
denotes the probability of successfully forging a valid signature σ on a message m and (m,σ) is not
among the pairs (mi, σi) (i = 1, ..., q) generated during the query phase to a signature oracle OSign

returning a signature for any message mi of the adversary’s choice.
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3 New Key Exchange Security Notions

We propose two new eCK-like security models for the analysis of key exchange protocols. The first
model, called eCKw, captures a slightly stronger form of weak-PFS than the original eCK model. The
second model, called eCK-PFS, integrates PFS directly into eCKw. We first describe a framework
for defining key exchange security models in Section 3.1. Using this framework, we define our new
security notions in Sections 3.2 and 3.3. We then formally compare them in Section 3.4.

3.1 Security notions for key exchange

Terminology. Let P =
{
P̂1, P̂2, ..., P̂N

}
be a finite set of N honest parties represented by bi-

nary strings. Each honest party can execute multiple instances of a KE protocol, called sessions,
concurrently. We denote session i at honest party P̂ as the tuple (P̂ , i) ∈ P × N. We asso-
ciate to each session s ∈ P × N a quintuple of variables Ts = (sactor , speer , srole , ssent , srecv ) ∈
P × {0, 1}∗ × {I,R}× {0, 1}∗ × {0, 1}∗. The variables sactor , speer denote the identities of the actor
and intended peer of session s, srole denotes the role that the session is executing (either initiator or
responder), and ssent , srecv denote the concatenation of timely ordered messages as sent/received by
sactor during session s. The values of the variables speer and srole are set upon activation of session s
and the values of the variables ssent and srecv are defined by the protocol execution steps. A session
can only be activated once.

Adversarial capabilities. As is standard for Bellare-Rogaway style security notions for AKE [3], we
model the adversary as a probabilistic polynomial-time (PPT) Turing machine that controls all
communications between parties. Similar to the eCK model [28], we consider the following queries:

1. send(s, v). This query models the adversary sending message v to session s of honest party
sactor . The adversary is given the response generated by the session according to the protocol.
The variables ssent and srecv are updated accordingly (by concatenation). Abusing notation,
we allow the adversary to activate an initiator session with peer Q̂, via a send(s, Q̂) query and
a responder session by sending a message m to session s on behalf of Q̂, via a send(s, Q̂,m)
query. In these cases, speer is set to Q̂ and srole is set to I and R, respectively. The adversary is
given the session’s response according to the protocol and the variables ssent , srecv are initialized
accordingly.

2. corrupt(P̂ ). If P̂ ∈ P, then the query returns the long-term secret keys of party P̂ . Otherwise
the query returns ⊥.

3. ephemeral-key(s). This query returns the ephemeral secret keys (i. e., the random coins) of session
s.

4. session-key(s). This query returns the session key for a completed session s (i. e. a session that
has accepted/computed a session-key).

5. test-session(s). To respond to this query, a random bit b is chosen. If b = 0, then the session-key
established in session s is returned. Otherwise, a random key is returned according to the
probability distribution of keys generated by the protocol. This query can only be issued to a
completed session.
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Notions of Freshness. An adversary that can perform the above queries can simply reveal the session
key of all sessions, breaking any protocol. The intuition underlying Bellare-Rogaway style KE models
is to put minimal restrictions on the adversary with respect to performing these queries, such that
there still exist protocols that are secure in the presence of such an adversary. The restrictions on
the queries made by the adversary are formalized by the notion of fresh sessions. Formally, we define
a freshness predicate, that holds if certain combinations of queries did not occur. Examples of such
predicates will be given in the following two sections.

Security Model. A game-based security model M is defined by a set of adversary capabilities (queries)
MQ and a freshness notion Mfresh.

Security Experiment W in model M . Security of a key-exchange protocol π is defined via a security
experiment W (or attack game) played by an adversary E, modeled as a PPT algorithm, against a
challenger.

Before the experiment starts properly, there is a setup phase, in which the challenger runs a
key-generation algorithm specified by the protocol that takes as input a security parameter 1k and
outputs valid static secret/public key pair(s), for each party P̂ ∈ P. The adversary is then given
all public data, including the public keys of all the honest parties in P. Then, the adversary can
choose to register arbitrary valid public keys (even public keys of honest parties) on behalf of a set
of adversary-controlled parties L̂ /∈ P.

After the above setup phase, the security experiment W can be described in four successive
stages, as follows:

1. The adversary E can perform any sequence of queries from MQ.
2. At some point in the experiment, E issues a test-session query to a completed session that is
Mfresh by the time the query is issued.

3. The adversary may continue with queries from MQ, under the condition that the test session
must remain Mfresh.

4. Finally, E outputs a bit b′ as his guess for b.

The adversary E wins the security experiment W if he correctly guesses the bit b chosen by the
challenger during the test-session query (i. e., if b = b′ where b′ denotes E’s guess). Success of E in
the experiment is expressed in terms of E’s advantage in distinguishing whether he received the real
or a random session-key in response to the test-session query. The advantage of adversary E in the
above security experiment against a key exchange protocol π for security parameter k is defined as
AdvπE(k) = |2P (b = b′)− 1|.

The notion of matching sessions specifies when two sessions are supposed to be intended
communication partners. Here we formalize the matching sessions definition from the eCK model [28]
which is based on matching conversations.

Definition 5 (matching sessions). Two completed sessions s and s′ are said to be matching if

sactor = s′peer ∧ speer = s′actor ∧ ssent = s′recv ∧ srecv = s′sent ∧ srole 6= s′role .

As in the eCK model, we require that matching sessions perform different roles. The consequences
of such a choice are explored in detail in [15]. Two issues are important here. First, there is a strong
connection between the information used in a matching definition and the information used to
compute the session key. Second, some protocols like the two-message versions of MQV and HMQV



6

allow sessions to compute the same key even if they perform the same role, whereas other protocols
such as NAXOS and π1-core from Section 5 require the sessions that compute the same key to
perform different roles. In this paper we follow the eCK setup, which applies directly to protocols
of the second type. Protocols of the first type can be dealt with by dropping the requirement of
different roles from the matching definition.

Definition 6 (security). A key exchange protocol π is said to be secure in model M if, for all
PPT adversaries E, it holds that

– if two honest parties successfully complete matching sessions, then they compute the same session
key, and

– E has no more than a negligible advantage in winning security experiment W in model M , that is,
there exists a negligible function negl in the security parameter k such that AdvπE(k) ≤ negl(k).

3.2 eCKw: strengthening weak-PFS

As stated in the introduction, the eCK model captures weak perfect forward secrecy but not perfect
forward secrecy, based on Krawczyk’s generic PFS attack [25,26]. We first formally define perfect
forward secrecy, and then briefly recall the attack.

It is hard to find a formal definition of perfect forward secrecy, as it is common to argue informally
about PFS. For example, the following informal definition is given in [34, p. 496]:

“A protocol is said to have perfect forward secrecy if compromise of long-term keys does not
compromise past session keys.”

However, such a definition does not suffice when we want to formally prove that our models imply
PFS or similar properties. To address this, we provide a formal definition of PFS in the form of a
Bellare-Rogaway-style security definition. This allows us to make precise formal statements about
the properties that our models achieve and the relations between them.

Definition 7 (PFSfresh). A completed session s in experiment W is PFSfresh if it holds that, before
the completion of session s, no keys have been registered on behalf of adversary-controlled parties
and no corrupt query has been issued.

Definition 8 (PFS). A key exchange protocol π is said to satisfy PFS if it is secure in the PFS
model, where PFSQ = {send, corrupt} and PFSfresh is defined as above.

We now return to Krawczyk’s generic attack. Consider a two-message protocol in which the
agents exchange ephemeral public Diffie-Hellman keys, i. e., gx and gy, where x and y are chosen
at random from Zp (for some large prime p). Then, Krawczyk’s attack proceeds as follows. The

adversary, impersonating party Â, generates a random value x (∈ Zp) and sends gx to a responder

session at party B̂. B̂ responds by sending gy and computes the session key. The adversary chooses
B̂’s session as the test session, i. e., the session under attack, and reveals Â’s long-term secret key
after B̂’s session ends. Now the adversary can simply follow all protocol steps that an honest party
Â would have performed using x and Â’s long-term secret key. In particular, the adversary can
compute the same session-key as the test session, violating PFS.

Krawczyk’s attack works directly for all two-message KE protocols that exchange DH keys
of the form gz, where z does not involve the sender’s long-term secret key, such as HMQV [26].
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Additionally, the attack also works on protocols like NAXOS [28], where z (∈ Zp) is a hash of the
sender’s long-term secret key and a random value. The adversary can replace this value by an
arbitrary value from Zp.

To still prove some form of forward secrecy for such protocols, Krawczyk introduced the notion
of weak-PFS. In weak-PFS, the adversary is not allowed to actively interfere with the messages
exchanged by the test session. This prevents the attack because the adversary is no longer allowed
to insert his own DH exponential. Similarly, in the eCK model, this restriction on interfering with
the test session is modeled by checking if a matching session exists [28, p. 5]. If this is the case, then
the adversary must have been passive and he is allowed to reveal the long-term secret keys of the
actor and the intended communication partner of a session. If there is no matching session, the
adversary is not allowed to reveal the long-term secret key of the intended communication partner.

We observe that Krawczyk’s attack only depends on the adversary injecting or modifying the
message received by the test session; he does not need to actively interfere with the message sent by
the test session. However, eCK models passivity of the adversary in the test session by checking
whether a matching session for the test session exists, which also prevents the adversary from
modifying (or deleting) the message sent by the test session. In this sense, the restriction on the
adversary in eCK is sufficient but not necessary for the prevention of Krawczyk’s attack. We therefore
relax the notion of matching sessions and introduce the concept of origin-session.

Definition 9 (origin-session). We say that a (possibly incomplete) session s′ is an origin-session
for a completed session s when s′sent = srecv .

Note that if two completed sessions s, s′ are matching, then s and s′ are origin-sessions for each
other. However, if session s is an origin-session for some session s′, then it might not necessarily be
a matching session for s′ (e. g. in case the roles of the sessions are identical). Thus, a session being a
matching session for some session is a stronger requirement than a session being an origin-session
for some session.

Using this notion, we give the first formal definition of weak Perfect Forward Secrecy. In order to
exclude Krawczyk’s generic PFS attack, we disallow the adversary from injecting his own messages
into the test session. However, whereas Krawczyk enforced this by requiring a matching session to
exist, we merely require the messages received by the test session to have been sent by a so-called
origin session. In other words, if an origin-session s′ for some session s exists, then the messages
received by session s have not been modified or injected by the adversary.

Definition 10 (wPFSfresh). A completed session s in security experiment W is wPFSfresh if all
of the following conditions hold:

1. there exists an origin-session for session s, and
2. before the completion of session s, no keys have been registered on behalf of adversary-controlled

parties and no corrupt query has been issued.

Definition 11 (weak-PFS). A key exchange protocol π is said to satisfy weak-PFS if it is secure
in the wPFS model, where wPFSQ = {send, corrupt} and wPFSfresh is defined as above.

Summarizing, we capture weak-PFS by the compromise of long-term secret keys of parties after the
end of the test session under the condition that an origin-session for the test session exists. Thus,
we model passivity of the adversary in the test session by the existence of an origin-session for the
test session (and not by the notion of matching session, e. g., as done in [26]).
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Compared to the original eCK model, our definition of weak-PFS enables us to capture an addi-
tional capability of the adversary: revealing the long-term secret key of the intended communication
partner (i. e. the peer) of the test session s in case an origin-session s′ for s exists, even when no
matching session exists for s. Thus, in contrast to the eCK model, the adversary may reveal the
long-term key of the peer of the test session s in case an origin-session s′ for session s exists and

– actively interfere with the message sent by the test session (e. g. by modifying it or injecting his
own message), or

– replay a message from another session to the test session (as in [9]), or
– leave session s′ incomplete (in case s′ is an initiator session).

We call our strengthened variant of the eCK model the eCKw model.

Definition 12 (eCKw
fresh). A completed session s in security experiment W is eCKw

fresh if all
of the following conditions hold:

1. sactor and speer are honest parties, i. e. (sactor , speer ) ∈ P × P,
2. W does not include the query session-key(s),
3. for all sessions s∗ such that s∗ matches s, W does not include session-key(s∗),
4. W does not include both corrupt(sactor ) and ephemeral-key(s),
5. for all sessions s′ such that s′ is an origin-session for session s, W does not include both

corrupt(speer ) and ephemeral-key(s′), and
6. if there exists no origin-session for session s, then W does not include a corrupt(speer) query.

Definition 13 (eCKw security). A key exchange protocol π is said to satisfy eCKw security if
it is secure in the eCKw model, where eCKw

fresh is defined as above, and eCKw
Q = {send, corrupt,

ephemeral-key, session-key}.

In Section 5.1 we will show that the NAXOS protocol satisfies eCKw security.

3.3 eCK-PFS: integrating PFS into eCKw.

We next extend the eCKw model by integrating perfect forward secrecy, which yields the strictly
stronger eCK-PFS model. Perfect forward secrecy is reflected in eCK-PFS by allowing the adversary
to reveal the long-term secret keys of all the protocol participants after the end of the test session,
as in the PFS model. These keys can be revealed irrespective of the existence of an origin-session
(or a matching session). The PFS attack scenario is neither captured in eCKw (nor in eCK) if the
origin-session (matching session) does not exist for the test session. In contrast to the way in which
the CK-NSR model from [9] incorporates PFS, eCK-PFS additionally captures leakage of various
combinations of ephemeral secret keys and long-term secret keys as well as perfect forward secrecy
under actor compromise.

Definition 14 (eCK-PFSfresh). A completed session s in security experiment W is eCK-PFSfresh

if all of the following conditions hold:

1. sactor and speer are honest parties, i. e. (sactor , speer ) ∈ P × P,
2. W does not include the query session-key(s),
3. for all sessions s∗ such that s∗ matches s, W does not include session-key(s∗),
4. W does not include both corrupt(sactor ) and ephemeral-key(s),
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5. for all sessions s′ such that s′ is an origin-session for session s, W does not include both
corrupt(speer ) and ephemeral-key(s′), and

6. if there exists no origin-session for session s, then W does not include a corrupt(speer ) query
before the completion of session s.

Definition 15 (eCK-PFS security). A key exchange protocol π is said to satisfy eCK-PFS secu-
rity if it is secure in the eCK-PFS model, where eCK-PFSQ = {send, corrupt, ephemeral-key, session-key}
and eCK-PFSfresh is defined as above.

3.4 Relations between the Security Models

Let secure(M,π) be a predicate that is true if and only if the protocol π is secure in security model
M . Here we formalize the relative strengths of security between game-based KE security models
given in [13] as follows.

Definition 16. Let Π be a class of KE protocols. We say that a security model M ′ is stronger than
a security model M with respect to Π, denoted by M ≤ΠSec M ′, if

∀ π ∈ Π. secure(M ′, π)→ secure(M,π). (1)

The previous definition implies that protocols proven secure in model M ′ will be secure in model M ,
where M ≤ΠSec M ′. To show that model M ′ is not stronger than model M , denoted by M �ΠSec M ′,
it suffices to find a protocol π ∈ Π such that π is secure in model M ′ and insecure in model M , as
in [13,15]. We say that model M ′ is strictly stronger than model M with respect to protocol class
Π, denoted by M <ΠSec M

′, if M ≤ΠSec M ′ and M ′ �ΠSec M .
Informally, the eCK-PFS model is stronger than eCKw because the eCK-PFS model allows

the adversary to corrupt all parties after the test session is completed (regardless of whether an
origin-session exists for the test session), capturing perfect forward secrecy. In contrast, in case
the adversary is active in the message received by the test session, he is not allowed to reveal the
long-term secret key of the peer of the test session in the eCKw model.

Proposition 1. Let Π be the class of two-message KE protocols. The eCK-PFS model is strictly
stronger than the eCKw model with respect to Π.

The first part of the proof of Proposition 1, namely that eCK-PFS is stronger than eCKw, proceeds
in a similar way as the reduction proofs in [13].

Proof. We first show that the eCK-PFS model is stronger than the eCKw model with respect to Π.
The first condition of Definition 6 is satisfied since matching is defined in the same way for both
models eCKw and eCK-PFS. Let π ∈ Π. To show that the second condition of Definition 6 holds, we
construct an adversary E′ attacking protocol π in model eCK-PFS using an adversary E attacking π
in eCKw. Adversary E′ proceeds as follows. Whenever E issues a query send, corrupt, ephemeral-key,
session-key or test-session, adversary E′ issues the same query and forwards the answer received
to E. At the end of E’s execution, i. e. after it has output its guess bit b, E′ outputs b as well.
Note that if eCKw

fresh holds for the test session, then by definition eCK-PFSfresh also holds. In
particular, if there is no origin session, then the sixth condition of eCKw

fresh requires that there
is no corrupt of the peer, which implies the sixth condition of eCK-PFSfresh. Hence, it holds that
AdvπE(k) ≤ AdvπE′(k), where k denotes the security parameter. Since by assumption protocol π
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eCKpassive eCKw eCK-PFS

wPFS PFS

<ΠSec
(Sec. 4.3)

<ΠSec
(Sec. 3.4)

<ΠSec (Sec. 4.3) <ΠSec(Sec. 4.3)

<ΠSec

(Sec. 3.4)

Fig. 1. Relations between the security models for the class of two-message KE protocols.

is secure in eCK-PFS, there is a negligible function g such that AdvπE′(k) ≤ g(k). It follows that
protocol π is secure in eCKw.

The model eCK-PFS is strictly stronger than eCKw since, e. g., the NAXOS protocol is secure
in eCKw, as we show in Section 5, but insecure in eCK-PFS due to the PFS attack described in
Section 3.2. ut

The following proposition states that PFS is a stronger property than weak-PFS.

Proposition 2. Let Π be the class of two-message KE protocols. The PFS model is strictly stronger
than the wPFS model with respect to Π.

Proof. The proof that the PFS model is stronger than the wPFS model is similar to the corresponding
proof of Proposition 1. Note that the test session being wPFSfresh implies that it is PFSfresh since
we have a further freshness requirement in the wPFS model. The PFS model is strictly stronger
than the wPFS model since, e. g., the NAXOS protocol achieves weak-PFS as can be easily deduced
from the proof of Proposition 7, but does not satisfy PFS due to the generic PFS attack described
in Section 3.2. ut

The relations between these four models and the eCKpassive model that we will define in Section 4.3
are depicted in Figure 1.

4 A Security-Strengthening Transformation from eCKw to eCK-PFS

4.1 Protocol Class DH-2

We define a class of two-message Diffie-Hellman type key exchange protocols (similar to the class of
KE protocols in [9]). Then, we present a security-strengthening transformation (compiler) that can
be applied to any such protocol. Finally we show that this transformation turns any KE protocol
secure in eCKw into a KE protocol secure in eCK-PFS.

Let k be a security parameter and let G be a finite cyclic group of prime order p with generator
g, where ‖p‖ = k. Let Ω be static publicly known data such as parties’ identifiers (binary strings
in P), their long-term public keys or publicly known functions and parameters. Let S be a set

of constants from which random values are chosen (e. g. S = Zp or S = {0, 1}k). We denote by
x ∈R S that x is chosen uniformly at random from the set S. In the generic two-message DH type
protocol, illustrated in Figure 2, party Â’s long-term secret key is a ∈R Zp and Â’s long-term public

key is A = ga. The session-specific ephemeral secret key of the session at party Â is denoted by
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Â : (a,A)

rÂ, X := gfI(rÂ,a,Ω)

B̂ : (b,B)

rB̂ , Y := gfR(r
B̂
,b,Ω)

X

Y

KÂ := FI(fI(rÂ, a, Ω), a, Y,Ω) KB̂ := FR(fR(rB̂ , b, Ω), b,X,Ω)

Fig. 2. A generic two-message DH type protocol

rÂ ∈R S and the corresponding ephemeral public key is denoted by X. Similarly, party B̂’s long-term

secret/public key pair is (b, B) and the ephemeral secret/public key pair of the session at B̂ is
denoted by (rB̂ , Y ). The public functions fI , fR : {0, 1}∗ → Zp depend on the ephemeral secret
key and may depend on the long-term secret key or on public information. The public functions
FI , FR : {0, 1}∗ → {0, 1}k depend on the Diffie-Hellman exponent the long-term secret key, the
received Diffie-Hellman exponential and other public information. We assume that the public keys
of all parties are known to all other participants in the protocol.

Protocol description. The generic two-message DH type protocol, depicted in Figure 2, proceeds as
follows:

1. Upon activation of session s = (Â, i) ∈ P × N with peer B̂, Â (the initiator) performs the steps:
– Choose an ephemeral secret key rÂ ∈R S and compute X = gfI(rÂ,a,Ω).
– Send X (and possibly other public data, e. g. identifiers of peer and actor of the session) to
B̂.

– Initialize Ts to (Â, B̂, I,m, ε), where m denotes the message sent by session s.
2. Upon activation of session s′ = (B̂, j) ∈ P × N with message X (and possibly other data) on

behalf of Â, party B̂ (the responder) performs the steps:
– Check that X ∈ G.
– Choose an ephemeral secret key rB̂ ∈R S and compute Y = gfR(rB̂ ,b,Ω).
– Compute KB̂ = FR(fR(rB̂ , b, Ω), b,X,Ω).

– Send Y (and possibly other public data) to Â.
– Set Ts′ to (B̂, Â,R,m′, n′), where m′ denotes the message sent by session s′ and n′ the

message received by session s′, and complete the session by accepting KB̂ as the session-key.

3. Upon receiving message Y (with possibly other data) in session s , party Â performs the steps:
– Check that Y ∈ G.
– Compute KÂ = FI(fI(rÂ, a,Ω), a, Y,Ω).

– Update Ts to (Â, B̂, I,m, n) and complete the session by accepting KÂ as the session-key.

The above description also applies to protocols with additional checks, which we omit for clarity.
We assume that whenever a check in a session fails, all session-specific data is erased from memory
and the session is aborted, i. e., it terminates without establishing a session-key.

Definition 17 (Protocol Class DH-2). We define DH-2 as the class of all two-message key-
exchange protocols that follow the description of a generic DH type protocol and meet the following
validity requirement:
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– In the presence of an eavesdropping adversary, two honest parties Â and B̂ can complete matching
sessions (in the sense of Definition 5), in which case they hold the same session-key.

The validity requirement requires that if the messages of two honest parties Â and B̂ are faithfully
relayed to each other, then both parties end up with a shared session-key (see also [2–4]). Note that,
e. g., the KE protocols NAXOS [28], NAXOS+ [31], NETS [30] and CMQV [37] belong to the class
DH-2.

Remark 1. Note that the protocol class DH-2 contains the subclass of one-round DH type protocols
in which messages can be generated independently from each other.

4.2 Protocol Transformation SIG

Here we show how to transform any protocol π ∈ DH-2 into a two-message protocol SIG(π), shown
in Figure 3, by applying the signature transformation SIG. Party Â has two independent valid
long-term secret/public key pairs, one pair (a,A) from protocol π and one pair (skÂ, pkÂ) for use in

a digital signature scheme Σ with security parameter k. Similarly, party B̂’s long-term secret/public
key pairs are (b, B) and (skB̂ , pkB̂). The transformed protocol SIG(π) in Figure 3 proceeds as
protocol π except that each party needs to additionally sign a message using its secret signature key
and check that the received signature on a message is valid with respect to the long-term public key
of its peer. The fields between square brackets within the signature are optional. Note that if the
objective is to obtain a one-round protocol, then X should not be included in the second message.

Â : (a,A), (skÂ, pkÂ)

rÂ, X := gfI(rÂ,a,Ω)

B̂ : (b,B), (skB̂ , pkB̂)

rB̂ , Y := gfR(r
B̂
,b,Ω)

X,σÂ = Signsk
Â

(X
[
, B̂

]
)

Y, σB̂ = Signsk
B̂

(Y
[
, X, Â

]
)

KÂ := FI(fI(rÂ, a, Ω), a, Y,Ω) KB̂ := FR(fR(rB̂ , b, Ω), b,X,Ω)

Fig. 3. A transformed generic protocol SIG(π)

Informally, a security-strengthening protocol transformation is a mapping between protocols
such that the transformed protocol satisfies stronger security properties. We formally define it as
follows.

Definition 18 (Security-strengthening protocol transformation). Let Π1 and Π2 be two
classes of KE protocols. We say that a function f : Π1 → Π2 is a security-strengthening protocol
transformation from the model M to the model M ′ if

1. M ≤Π2

Sec M
′, and

2. ∀π ∈ Π1. secure(M,π)→ secure(M ′, f(π)).

The previous definition implies that if a KE protocol π ∈ Π1 is secure in model M , M ≤Π2

Sec M
′,

and f is a security-strengthening transformation from M to M ′, then protocol f(π) ∈ Π2 is secure
in model M ′. Note that, by Definition 16, it follows that protocol f(π) is secure in model M .
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4.3 Security Analysis of SIG

Our original intent was to show that SIG is security-strengthening from eCKw to eCK-PFS, but we
will in fact show a more general result: we show that SIG is security-strengthening from a weaker
version of the eCKw model, which we call eCKpassive, to eCK-PFS.

Weakening eCKw to eCKpassive. Informally, the eCKpassive model weakens eCKw by capturing only
passive attacks on the test session (i. e., the session under attack). The adversary can delay, forward,
or replay messages to the test session. However, he is not allowed to inject a message to the test
session or to modify the message that the test session receives. As in the eCKw model, the adversary
is allowed to reveal ephemeral values of sessions and long-term secret keys of parties, thus it also
captures, e. g., weak perfect forward secrecy. Formally, the eCKpassive model only differs from eCKw

in its definition of freshness. In eCKpassive, there must exist an origin session for the test session.

Definition 19 (eCKpassive
fresh). A completed session s in security experiment W is eCKpassive

fresh

if all of the following conditions hold:

1. sactor and speer are honest parties, i. e. (sactor , speer ) ∈ P × P,
2. there exists an origin-session s′ for session s,
3. W does not include the query session-key(s),
4. for all sessions s∗ such that s∗ matches s, W does not include session-key(s∗),
5. W does not include both corrupt(sactor ) and ephemeral-key(s), and
6. for all sessions s′ such that s′ is an origin-session for session s, W does not include both

corrupt(speer ) and ephemeral-key(s′).

Definition 20 (eCKpassive security). A key exchange protocol π is said to satisfy eCKpassive secu-
rity if it is secure in the eCKpassive model , where eCKpassive

Q = {send, corrupt, ephemeral-key, session-key}
and eCKpassive

fresh is defined as above.

Proposition 3. Let Π be the class of two-message KE protocols.

– The eCKpassive model is strictly stronger than the wPFS model with respect to Π.
– The eCK-PFS model is strictly stronger than the PFS model with respect to Π.

Proof. The proof that the eCKpassive model is stronger than the wPFS model is similar to the
corresponding proof of Proposition 1. Note that the test session being wPFSfresh implies that it is
eCKpassive

fresh since in the wPFS model the adversary is not given access to the queries ephemeral-key
and session-key. Also, in the wPFS model the adversary is not allowed to either register keys on
behalf of adversary-controlled parties or to issue a corrupt query before the completion of the test
session. A similar argument applies to show that the eCK-PFS model is stronger than the PFS
model.

The eCKpassive model is strictly stronger than the wPFS model. It can be easily shown that
protocol TS2 achieves weak-PFS by adapting the proof of [21, Theorem 2]. However, protocol TS2
is insecure against an adversary who can reveal the long-term secret key of the actor of the test
session and the ephemeral secret key of the origin-session for the test session. Hence, TS2 is insecure
in eCKpassive. The eCK-PFS model is strictly stronger than the PFS model. By Theorem 1, it holds
that SIG(TS2) satisfies PFS (see Remark 1). However, SIG(TS2) is insecure in eCK-PFS for a
similar reason as TS2 is insecure in eCKpassive. ut
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Propositions 4 and 5 will be used in the proofs of Theorem 1 and Corollary 1.

Proposition 4. Let Π be the class of two-message KE protocols. The eCKw model is strictly
stronger than the eCKpassive model with respect to Π.

Proof. The proof that the eCKw model is stronger than the eCKpassive model is similar to the
corresponding proof of Proposition 1. Note that if the test session is eCKpassive

fresh, then it is also
eCKw

fresh. This follows from the fact that compared to the eCKw model, we have a further freshness
condition on the test session in eCKpassive, namely that an origin session exists for the test session.

The model eCKw is strictly stronger than the eCKpassive model since, e. g., the KE protocol
π1-core is secure in eCKpassive, as we show in Section 5, but insecure in eCKw as observed in [25]. ut

Proposition 5. Let Π be the class of two-message KE protocols. The eCK-PFS model is strictly
stronger than the eCKpassive model with respect to protocols Π.

Proof. Since eCKpassive <ΠSec eCKw and eCKw <ΠSec eCK-PFS, it follows that eCKpassive <ΠSec
eCK-PFS by transitivity of the implication (1). The eCK-PFS model is strictly stronger than
eCKpassive since, e. g., the protocol π1-core is secure in eCKpassive but insecure in eCK-PFS. ut

How to Provably Achieve eCK-PFS Security. We show in Theorem 1 below that the SIG transforma-
tion is a security-strengthening protocol transformation from eCKpassive to eCK-PFS provided that
the digital signature scheme is strongly existentially unforgeable under an adaptive chosen-message
attack (SUF-CMA) as well as deterministic. An example of such a scheme is the GDH signature
scheme from [6]. We require a deterministic signature scheme so that we do not have to consider ad-
ditional random coins from the signature generation procedure when reasoning about ephemeral-key
queries. For certain randomized signature schemes, an efficient adversary can compute the secret
(signature) key given the corresponding public key, a signature on any message using the secret key,
and the random coins involved in the signature generation learned through an ephemeral-key query
(as noted in [28]). The following lemma is used in the proof of Theorem 1.

Lemma 1 (Difference Lemma [36]). Let A,B, F be events defined on some probability space.
Suppose that event A∧F c occurs if and only if event B∧F c occurs (where F c denotes the complement
of event F ). Then

|P (A)− P (B)| ≤ P (F ).

We now give the main theorem and corollary before proceeding with their proofs.

Theorem 1. Let Π denote the class of two-message KE protocols. Under the assumption that the
signature scheme is deterministic and SUF-CMA, the transformation SIG : DH-2→ Π is a security-
strengthening protocol transformation from eCKpassive to eCK-PFS according to Definition 18.

Corollary 1. Let Π denote the class of two-message KE protocols. Under the assumption that
the signature scheme is deterministic and SUF-CMA, the transformation SIG : DH-2 → Π is a
security-strengthening protocol transformation from eCKw to eCK-PFS according to Definition 18.

Proof (Theorem 1). The first condition of Definition 18 is satisfied by Proposition 5. We next verify
whether the second condition of Definition 18 holds. Let π ∈ DH-2 be secure in model eCKpassive. It
is straightforward to verify the first condition of Definition 6, i. e., that matching sessions of protocol
SIG(π) compute the same key (since matching sessions of protocol π compute the same key). We
show next that the second condition of Definition 6 holds, i. e., an adversary against SIG(π) in
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eCK-PFS has no more than a negligible advantage in distinguishing the session key from a random
key. We present a security proof structured as a sequence of games, a proof technique introduced
in [36]. Let Si denote the event that the adversary correctly guesses the bit chosen by the challenger
to answer the test-session query in Game i and let αi = |2P (Si)− 1| denote the advantage of the
adversary in Game i. Let N, qs be upper bounds on the number of parties and activated sessions,
respectively.

Game 0. This game reflects the security experiment W in model eCK-PFS, as defined in Section 3.1,
played by a PPT adversary E against the protocol SIG(π).

Game 1. [Transition based on a small failure event] Let CollSIG(π) be the small failure event that a
collision for protocol SIG(π) occurs (e. g., in ephemeral secret keys). As soon as event CollSIG(π)

occurs, the attack game stops.

Analysis of Game 1. Game 0 is identical to Game 1 up to the point in the experiment where
event CollSIG(π) occurs for the first time. The Difference Lemma yields that |P (S0) − P (S1)| ≤
P (CollSIG(π)). Hence,

α0 = |2P (S0)− 1| = 2|P (S0)− P (S1) + P (S1)− 1/2|
≤ 2(|P (S0)− P (S1)|+ |P (S1)− 1/2|)
≤ 2P (CollSIG(π)) + α1.

Game 2. [Transition based on a large failure event (see [8, 19])] Before the adversary E starts the
attack game, the challenger chooses a random value m ∈R {1, 2, ..., qs}. The m-th session activated
by E, denoted by s∗, is the session on which the challenger wants the adversary to be tested. Let T
be the event that the test session is not session s∗. If event T occurs, then the attack game halts
and the adversary outputs a random bit.

Analysis of Game 2. Event T is non-negligible, the environment can efficiently detect it and T is
independent of the output in Game 1 (i. e. P (S1|T ) = P (S1)). If T does not occur, then the attacker
E will output the same bit in Game 2 as it did in Game 1 (so that P (S2|T c) = P (S1|T c) = P (S1)).
If event T occurs in Game 2, then the attack game halts and the adversary E outputs a random bit
(so that P (S2|T ) = 1/2). We have,

P (S2) = P (S2|T )P (T ) + P (S2|T c)P (T c) =
1

2
P (T ) + P (S1)P (T c)

= P (T c)(P (S1)− 1

2
) +

1

2
.

Hence we get, α2 = |2P (S2)− 1| = P (T c)|2P (S1)− 1| = 1
qs
α1.

Suppose w. l. o. g. that s∗role = I and that protocol π does not include optional public information
in the sent messages. Let F be a forgery event with respect to the long-term public key pkP̂ of party

P̂ , that is, adversary E issues a send(s∗, V, σ) query to session s∗ being incomplete such that

– σ is a valid signature on message m = (V, [W, s∗actor ]) with respect to the public key of P̂ , where
W is the Diffie-Hellman exponential contained in message s∗sent , and

– (V, σ) has never been output by party P̂ in response to a send query.
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Game 3. [Transition based on a small failure event] This game is the same as the previous one
except that when a forgery event F with respect to the long-term public key of some party P̂ ∈ P
occurs, the experiment halts and E outputs a random bit.

Analysis of Game 3. The analysis of Game 3 proceeds in several steps. Consider first the following
three cases.

1. If E issues a corrupt(P̂ ) query before the completion of session s∗ and no origin-session exists for
s∗, then session s∗ is not eCK-PFSfresh. This would have caused Game 2 to abort since session
s∗ would not be the test session. Recall that the test-session query can only be issued to a session
that is eCK-PFSfresh by the time the query is issued. Hence this case can be excluded.

2. If P̂ were adversary-controlled (i. e. P̂ /∈ P), then session s∗ would not be eCK-PFSfresh and
Game 2 would have aborted. Hence this case can be excluded as well.

3. If E does not issue a corrupt(P̂ ) query before the completion of session s∗, then he can only
impersonate party P̂ to session s∗ by forging a signature on a message with respect to the
long-term public key of P̂ .

Claim. We have |P (S2)− P (S3)| ≤ P (F ).

Proof. If event F does not occur, then Game 2 and 3 proceed identically (i. e. S2 ∧ F c ⇔ S3 ∧ F c).
The Difference Lemma yields that |P (S2)− P (S3)| ≤ P (F ).

Claim. If the deterministic signature scheme is SUF-CMA, then P (F ) is negligible. More precisely,

P (F ) ≤ NAdvSignM (k), where AdvSignM (k) denotes the probability of a successful forgery.

Proof. Consider the following algorithm M using adversary E as a subroutine. M is given a public
signature key pk and access to the corresponding signature oracle OSign . It selects at random one of
the N parties and sets its public key to pk. We denote this party by P̂ and its signature key pair by
(skP̂ , pkP̂ ). Further, the algorithm M chooses signature key pairs (ski, pki) for all honest parties

P̂i ∈ P with P̂i 6= P̂ and stores the associated secret keys. It also chooses key pairs (ci, Ci) for all
honest parties P̂i ∈ P as needed for protocol π and stores the associated secret keys.
ALGORITHM M :

1. Run E on input 1k and the public keys for all of the N parties.
2. If E issues a send(z, Q̂) query to activate session z with peer Q̂ ∈ P, then answer it as follows.

– If zactor 6= P̂ , then choose x ∈R Zp to get X = gx, compute the signature σ on message

m = (X[, Q̂]) on behalf of zactor and return the message (X,σ) to E.
– If zactor = P̂ , then choose x ∈R Zp to get X = gx and query the signature oracle on message

m = (X[, Q̂]) which returns the signature σ on message m. Store the pair (m,σ) in a table
L, initially empty, and return the message (X,σ) to E.

3. If E issues a send(z, Q̂,m) query to activate session z, then answer it as follows. First check
whether message m is of the form (X,σ) for some X ∈ G and σ a valid signature on message
(X[, zactor ]) with respect to the public key of Q̂. If the checks succeed, then:

– If zactor 6= P̂ , then choose y ∈R Zp to get Y = gy, compute the signature σ on message

m = (Y [, X, Q̂]) on behalf of zactor and return the message (Y, σ) to E.
– If zactor = P̂ , then choose y ∈R Zp to get Y = gx and query the signature oracle on message

m = (Y [, X, Q̂]) which returns the signature σ on message m. Store the pair (m,σ) in table
L (initially empty) and return the message (Y, σ) to E.
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If one of the checks does not succeed, then abort session z.
4. If E issues a send(z,m) query to session z in role I, then check whether message m is of the

form (Y, σ) for some Y ∈ G and σ a valid signature on message (Y [, X, zactor ]) with respect to
the public key of zpeer (where W ∈ G is contained in message s∗sent). If the check fails, then
abort session z.

5. If E makes a send(s∗, V, σ) query, where σ is a valid signature with respect to the public key
pkP̂ of party P̂ on message m = (V [,W, s∗actor ]) (where W ∈ G is contained in s∗sent ), before the
completion of the test session s∗ and (m,σ) /∈ L, then stop E and output (m,σ) as a forgery.

6. The queries session-key, ephemeral-key are answered in the appropriate way since M has chosen
the ephemeral secret keys for all the sessions and the long-term secret keys for use in protocol π
for all the parties.

7. The queries corrupt(Q̂i), where Q̂i ∈ P \ {P̂}, are answered in the appropriate way since M
knows the secret key pairs of the honest parties in the set P \ {P̂}. In case Q̂i /∈ P, M returns
⊥. In case Q̂i = P̂ , M aborts with failure.

8. If E issues the query test-session(s∗), then abort with failure.

Under event F , algorithm M is successful as described in Step 5 and the abortions as in Step 7 and
8 do not occur. The probability that E succeeds in forging a signature with respect to the public
key of P̂ is bounded above by the probability that M outputs a forgery multiplied by the number of
honest parties, that is, P (F ) ≤ NAdvSignM (k).

Claim. Let Adv
SIG(π),Game 3,O
E (k) := |2P (S3|O) − 1|, where O denotes the event that there is an

origin-session for the test session. It holds that Adv
SIG(π),Game 3
E (k)

= max(0, Adv
SIG(π),Game 3,O
E (k)).

Proof. Note that |2P (S3|F )− 1| = |2 1
2 − 1| = 0 (since, when event F occurs in Game 3, E outputs

a random bit) and that if event F does not occur, then there exists an origin-session for the test
session.

We next establish an upper bound for Adv
SIG(π),Game 3,O
E (k) in terms of the security of protocol

π.

Claim. Assume that in Game 3 there exists a unique1 origin-session s for the test session s∗ with
sactor = s∗peer . If there is an efficient adversary E in eCK-PFS succeeding in Game 3 against protocol

SIG(π) with non-negligible advantage, then we can construct an efficient adversary E′ in eCKpassive

succeeding in Game 3 against protocol π with non-negligible advantage using adversary E as a

subroutine. Moreover, it holds that Adv
SIG(π),Game 3,O
E (k) ≤ Advπ,Game 3

E′ (k).

Proof. Fix an efficient adversary E in eCK-PFS succeeding in Game 3 against protocol SIG(π) with
non-negligible advantage. Let us construct an adversary E′ in eCKpassive succeeding in Game 3
against protocol π with non-negligible advantage using adversary E as a subroutine.
ALGORITHM E′: E′ chooses secret/public signature key pairs for all the parties and stores the
associated secret signature keys. It is given all public knowledge, such as public (non-signature) keys
for all the parties.

1. Run E against SIG(π) on input 1k and the public key pairs for all of the N parties.

1 No collision in the ephemeral secret keys occurs for SIG(π) (where π ∈ DH-2) since otherwise Game 1
would have caused the game to abort.
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2. When E issues a corrupt(P̂ ) query to some party P̂ , E′ issues that query to party P̂ and returns
the answer to that query together with the secret signature key of P̂ (that E′ has chosen) to E.

3. When E issues an ephemeral-key or a session-key query to some session z, E′ issues that query
to session z and returns the answer to E.

4. send queries are answered in the following way.
– If E issues a send(z, Q̂) query to activate session z with peer Q̂, then E′ issues the same

query to session z. The response is a message W (∈ G). Since E′ knows the secret signature
key of zactor , it can sign the message m = (W [, Q̂]) on its behalf and then return the message
(W,σ) to E, where σ denotes the signature on m with respect to the public key of zactor .

– If E issues a send(z, Q̂,m) query to activate session z, where message m is of the form
(W,σ), then E′ first checks whether W ∈ G and second whether σ is a valid signature on
message (W [, zactor ]) with respect to the public key of Q̂. If the checks succeed, then E′

issues the query send(z,W ) to session z. The response is a message V ∈ G. Since E′ knows
the secret signature key of zactor , it can sign the message m = (V [,W, Q̂]) on its behalf and
then return the message (V, σ) to E, where σ denotes the signature on m with respect to
the public key of zactor .

– If E issues a send(z,m) query, where message m is of the form (V, σ), then E′ first checks
whether V ∈ G and second whether σ is a valid signature on message (V [,W, zactor ]) with
respect to the public key of zpeer , where W is the Diffie-Hellman exponential contained in
zsent . If the checks succeed, then E′ issues the query send(z, V ) to session z.

If one of the checks fails, then session z is aborted (i. e. E′ aborts session z).
5. In case E issues the test-session query to session s∗, E′ issues the test-session query to session
s∗ and returns the answer to E.

6. At the end of E’s execution (after it has output its guess b′), output b′ as well.

Since by assumption there exists a unique origin-session for the test session, the test session being
eCK-PFSfresh is also eCKpassive

fresh. Thus, it holds that

Adv
SIG(π),Game 3,O
E (k) ≤ Advπ,Game 3

E′ (k).

Finally,

Adv
SIG(π)
E (k) ≤ 2P (CollSIG(π)) + 2qsNAdv

Sign
M (k) + qsAdv

SIG(π),Game 3,O
E (k)

≤ 2P (CollSIG(π)) + 2qsNAdv
Sign
M (k) + qsAdv

π,Game 3
E′ (k)

Since by assumption protocol π is secure in eCKpassive, there is a negligible function g such that
Advπ,Game 3

E′ (k) ≤ g(k), which completes the proof.
ut

Proof (Corollary 1). The first condition of Definition 18 is satisfied by Proposition 1. We next
verify the second requirement. Let π ∈ DH-2 secure in eCKw. Since by Proposition 4 we have
eCKpassive ≤ΠSec eCKw, it follows that protocol π is secure in eCKpassive. By Theorem 1, SIG
is a security strengthening protocol transformation from eCKpassive to eCK-PFS. Therefore, the
transformed protocol SIG(π) is secure in eCK-PFS. ut

Remark 2. Let eCK-NEKpassive and eCK-NEK-PFS be the security models obtained from eCKpassive

and eCK-PFS (respectively) by removing the ephemeral-key query from the adversary’s capabilities
and related restrictions in the freshness definitions. Then it can be shown in a similar way as above
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that for any KE protocol π ∈ DH-2 secure in eCK-NEKpassive, the transformed protocol SIG(π) is
secure in eCK-NEK-PFS using either a deterministic or a randomized SUF-CMA signature scheme.
The same statement holds when replacing eCK-NEKpassive by wPFS and eCK-NEK-PFS by PFS.

Remark 3. Blake-Wilson and Menezes [5, p. 160] introduced the duplicate-signature key selection
(DSKS) attack on signature schemes: after observing a user’s signature σ on a message m, the
adversary E is able to compute a signature key pair (skE , pkE) (or sometimes just a verification
key pkE) such that σ is also E’s signature on the message m. Now, the adversary in our setting
can only register public keys at the onset of the experiment W described in Section 3, i. e. before
interacting with the parties through queries. Thus, DSKS attacks, which exploit the adversary’s
ability to register a public key after observing signed messages, are not captured in our models.
Note however that UKS attacks based on public-key re-registration (such as the ones on STS-MAC
and STS-ENC [5, p. 159] as well as on KEA [29, p. 380]) are captured in our models eCKpassive,
eCKw, and eCK-PFS. Such UKS attacks can e. g. be prevented by making the session key derivation
depend on the identifiers of actor and peer of the session.

5 Application of SIG to Concrete KE Protocols

In Section 5.1 we demonstrate that the NAXOS protocol is secure in eCKw and construct a protocol
secure in eCK-PFS using our SIG transformation. In Section 5.2 we show how to prove the security
of the π1 protocol from [16] in eCK-PFS by proving the much weaker protocol π1-core secure in
eCKpassive and applying the SIG transformation to π1-core.

5.1 NAXOS Revisited

The NAXOS protocol [28], shown in Figure 4, provides an example of a protocol belonging to the

class DH-2, where H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → {0, 1}k denote two hash functions and

rÂ, rB̂ ∈R {0, 1}
k
. In analogy to Figure 2, note that fI(rÂ, a,Ω) = H1(rÂ, a), fR(rB̂ , b, Ω) = H1(rB̂ , b),

FI(fI(rÂ, a,Ω), a, Y,Ω) = H2(Y a, BH1(rÂ,a), Y H1(rÂ,a), Â, B̂), and FR(fR(rB̂ , b, Ω), b,X,Ω) = H2(AH1(rB̂ ,b),

Xb, XH1(rB̂ ,b), Â, B̂).

Â : (a,A)

rÂ, X := gH1(rÂ,a)

B̂ : (b,B)

rB̂ , Y := gH1(rB̂ ,b)

X

Y

KÂ := H2(Y a, BH1(rÂ,a), Y H1(rÂ,a), Â, B̂) KB̂ := H2(AH1(rB̂ ,b), Xb, XH1(rB̂ ,b), Â, B̂)

Fig. 4. NAXOS protocol [28]

The following proposition states that the NAXOS protocol is secure in eCKw.

Proposition 6. Under the GAP-CDH assumption in the cyclic group G of prime order p, NAXOS
satisfies eCKw security, when H1 and H2 are modeled as independent random oracles.
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In contrast to the proof of NAXOS in the eCK model [28], the proof of Proposition 6 distinguishes
between the cases whether or not an origin-session (instead of a matching session) exists for the test
session.

Proof (Sketch). Similar to [28,37], we analyze the following events:

1. Kc,
2. DL ∧K,
3. TO ∧DLc ∧K, and
4. (TO)c ∧DLc ∧K, where

TO denotes the event that there exists an origin-session for the test session, DL denotes the event
that there exists a party Ĉ ∈ P (with long-term secret key c) such that the adversary M , during
its execution, queries H1 with (∗, c) before issuing a corrupt(Ĉ) query and K denotes the event
that M wins the security experiment against NAXOS by querying H2 with (σ1, σ2, σ3, Â, B̂), where
σ1 = CDH(Y,A), σ2 = CDH(B,X) and σ3 = CDH(X,Y ), given that the test session is s∗ with
Ts∗ = (Â, B̂, I, X, Y ). ut

The full proof of Proposition 6 is given in the appendix. Applying the SIG transformation to the
NAXOS protocol yields the protocol SIG(NAXOS), depicted in Figure 5.

Â : (a,A), (skÂ, pkÂ)

rÂ, X := gH1(rÂ,a)

B̂ : (b,B), (skB̂ , pkB̂)

rB̂ , Y := gH1(rB̂ ,b)

X,σÂ = Signsk
Â

(X
[
, B̂

]
)

Y, σB̂ = Signsk
B̂

(Y
[
, X, Â

]
)

KÂ := H2(Y a, BH1(rÂ,a), Y H1(rÂ,a), Â, B̂) KB̂ := H2(AH1(rB̂ ,b), Xb, XH1(rB̂ ,b), Â, B̂)

Fig. 5. SIG(NAXOS) protocol

Combining Proposition 6 with Theorem 1, we obtain the following result.

Corollary 2. Under the GAP-CDH assumption in the cyclic group G of prime order p, using a
deterministic SUF-CMA signature scheme, the SIG(NAXOS) protocol satisfies eCK-PFS security,
when H1, H2 are modeled as independent random oracles.

5.2 Proving π1 Secure in eCK-PFS via π1-core

Figure 6 shows the protocol π1-core ∈ DH-2, where KDF : {0, 1}∗ → {0, 1}k denotes a key derivation
function and x, y ∈R Zp. As observed in [25], the π1-core protocol is insecure with respect to an

active adversary. The adversary can impersonate B̂ to Â by simply sending the message B−1Z
(where Z = gi for some i ∈R Zp) to Â. Â would compute the secret value for the session-key as
(BB−1Z)x+a = Zx+a which can also be computed by the adversary. This attack shows that π1-core
is insecure in eCKw.

However, even though π1-core is insecure in eCKw, it can be proven secure in the weaker
eCKpassive model, as the following proposition shows.



21

Â : (a,A = ga)

x,X := gx

B̂ : (b,B = gb)

y, Y := gy

X

Y

KÂ := KDF (Â, B̂, (Y B)x+a, X) KB̂ := KDF (Â, B̂, (XA)y+b, X)

Fig. 6. Protocol π1-core

Proposition 7. Under the GAP-CDH assumption in the cyclic group G of prime order p, the
protocol π1-core satisfies eCKpassive security, when KDF is modeled as a random oracle.

Proof (Sketch). We analyze the following events:

1. Kc, and

2. TO ∧K, where

TO denotes the event that there exists an origin-session for the test session, and K denotes the
event that the adversary M wins the security experiment against π1-core by querying KDF with
(Â, B̂, σ,X), where σ = CDH(Y B,XA), given that the test session is s∗ with Ts∗ = (Â, B̂, I, X, Y ).
Recall that in case there is no origin-session for the test session, the test session is not eCKpassive

fresh.
ut

The full proof of Proposition 7 is given in the appendix. Applying the SIG transformation to the
π1-core protocol yields the π1 protocol from [16], depicted in Figure 7.

Â : (a,A), (skÂ, pkÂ)

x,X := gx

B̂ : (b,B), (skB̂ , pkB̂)

y, Y := gy

X,σÂ = Signsk
Â

(X)

Y, σB̂ = Signsk
B̂

(Y )

KÂ := KDF (Â, B̂, (Y B)x+a, X) KB̂ := KDF (Â, B̂, (XA)y+b, X)

Fig. 7. π1 protocol [16]

Combining Proposition 7 with Theorem 1, we immediately obtain the following result.

Corollary 3. Under the GAP-CDH assumption in the cyclic group G of prime order p, using a
deterministic SUF-CMA signature scheme, the protocol π1 satisfies eCK-PFS security, when KDF
is modeled as a random oracle.
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6 Related Work

6.1 Perfect Forward Secrecy

The majority of related works claim that perfect forward secrecy cannot be achieved in a two-
message KE protocol [8, 14, 25, 27, 28]. There are two notable exceptions. First, the two-message
modified-Okamoto-Tanaka (mOT) protocol by Gennaro et al. [20] provides perfect forward secrecy
in the identity-based setting. Additionally, they sketch variants of the protocol for the PKI-based
setting. As noted by the authors [20], the mOT protocol and its variants are not resilient against
loss of ephemeral keys, and they are therefore insecure in eCK-like models. Second, in [9], Boyd
and González Nieto suggest a transformation C based on adding MACs on the message exchange
of a key-exchange protocol that satisfies weak perfect forward secrecy, to achieve perfect forward
secrecy. However, the MAC transformation does not ensure security in eCK-PFS, because it does
not guarantee perfect forward secrecy under actor compromise and leakage of ephemeral secret keys,
as we show in Section 6.2. It is important to note that our security model eCK-PFS prevents the
attack scenario described in [9, p. 458] since we restrict the adversary from revealing the ephemeral
secret keys of the origin-session for the test session (see Definition 14).

In [21], Jeong, Katz and Lee introduce the one-round KE protocols TS2 and TS3 and show that
these protocols achieve forward secrecy. The underlying security model with respect to which both
protocols are proven secure is based on the Bellare-Rogaway model in [3] and captures forward
secrecy by allowing the adversary to corrupt both actor and peer of some target session in case the
adversary is passive during the execution of the target session (which corresponds to weak-PFS).
As observed in [1], it seems that protocol TS3 satisfies a stronger forward secrecy property than
protocol TS2, although this is not stated or proven in [21]. We conjecture that protocol TS3 in fact
achieves PFS, under the same assumptions as stated in [21, Theorem 3].

In [27], LaMacchia et al. describe an eCK variant for protocols with more than two messages
that additionally guarantees perfect forward secrecy. However, this eCK variant cannot be met
by any protocol from the class we are considering here, because it uses the concept of matching
session instead of origin-session. Boyd and González Nieto’s replay attack [9, p. 458] serves as a
generic counterexample: it shows that no two-message key exchange protocol in DH-2 that does not
provide message replay detection can achieve security in this eCK variant, assuming that the notion
of matching sessions is defined as in Definition 5.

6.2 Protocol Transformations

Several protocol transformations (often called compilers) that aim towards a modular approach in
the design and analysis of protocols have been proposed in the literature (see e. g. [9–11, 23]). In
particular, applying such transformations to concrete protocols should lead to protocols that are
secure in a stronger security model.

In [11], Canetti and Krawczyk specify transformations from the authenticated-links model (AM)
to the unauthenticated-links adversarial model (UM). In the AM, the adversary is not allowed to
actively interfere within the communication. In the UM, the adversary has basic attacker capabilities
as well as the capability of corrupting agents, revealing session-keys and session-state. The idea is
that a protocol secure in the AM can be translated into a protocol secure in the stronger model
UM using an authenticator. Thus, authenticators can be seen as compilers which translate protocols
secure in the AM into protocols secure in the UM.
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In the context of authenticated group key exchange, Katz and Yung [23] propose a compiler which
transforms any group KE protocol secure against a passive adversary to an authenticated group
KE protocol secure against an active adversary who fully controls the network. The transformed
protocol has an additional protocol round and requires signatures on some broadcasted messages.
Note that the Katz and Yung compiler is however not a security-strengthening transformation in
the sense of Definition 18 due to the counterexample given in [10, p. 13]. Bresson et al. [10] propose
a similar signature-based compiler than [23] which yields a protocol achieving authenticated key
exchange security as well as mutual authentication when applied to any group key exchange protocol
secure against a passive adversary. The passive adversary in [10] is slightly stronger than the one
in [23] since in addition to eavesdropping on regular protocol executions, he may delay or delete
messages, or change their delivery order. The security model eCKpassive introduced in Section 4
considers an even stronger passive adversary that can also replay messages to sessions and is only
restricted from injecting or modifying the messages received by the target session.

The C transformation by Boyd and González Nieto [9] aims to provide message origin authenti-
cation based on a static Diffie-Hellman key. However, an adversary capable of actor compromise can
compute the static Diffie-Hellman key used in the test session. Hence, in this context, the static
Diffie-Hellman key does not provide any authentication. More precisely, an attacker can impersonate
the peer of the test session by first revealing the long-term secret keys of the actor (which allows
him to create valid MACs on messages of his choice). After the completion of the test session he
can reveal the long-term secret keys of the peer, effectively performing a variant of Krawczyk’s
attack. We next detail a concrete instance of this attack, showing that C(NAXOS) [9] is insecure in
eCK-PFS. We denote by S = ga

′b′ the shared static DH key between the parties Â and B̂.

1. The adversary E first reveals the long-term secret keys of party Â.
2. He then activates an initiator session s at Â with peer B̂ via the query send(s, B̂) and receives as

a response the message m = X,MACS(Â, B̂,X), where X = gH1(rÂ,a) with rÂ chosen uniformly
at random from {0, 1}k in session s.

3. E chooses an arbitrary z ∈ Zp, computes Z = gz and sends message m̃ = Z,MACS(B̂, Â, Z)

to session s. Upon receiving message m̃ in session s, Â computes the session key KÂ =

H2(Za, BH1(rÂ,a), ZH1(rÂ,a), Â, B̂) and completes the session by accepting KÂ as the session key.
4. Now, E chooses the completed session s as the test session, and reveals the long-term secret

keys of party B̂. This enables him to compute the session key of the test session as KE =
H2(Az, Xb, Xz, Â, B̂).

Hence, the MAC transformation does not achieve security in eCK-PFS.

7 Conclusions

We provided two new eCK-like security notions, namely eCKw and eCK-PFS. The eCKw model
slightly strengthens eCK by including a more precise modeling of weak-PFS. The strictly stronger
eCK-PFS notion guarantees PFS, even in the presence of eCK-like adversaries. Note that separately
proving eCKw (or eCK) security and PFS does not imply security in eCK-PFS. For example,
eCK-PFS additionally considers PFS under actor compromise.

In the process of formalizing these models, we also provided formal definitions of PFS and, for
the first time, weak-PFS. We formally related our models and their intended properties.

Existing two-message key exchange protocols such as CMQV [37], NAXOS [28], C(NAXOS) [9],
or HMQV [25, 26], fail to achieve security in eCK-PFS. We specified a security-strengthening
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transformation that transforms any two-message DH type KE protocol secure in eCKpassive or eCKw

into a two-message protocol secure in eCK-PFS. Thus, the SIG transformation can be applied to
protocols such as NAXOS, that are secure in eCKw. Additionally, it can be applied to protocols that
fail to achieve security in eCKw, but that can instead be proven secure in the weaker eCKpassive

model. As a concrete example we have proven that the π1-core protocol is secure in eCKpassive.
Subsequent application of the SIG transformation to π1-core implies that the efficient π1 protocol
from [16] is secure in eCK-PFS. This example illustrates the use of SIG in the modular design of
KE protocols.

It remains an open question whether there exist more efficient generic transformations that yield
two-message KE protocols secure in eCK-PFS.
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A On the eCK model [28]

There are two main aspects in which the eCK model is underspecified.
First, the eCK model specifies that in the setup phase of the security experiment, the adversary

may register arbitrary public keys [28, p. 8]. This can be interpreted in at least two ways: (a) the
adversary may register arbitrary valid public keys (e. g., elements of a given group G), or (b) the
adversary may register arbitrary bit strings (e. g., elements that do not belong to a given group
G). As the security proof of NAXOS in the eCK model [28, pp. 12-16] is incomplete, it is unclear
whether the result of LaMacchia et al. [28, Theorem 1] holds under the second interpretation. In
addition, LaMacchia et al. [28, Figure 1] state that the HMQV protocol achieves CK-security under
arbitrary key registration, (the same key registration as in the eCK model). This statement is only
correct under interpretation (a), because HMQV is vulnerable to small-subgroup attacks as described
in [33, p. 53], a reference cited in [28]. We therefore assume the literal interpretation (a), i. e., the
adversary may register arbitrary valid public keys from the key space. This is also in line with the
descriptions in [18,24,37].

Second, the eCK model puts no explicit restrictions on the corrupt query. For honest parties
the intent of the query is clear. However, it is unclear in [28] whether the query is allowed on
adversary-controlled parties on behalf of those the adversary registered a public key. Consider the
following two cases for adversary-controlled parties. On the one hand, if the adversary already
knows the secret key corresponding to the valid public key he registered, then the corrupt query is
redundant. On the other hand, if the adversary were allowed to perform this query when he does
not know the secret key of the corresponding valid public key, then no protocol would be secure in
the eCK model: the adversary would be able to obtain the secret key of any honest party by simply
re-registering the public key for an adversary-controlled party, and then corrupting the latter party.
In particular, this gives the adversary access to the secret keys of honest parties without performing
a corrupt on these honest parties, which can then be combined with an ephemeral-key query to
compute the session key of the test session. The previous observations lead us to the conclusion that
the query corrupt(P̂ ) should be defined in such a way that it returns the secret keys of party P̂ if P̂
is honest, and ⊥ otherwise.

We show in Proposition 8 that our eCKw model is stronger than the eCK model with respect to
Π.

Proposition 8. Let Π be the class of two-message KE protocols. The eCKw model is stronger than
the eCK model with respect to Π.

Proof. The first condition of Definition 6 is satisfied since matching is defined in the same way for
both models eCKw and eCK. Let π ∈ Π. To show that the second condition of Definition 6 holds,
we construct an adversary E′ attacking protocol π in model eCKw using an adversary E attacking
π in eCK. In the setup phase of the eCK experiment, the adversary selects N distinct binary strings
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P̂1, P̂2, ..., P̂N for N honest parties. Define P = {P̂1, P̂2, ..., P̂N} for the eCKw experiment. During
the registration phase at the onset of the experiment, in case E registers valid public keys on behalf
of adversary-controlled parties L̂ /∈ P, E′ proceeds with the same registration of keys. Whenever E
issues a query send, corrupt, ephemeral-key, session-key or test-session, adversary E′ issues the same
query and forwards the answer received to E. At the end of E’s execution, i. e. after it has output its
guess bit b, E′ outputs b as well. Note that if eCKfresh holds for the test session, then by definition
eCKw

fresh also holds. In particular, if there is no matching session, then the last condition in the
freshness definition of the eCK model [28, p. 9] requires that there is no corrupt of the peer, which
implies the sixth condition of eCKw

fresh. Hence, it holds that AdvπE(k) ≤ AdvπE′(k), where k denotes
the security parameter. Since by assumption protocol π is secure in eCKw, there is a negligible
function g such that AdvπE′(k) ≤ g(k). It follows that protocol π is secure in eCK. ut

B Proof of Proposition 6

Proposition 6 Under the GAP-CDH assumption in the cyclic group G of prime order p, the NAXOS
protocol is satisfies eCKw security, when H1, H2 are modeled as independent random oracles.

Proof. Here we show that NAXOS is secure in eCKw. We use the structure of the security proof of
the CMQV protocol in [37] as it is more detailed than the proof of NAXOS in [28].

Let the test session s∗ be given by Ts∗ = (Â, B̂, I, X, Y ). We first consider event Kc where
the adversary M wins the security experiment against NAXOS (with non-negligible advantage)
and does not query H2 with (σ1, σ2, σ3, Â, B̂), where σ1 = CDH(Y,A), σ2 = CDH(B,X) and
σ3 = CDH(X,Y ).

Event Kc

If event Kc occurs, then the adversary M must have issued a session-key query to some session s
such that Ks = Ks∗ (where Ks and Ks∗ denote the session-keys computed in sessions s and s∗,
respectively) and s does not match s∗. We consider the following four events:

1. A1 : there exist two sessions s1, s2 such that rs1 = rs2 (where rs1 and rs2 denote the random
coins drawn in sessions s1 and s2, respectively).

2. A2 : there exists a sessions s such that H1(rs, skactor ,s) = H1(rs∗ , skactor ,s∗) and rs 6= rs∗ .
3. A3 : there exists a session s′ such that H2(inputs′) = H2(inputs∗) with inputs′ 6= inputs∗ .
4. A4 : there exists an adversarial query inputM to the oracle H2 such that H2(inputM ) =
H2(inputs∗) with inputM 6= inputs∗ .

Analysis of event Kc

We denote by qs an upper bound on the number of activated sessions by the adversary and by qro2
an upper bound on the number of queries to the random oracle H2. We have that

P (Kc) ≤ P (A1 ∨A2 ∨A3 ∨A4) ≤ P (A1) + P (A2) + P (A3) + P (A4)

≤ q2s
2

1

2k
+
qs
p

+
qs + qro2

2k
,

which is a negligible function of the security parameter k.
In the subsequent events (and their analyses) we assume that no collisions in the queries to the

oracle H1 occur and that none of the events A1, ..., A4 occurs. Similar to [28,37], we next consider
the following three events:
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1. DL ∧K,
2. TO ∧DLc ∧K, and
3. (TO)c ∧DLc ∧K, where

TO denotes the event that there exists an origin-session for the test session, DL denotes the event
where there exists a party Ĉ ∈ P such that the adversary M , during its execution, queries H1 with
(∗, c) before issuing a corrupt(Ĉ) query and K denotes the event that M wins the security experiment
against NAXOS by querying H2 with (σ1, σ2, σ3, Â, B̂), where σ1 = CDH(Y,A), σ2 = CDH(B,X)
and σ3 = CDH(X,Y ).

Note that we analyze the security of the NAXOS protocol in case the messages only contain the
Diffie-Hellman exponentials.

Event DL ∧K
This event is independent of the event that there exists an origin-session for the test session.

Let the input to the GAP-DLog challenge be C. Suppose that event DL ∧ K occurs with
non-negligible probability. In this case, the simulator S chooses one party Ĉ ∈ P at random and sets
its long-term public key to C. S chooses long-term secret/public key pairs for the remaining honest
parties and stores the associated long-term secret keys. Additionally S chooses a random value
m ∈R {1, 2, ..., qs}. We denote the m’th activated session by adversary M by s∗. Suppose further
that s∗actor = Â, s∗peer = B̂ and s∗role = I, w. l. o. g.. The simulation of M ′s environment proceeds as
follows:

1. send queries are answered in the usual way. In case a session s is activated via a send query, S
stores an entry of the form (s, rs, sksactor , κ) ∈ (P × N)× {0, 1}k × (Zp ∪ {∗})× Zp in a table Q,
initially empty, (unless ephemeral public key validation on the received element fails in which
case the session is aborted). When computing the (outgoing) Diffie-Hellman exponential of
session s, S does the following:
– S chooses rs ∈R {0, 1}k (i. e. the randomness of session s),
– S chooses κ ∈R Zp,
– if sactor 6= Ĉ, then S stores the entry (s, rs, sksactor , κ) in Q, else S stores the entry (s, rs, ∗, κ)

in Q,2 and
– S returns the Diffie-Hellman exponential gκ to M .

2. S stores entries of the form
(
Q̂i, Q̂j , r, U, V, λ

)
∈ P × {0, 1}∗ × {I,R} ×G×G× {0, 1}k in a

table T , initially empty. Upon completion of session s with Ts =
(
Q̂i, Q̂j , I, U, V

)
, S does the

following:

– If there exists an entry
(
Q̂j , Q̂i,R, V, U, λ

)
in table T , then S stores

(
Q̂i, Q̂j , I, U, V, λ

)
in

table T .
– Else if there exists an entry

(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
in table L, for some λ ∈ {0, 1}k, such that

DDH(V,U, σ3) = 1, DDH(U,Qj , σ2) = 1 and

• V skQ̂i = σ1 (in case Q̂i 6= Ĉ) or DDH(V,Qi, σ1) = 1 (in case Q̂i = Ĉ),

then S stores
(
Q̂i, Q̂j , I, U, V, λ

)
in table T .

– Else, S chooses µ ∈R {0, 1}k and stores the entry
(
Q̂i, Q̂j , I, U, V, µ

)
in T .

2 We do not need to keep consistency with H1 queries via lookup in table J since the probability that the
adversary guesses the random data of a session is negligible.
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The session-key of a completed session s with Ts =
(
Q̂j , Q̂i,R, V, U

)
is determined and stored

similarly.
3. ephemeral-key(s): S answers this query in the appropriate way.
4. session-key(s): S answers this query by look-up in table T .
5. test-session(s): If s 6= s∗, then S aborts; otherwise S answers the query in the appropriate way.
6. corrupt(P̂ ): S answers this query in the appropriate way, except if P̂ = Ĉ in which case S aborts

with failure.
7. S stores entries of the form (r, h, κ) ∈ {0, 1}k × Zp × Zp in a table J , initially empty. When M

makes a query of the form (r, h) to the random oracle for H1, answer it as follows:
– If C = gh, then S aborts M and is successful by outputting DLog(C) = h.
– Else if (r, h, κ) ∈ J for some κ ∈ Zp, then S returns κ to M .

– Else if there exists an entry (s, rs, sksactor , κ) in Q, for some s ∈ P ×N, rs ∈ {0, 1}k , sksactor ∈
Zp and κ ∈ Zp, such that rs = r and sksactor = h, then S returns κ to M and stores the
entry (r, h, κ) in table J .

– Else, S chooses κ ∈R Zp, returns it to M and stores the entry (r, h, κ) in J .

8. S stores entries of the form
(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
∈ G×G×G×{0, 1}∗×{0, 1}∗×{0, 1}k in a

table L, initially empty. When M makes a query of the form
(
σ1, σ2, σ3, Q̂i, Q̂j

)
to the random

oracle for H2, answer it as follows:

– If
(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to M .

– Else if there exist entries
(
Q̂i, Q̂j , I, U, V, λ

)
or
(
Q̂j , Q̂i,R, V, U, λ

)
in table T , for some

λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V,U, σ3) = 1, DDH(V,Qi, σ1) = 1 and

DDH(U,Qj , σ2) = 1, then S returns λ to M and stores the entry
(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
in

table L.
– Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry

(
σ1, σ2, σ3, Q̂i, Q̂j , µ

)
in

L.
9. M outputs a guess: S aborts with failure.

Analysis of event DL ∧K
S’s simulation of M ’s environment is perfect except with negligible probability. The probability that
M selects s∗ as the test session is at least 1

qs
. Assuming that this is indeed the case, S does not

abort in Step 5. With probability at least 1
N , S assigns the public key C to a party Ĉ for whom

M queries H1 with (∗, h) such that C = gh before issuing a corrupt(Ĉ) query. In this case, S is
successful as described in Step 7 and does not abort in Steps 6 and 9. Hence, if event DL∧K occurs,
then the success probability of S is given by P (S) ≥ 1

Nqs
P (DL ∧K).

Event TO ∧DLc ∧K
Let s∗ and s′ denote the test session and the origin-session for the test session, respectively. We
split event Ev := TO ∧DLc ∧K into the following events B1, ..., B3 so that Ev = B1 ∨B2 ∨B3:

1. B1 : Ev occurs and s∗peer = s′actor .
2. B2 : Ev occurs and s∗peer 6= s′actor and M does not issue an ephemeral-key(s′) query to the

origin-session s′ of s∗, but may issue a corrupt(s∗peer ) query.
3. B3 : Ev occurs and s∗peer 6= s′actor and M does not issue a corrupt(s∗peer ) query, but may issue an

ephemeral-key(s′) query to the origin-session s′ of s∗.
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Event B1

Let the input to the GDH challenge be (X0, Y0). Suppose that event B1 occurs with non-negligible
probability. In this case S chooses long-term secret/public key pairs for all the honest parties and
stores the associated long-term secret keys. Additionally S chooses two random values m,n ∈R
{1, 2, ..., qs}. The m’th activated session by adversary M will be called s∗ and the n’th activated
session will be called s′. The ephemeral secret key of session s∗ is denoted by x̃0 and the ephemeral
secret key of session s′ is denoted by ỹ0. Suppose further that s∗actor = Â, s∗peer = B̂ and s∗role = I,
w. l. o. g.. The simulation of M ′s environment proceeds as follows:

1. send(s∗, B̂): S sets the ephemeral public key X to X0 and answers the query with message X0.
2. send(s∗, Y0): S proceeds with Step 7.
3. send(s′, P̂ ): S sets the ephemeral public key Y to Y0 and answers the query with message Y0.
4. send(s′, P̂ , Z): S checks whether Z ∈ G, sets the ephemeral public key Y to Y0, answers the

query with message Y0 and proceeds with Step 7. If the check fails, session s′ is aborted.
5. send(s′, Z): S proceeds with Step 7.
6. Other send queries are answered in the usual way.3

7. S stores entries of the form
(
Q̂i, Q̂j , r, U, V, λ

)
∈ P × {0, 1}∗ × {I,R} ×G×G× {0, 1}k in a

table T , initially empty. Upon completion of session s with Ts =
(
Q̂i, Q̂j , I, U, V

)
, S does the

following:

– If there exists an entry
(
Q̂j , Q̂i,R, V, U, λ

)
in table T , then S stores

(
Q̂i, Q̂j , I, U, V, λ

)
in

table T .
– Else if there exists an entry

(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
in table L, for some λ ∈ {0, 1}k, such that

V
skQ̂i = σ1, DDH(U,Qj , σ2) = 1 and DDH(V,U, σ3) = 1, then S stores

(
Q̂i, Q̂j , I, U, V, λ

)
in table T .

– Else, S chooses µ ∈R {0, 1}k, and stores the entry
(
Q̂i, Q̂j , I, U, V, µ

)
in T .

The session-key of a completed session s with Ts =
(
Q̂j , Q̂i,R, V, U

)
is determined and stored

similarly.
8. ephemeral-key(s): S answers this query in the appropriate way.
9. session-key(s): S answers this query by look-up in table T .

10. test-session(s): If s 6= s∗ or if s′ is not the origin-session for session s∗, then S aborts; otherwise
S answers the query in the appropriate way.

11. H1(rĈ , c): S simulates a random oracle in the usual way except if Ĉ = Â (i.e. c = a) and rĈ = x̃0
or if Ĉ = B̂ (i.e. c = b) and rĈ = ỹ0, in which case S aborts with failure.

12. corrupt(P̂ ): S answers this query in the appropriate way.

13. S stores entries of the form
(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
∈ G×G×G×{0, 1}∗×{0, 1}∗×{0, 1}k in a

table L, initially empty. When M makes a query of the form
(
σ1, σ2, σ3, Q̂i, Q̂j

)
to the random

oracle for H2, answer it as follows:

– If
{
Q̂i, Q̂j

}
=
{
Â, B̂

}
, σ1 = Y a0 , σ2 = Xb

0 and DDH(X0, Y0, σ3) = 1, then S aborts M and

is successful by outputting CDH(X0, Y0) = σ3.

– Else if
(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to M .

3 Note that, if the group check fails, the session is aborted.
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– Else if there exist entries
(
Q̂i, Q̂j , I, U, V, λ

)
or
(
Q̂j , Q̂i,R, V, U, λ

)
, for some λ ∈ {0, 1}k

and U, V ∈ G, such that DDH(V,Qi, σ1) = 1, DDH(U,Qj , σ2) = 1 and DDH(V,U, σ3) = 1

in table T , then S returns λ to M and stores the entry
(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
in table L.

– Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry
(
σ1, σ2, σ3, Q̂i, Q̂j , µ

)
in

L.
14. M outputs a guess: S aborts with failure.

Analysis of event B1

S’s simulation of M ’s environment is perfect except with negligible probability. The probability that
M selects s∗ as the test session and s′ as the origin-session for the test session is at least 1

q2s
. Assuming

that this is indeed the case, S does not abort in Step 10. Recall that Ts∗ = (Â, B̂, I, X0, Y0). Since x̃0
is used only in the test session, M can only obtain it via an ephemeral-key(s∗) query before making
an H1 query that includes x̃0. Similarly, M can only obtain ỹ0 via an ephemeral-key(s′) query on
the origin-session s′ before making an H1 query that includes ỹ0. Under event DLc, the adversary
first issues a corrupt(P̂ ) query to party P̂ before making an H1 query that involves the long-term
secret key of party P̂ . Freshness of the test session guarantees that the adversary can reveal at most
one value in each of the pairs (x̃0, a) and (ỹ0, b); hence S does not abort in Step 11. Under event
K, except with negligible probability of guessing CDH(X0, Y0), S is successful as described in the
first case of Step 13 and does not abort as in Step 14. Hence, if event B1 occurs, then the success
probability of S is given by P (S) ≥ 1

q2s
P (B1).

Event B2

Let the input to the GDH challenge be (X0, Y0). Suppose that event B2 occurs with non-negligible
probability. The simulation of S proceeds in a similar way as for event B1. Steps 8 and 11 need to
be replaced by the following:

– ephemeral-key(s): S answers this query in the appropriate way, except if s = s′ in which case S
aborts with failure.

– H1(rĈ , c): S simulates a random oracle in the usual way except if Ĉ = Â (i.e. c = a) and rĈ = x̃0,
in which case S aborts with failure.

Analysis of event B2

S’s simulation of M ’s environment is perfect except with negligible probability. The probability
that M selects s∗ as the test session and s′ as the origin-session for the test session is 1

q2s
. Recall

that Ts∗ = (Â, B̂, I, X0, Y0). Since x̃0 is used only in the test session, M can only obtain it via
an ephemeral-key(s∗) query before making an H1 query that includes x̃0. Under event DLc, the
adversary first issues a corrupt(P̂ ) query to party P̂ before making an H1 query that involves the
long-term secret key of party P̂ . Freshness of the test session guarantees that the adversary can
reveal at most one value of the pair (x̃0, a). Under event B2 the simulation does not fail as in Step
8. Under event K, except with negligible probability of guessing CDH(X0, Y0), S is successful as
described in the first case of Step 13 and does not abort as in Step 14. Hence, if event B2 occurs,
then the success probability of S is given by P (S) ≥ 1

q2s
P (B2).

Event B3

Let the input to the GDH challenge be (X0, B). Suppose that event B3 occurs with non-negligible
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probability. In this case, S chooses one party B̂ ∈ P at random and sets its long-term public key
to B. S chooses long-term secret/public key pairs for the remaining parties in P and stores the
associated long-term secret keys. Additionally S chooses two random values m,n ∈R {1, 2, ..., qs}.
We denote the m’th activated session by adversary M by s∗ and the n’th activated session by s′.
The ephemeral secret key of session s∗ is denoted by x̃0. Suppose further that s∗actor = Â, s∗peer = B̂
and s∗role = I, w. l. o. g.. The simulation of M ′s environment proceeds as follows:

1. send(s∗, B̂): S sets the ephemeral public key X to X0 and answers the query with message X0.
2. send(s∗, Z): S proceeds with Step 4.
3. Other send queries are answered as for event DL ∧K.

4. S stores entries of the form
(
Q̂i, Q̂j , r, U, V, λ

)
∈ P × {0, 1}∗ × {I,R} ×G×G× {0, 1}k in a

table T , initially empty. Upon completion of session s with Ts =
(
Q̂i, Q̂j , I, U, V

)
, S proceeds

as for event DL ∧K (see above).
5. ephemeral-key(s): S answers this query in the appropriate way.
6. session-key(s): S answers this query by look-up in table T .
7. test-session(s): If s 6= s∗ or if s′ is not the origin-session for session s∗, then S aborts; otherwise
S answers the query in the appropriate way.

8. H1(rĈ , c): S simulates a random oracle in the usual way except if Ĉ = Â (i.e. c = a) and rĈ = x̃0,
in which case S aborts with failure.

9. corrupt(P̂ ): S answers this query in the appropriate way, except if P̂ = B̂ in which case S aborts
with failure.

10. S stores entries of the form
(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
∈ G×G×G× P × P × {0, 1}k in a table L,

initially empty. When M makes a query of the form
(
σ1, σ2, σ3, Q̂i, Q̂j

)
to the random oracle

for H2, answer it as follows:

– If
{
Q̂i, Q̂j

}
=
{
Â, B̂

}
, σ1 = A

H1(rs′ ,sks′actor
)
, DDH(X0, B, σ2) = 1, and

σ3 = X
H1(rs′ ,sks′actor

)

0 , then S aborts M and is successful by outputting CDH(X0, B) = σ2.

– Else if
(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to M .

– Else if there exist entries
(
Q̂i, Q̂j , I, U, V, λ

)
or
(
Q̂j , Q̂i,R, V, U, λ

)
in table T , for some

λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V,U, σ3) = 1, DDH(V,Qi, σ1) = 1 and

DDH(U,Qj , σ2) = 1, then S returns λ to M and stores the entry
(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
in

table L.
– Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry

(
σ1, σ2, σ3, Q̂i, Q̂j , µ

)
in

L.
11. M outputs a guess: S aborts with failure.

Analysis of event B3

S’s simulation of M ’s environment is perfect except with negligible probability. The probability
that M selects s∗ as the test session and s′ as its origin-session is at least 1

q2s
. Assuming that this is

indeed the case, S does not abort in Step 7. With probability 1
N , S assigns the public key B to the

peer of the test session B̂. Under event B3, M does not issue a corrupt(B̂) query, and so S does not
abort in Step 9. Similarly, S does not abort in Step 11 and is successful as described in Step 10.
Hence, if event B3 occurs, then the success probability of S is given by P (S) ≥ 1

Nq2s
P (B3).
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Event (TO)c ∧DLc ∧K
If there is no origin-session for the test session, then there is also no matching session for the test
session. Hence ((TO)c ∧DLc ∧K) ⊆ ((TM )c ∧DLc ∧K) (where TM denotes the event that there
exists a matching session for the test session) which implies that event (TO)c ∧DLc ∧K is covered
in the analysis of event (TM )c ∧DLc ∧K for which we refer the reader to [27,28]. Note that, similar
to the simulation related to Event B3,

– S checks whether there is a query (σ1, σ2, σ3, Q̂i, Q̂j) by M to H2 such that
{
Q̂i, Q̂j

}
=
{
Â, B̂

}
,

DDH(A, Y, σ1) = 1,DDH(X0, B, σ2) = 1 and DDH(X0, Y, σ3) = 1 (assuming that the test
session s∗ is given by Ts∗ = (Â, B̂, I, X0, Y ) to solve the GDH instance (X0, B), and

– S keeps consistency between session-key and H2 queries as well as between send and H1 queries.
ut

C Proof of Proposition 7

Proposition 7 Under the GAP-CDH assumption in the cyclic group G of prime order p, the protocol
π1-core satisfies eCKpassive security, when KDF is modeled as a random oracle.

Proof. Let the test session s∗ be given by Ts∗ = (Â, B̂, I, X, Y ). We first consider event Kc where
the adversary M wins the security experiment against π1-core (with non-negligible advantage) and
does not query KDF with (Â, B̂, σ,X), where σ = CDH(Y B,XA).

Event Kc

If event Kc occurs, then the adversary M must have issued a session-key query to some session s
such that Ks = Ks∗ (where Ks and Ks∗ denote the session-keys computed in sessions s and s∗,
respectively) and s does not match s∗. We consider the following three events:

1. A1 : there exist two sessions s1, s2 such that rs1 = rs2 (where rs1 and rs2 denote the random
coins drawn in sessions s1 and s2, respectively). Note that A1 includes the event where there
exists a session s with Ts = Ts∗ as well as the event where two sessions use the same random
coins (possibly leading to ephemeral-key queries).

2. A2 : there exists a session s such that KDF (inputs) = KDF (inputs∗) with inputs 6= inputs∗ .
3. A3 : there exists an adversarial query inputM to the oracle KDF such that KDF (inputM ) =

KDF (inputs∗) with inputM 6= inputs∗ .

Analysis of event Kc

We denote by qs an upper bound on the number of activated sessions by the adversary and by qro
an upper bound on the number of queries to the random oracle KDF . We have that

P (Kc) ≤ P (A1 ∨A2 ∨A3) ≤ P (A1) + P (A2) + P (A3)

≤ q2s
2p

+
qs + qro

2k
,

which is a negligible function of the security parameter k.
In the subsequent events (and their analyses) we assume that none of the events A1, ..., A3 occurs.

We consider the following event:
TO ∧K, where
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TO denotes the event that there exists an origin-session for the test session, and K denotes the
event that M wins the security experiment against π1-core by querying KDF with (Â, B̂, σ,X),
where σ = CDH(Y B,XA). Recall that in case there is no origin-session for the test session, the test
session is not eCKpassive

fresh.

Event TO ∧K
Let s∗ and s′ denote the test session and the origin-session for the test session, respectively. We
split event Ev := TO ∧K into the following events B1, ..., B4 so that Ev = B1 ∨B2 ∨B3 ∨B4:

1. B1 : Ev occurs and the adversary does issue neither ephemeral-key(s′) nor ephemeral-key(s∗),
but may issue the queries corrupt(s∗actor ) and corrupt(s∗peer ).

2. B2 : Ev occurs and the adversary does issue neither ephemeral-key(s∗) nor corrupt(s∗peer ), but
may issue the queries corrupt(s∗actor ) and ephemeral-key(s′).

3. B3 : Ev occurs and the adversary does issue neither ephemeral-key(s′) nor corrupt(s∗actor ), but
may issue the queries corrupt(s∗peer ) and ephemeral-key(s∗).

4. B4 : Ev occurs and the adversary does issue neither corrupt(s∗actor ) nor corrupt(s∗peer ), but may
issue the queries ephemeral-key(s′) and ephemeral-key(s∗).

Event B1

We denote by X,Y the ephemeral public keys sent, received during the test session s∗. Revealing
the long-term secret keys of both s∗actor and s∗peer , the adversary E could distinguish the session-key
of the test session from a random key by computing CDH(X,Y ) = gxy (where X = gx and Y = gy)
since

gxy = (Y B)x+aY −aX−bB−a.

We solve the GAP-CDH problem with probability 1
(qs)2

P (Q) where P (Q) must be negligible

since the GAP-CDH problem is hard in G.
Consider the following algorithm C which uses adversary E as a subroutine.

ALGORITHM C: The algorithm is given a pair (X,Y ) of elements from G as an instance of the
GAP-CDH problem. The algorithm randomly selects a session number n from {1, ..., qs} which
reflects the guess that the n-th activated session, say session s′, is the origin-session for session s∗.
C chooses long-term public keys for all parties and stores the associated secret keys.

1. Run E on input 1k and the public keys for all of the N parties.
2. send(s∗, B̂): C sets the ephemeral public key to X and answers the query with the message X.
3. send(s′, P̂ ) or send(s′, P̂ , Z): C sets the ephemeral public key to Y and answers the query with

the message Y .
4. Other send queries are answered in the usual way (note that, if the group check fails, the session

is aborted).
5. ephemeral-key(s): C answers in the appropriate way, except if s = s′ or s = s∗ in which cases C

aborts with failure.
6. corrupt(P̂ ): C answers in the appropriate way.
7. test-session(s): If s 6= s∗ or if s′ is not the origin-session for session s∗, then C aborts; otherwise
C answers the query in the appropriate way.

8. Store entries of the form
(
Q̂i, Q̂j , Z, U, λ

)
∈ {0, 1}∗ × {0, 1}∗ × G × G × {0, 1}k in a table L,

initially empty. When E makes a query of the form
(
Q̂i, Q̂j , Z, U

)
to the random oracle for

KDF , answer it as follows:
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– If
{
Q̂i, Q̂j

}
=
{
Â, B̂

}
, U = X and DDH(XA,Y B,Z) = 1, then C aborts E and is successful

by outputting CDH(X,Y ) = ZY −aX−bB−a.

– Else if
(
Q̂i, Q̂j , Z, U, λ

)
∈ L for some λ ∈ {0, 1}k, then C returns λ to E.

– Else if there exist entries
(
Q̂i, Q̂j , I, U, V, λ

)
or
(
Q̂j , Q̂i,R, V, U, λ

)
, for some λ ∈ {0, 1}k

and V ∈ G, such that DDH(V Pj , UPi, Z) = 1 in table T , then C returns λ to E and stores

the entry
(
Q̂i, Q̂j , Z, U, λ

)
in table L.

– Else, C chooses µ ∈R {0, 1}k, returns it to E and stores the entry
(
Q̂i, Q̂j , Z, U, µ

)
in L.

9. Store entries of the form
(
Q̂i, Q̂j , r, U, V, λ

)
∈ P × {0, 1}∗ ×{I,R}×G×G×{0, 1}k in a table

T , initially empty. Upon completion of session s with Ts =
(
Q̂i, Q̂j , I, U, V

)
, C proceeds as

follows:
– If there exists an entry

(
Q̂j , Q̂i,R, V, U, λ

)
in table T , then C stores

(
Q̂i, Q̂j , I, U, V, λ

)
in

table T .
– Else if there exists an entry

(
Q̂i, Q̂j , Z, U, λ

)
in table L, for some λ ∈ {0, 1}k, such that

DDH(UPi, V Pj , Z) = 1, then C stores
(
Q̂i, Q̂j , I, U, V, λ

)
in table T .

– Else, C chooses µ ∈R {0, 1}k and stores the entry
(
Q̂i, Q̂j , I, U, V, µ

)
in T .

The session-key of a completed session s with Ts =
(
Q̂j , Q̂i,R, V, U

)
is determined and stored

similarly.
10. session-key(s): C answers this query by look-up in table T .
11. E outputs a guess: C aborts with failure.

Analysis of event B1

The probability that E selects s∗ as the test session and s′ as the origin-session for the test session
is at least 1

(qs)2
. Assume that this is indeed the case. Then C does not abort as in Step 7. Under

event B1 the simulation does not fail as in Step 5. Under event Q, C is successful as described in the
first case of Step 8 and does not abort as in Step 11. C correctly computes the GAP-CDH instance
with probability at least 1

(qs)2
P (Q) which implies that P (Q) ≤ (qs)

2AdvGAP-CDH
C (k).

Event B2

We denote by X = gx, Y = gy the ephemeral public keys sent, received during the test session
s∗. Revealing the long-term secret key of the actor Â of the test session and the ephemeral key of
the origin-session s′ for session s∗, the adversary E could distinguish the session-key of the test
session from a random key by computing DHg(X,B) = gxb where B = gb denotes the public key of

s∗peer = B̂, since

gxb = (Y B)x+aX−yY −aB−a.

We solve the GAP-CDH problem with probability 1
qsN

P (Q) where P (Q) must be negligible since
GAP-CDH problem is hard in G.

Consider the following algorithm C ′ which uses adversary E as a subroutine.
ALGORITHM C ′: The algorithm is given a pair (X,B) of elements from G as an instance of the
GAP-CDH problem. C ′ selects one party B̂ (uniformly at random from the set P) and sets its
long-term public key to B. C ′ chooses long-term public keys for the remaining parties and stores
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the associated secret keys. Let us denote the ephemeral public key sent by the origin-session (and
received by the test session) by Y .

1. Run E on input 1k and the public keys for all of the N parties.
2. send(s∗, P̂ ): If P̂ 6= B̂, then C ′ aborts; otherwise C ′ sets the ephemeral public key to X and

answers the query with the message X.
3. Other send queries are answered in the usual way, e. g. if E issues a send(s, P̂ , V ) query to session
s, then check whether V ∈ G. If yes, choose w ∈R Zp, compute W = gw (∈ G) and return W to
E. If no, then abort session s.

4. ephemeral-key(s): C ′ answers in the appropriate way, except if s = s∗ in which case C ′ aborts
with failure.

5. corrupt(P̂ ): C ′ answers in the appropriate way, except if P̂ = B̂ in which case C ′ aborts with
failure.

6. test-session(s): If s 6= s∗, then C ′ aborts; otherwise C ′ answers the query appropriately.

7. Store entries of the form
(
Q̂i, Q̂j , Z, U, λ

)
∈ {0, 1}∗ × {0, 1}∗ × G × G × {0, 1}k in a table L,

initially empty. When E makes a query of the form
(
Q̂i, Q̂j , Z, U

)
to the random oracle for

KDF , answer it as follows:

– If
{
Q̂i, Q̂j

}
=
{
Â, B̂

}
, U = X and DDH(XA,Y B,Z) = 1, then C ′ aborts E and is

successful by outputting CDH(X,B) = ZY −aX−yB−a (this computation requires the
knowledge of a, therefore we must require that Â 6= B̂).

– Else, proceed as in Step 8 of the simulation related to event B1.

8. Store entries of the form
(
Q̂i, Q̂j , r, U, V, λ

)
∈ P × {0, 1}∗ ×{I,R}×G×G×{0, 1}k in a table

T , initially empty, as in the previous simulation related to event B1.
9. session-key(s): C ′ answers this query by look-up in table T .

10. E outputs a guess: C ′ aborts with failure.

Analysis of event B2

The probability that E selects s∗ as the test session and B̂ as the peer for the test session is at least
1

qsN
. Assume that this is indeed the case. Then C ′ does not abort as in Step 2 or Step 6. Under

event B2 the simulation does not fail as in steps 4, 5. Under event Q, C ′ is successful as described
in the first case of Step 7 and does not abort as in Step 10. C ′ correctly computes the GAP-CDH
instance with probability at least 1

qsN
P (Q) which implies that P (Q) ≤ qsNAdvGAP-CDH

C′ (k).
The analyses of events B3 and B4 are similar to the previous analyses. ut


