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Abstract. In this paper we define a general trace model for security

protocols which allows to reason about various formal definitions of au-

thentication. In the model, we define a strong form of authentication

which we call synchronization. We present both an injective and a non-

injective version. We relate synchronization to a formulation of agree-

ment in our trace model and contribute to the discussion on intensional

vs. extensional specifications.

1 Introduction

Security protocols have become an established application area of formal meth-
ods today. Over the past years various modelling languages, logics and process
algebras have been proposed for the systematic and tool supported analysis of se-
curity protocols. Exploitation of formal methods in this setting leads to a better
understanding of implicit assumptions and gives feedback on what the protocol
does or, in many cases, what it unexpectedly does not achieve.

In this paper we focus on the notion of authentication as a so-called in-
tensional security property. We formulate a variant of authentication, called
synchronization. In [10] Roscoe introduces the notion of canonical intensional
specification, stating that all parties involved in a protocol, after completion
of their role, are convinced that for their part the protocol has been executed
according to its rules. Intensional properties are those induced by the form or
structure of the protocol; extensional properties are related to the effect the pro-
tocol achieves. The notion of synchronization proposed here captures Roscoe’s
notion of canonical intensional specification as a general trace property. By cast-
ing intensionality in the same framework as extensional security properties, in-
tensionality can be compared with and, as we shall see, related to so-called full
injective agreement.

Important to this point of view is the observed behavior from the perspective
of an individual agent. It will make no difference to an agent engaged in the
protocol if a sequence of communications was the result of its interaction with
an honest principal, with a malicious intruder controlling the network, or a mix of
these. If the agent is entitled to believe at a point in time that the interaction thus



far is consistent with the agents role in the protocol, the agent simply proceeds
under the assumption that all parties involved have obeyed the protocol rules.

In [8] Lowe studies, building on earlier work of [1] and [4], four different forms
of authentication, viz. aliveness, weak agreement, full non-injective agreement
and full injective agreement. On top of this, agreement on subsets of data items
and recentness is considered (two topics we do not address here). By casting
the notions in the setting of CSP Lowe shows that the notions constitute an
ascending chain of authentication principles. Additionally, the relationship with
Roscoe’s definition of intensional specification is discussed at the conceptual
level. The notion of injective synchronization that is proposed in this paper as
intensional authentication can be shown to be strictly stronger than full injective
agreement and thus, can be added at the top of Lowe’s authentication hierarchy.
This extension constitutes the body of the present paper.

Authentication and agreement is also studied in [3] by Focardi and Mar-
tinelli in the context of the so-called GNDC scheme. In a process algebra ex-
tended with inference systems reflecting cryptographic actions, one can reduce
reasoning about security properties with respect to any arbitrary environment
to the analysis of the behavior of the security protocol in the most general en-
vironment. It is argued that the GNDC scheme is valid for establishing various
security properties, in particular agreement (as well as its weaker variants).

In Section 2 below we gather the machinery required for our description of
security protocols. The notions of non-injective and injective synchronization are
the main topic of Section 3. The thread of reasoning is continued for the case of
agreement. In Section 4 agreement is reformulated in our setting and compared
with its definition in [8]. We further present a taxonomy result for the intro-
duced notions of injective and non-injective synchronization and agreement, and
provide examples to show the strictness of the implied relationships. Section 5
then closes off with concluding remarks.

Acknowledgment We are grateful to Jerry den Hartog for his useful sugges-
tions at various points.

2 Trace model

In this section we will define the notions which are essential for the definition
of synchronisation as elaborated in Section 3. Synchronisation is based on the
property that every successful execution of a protocol by an agent implies that its
communication partners exactly follow their roles in the protocol and exchange
the intended message in the intended order. Therefore, we first provide a formal
definition of a security protocol and the partial order implied on its events.

The second step is the introduction of the trace model for asynchronously
communicating agents. Synchronisation is verified as a property on the set of
execution traces. It can be defined independently of the way in which the trace
model is constructed for a given security protocol, a given set of agents and a
given intruder model. Therefore, we will not find a need to introduce a formal
semantics precisely defining the trace model. Rather, we expect that many of



the existing formal approaches towards security protocols can be molded in such
a way as to produce the required trace model.

2.1 Security protocols

A security protocol defines the interacting behaviour of a number of agents.
Agents can take part in one or more runs of a protocol by performing a role
defined in the protocol.

In most approaches, a protocol description consists of a list of messages ex-
changed by some principals. In contrast to this approach we take as a starting
point the projection of this behaviour onto the different roles. Thus, we split a
communication into two separate events, viz. a send event and the corresponding
read event. These two corresponding events are described in two (different) role
definitions. We elaborate on the implications of this choice later.

We assume a finite set of role names, called Role . The behaviour of a role is
defined by a role definition (RoleDef ). A role definition is simply a list of role
events (taken from the set RoleEvent). In the following, we will define send, read,
and claim events.

Roles exchange message from the set RoleMess of role messages, by executing
the events send(r, r′, m) and read(r, r′, m). The send event is executed by role r,
which intends to send message m to role r′. The read event is executed by role
r′ and indicates the reception of message m, apparently sent by role r.

Because it is allowed that the same message occurs more than once in a
role definition (having the same sender and the same recipient), we will need to
disambiguate these events by extending them with labels from the finite label set
Label . Therefore, we have role events send `(r, r

′, m) and read `(r, r
′, m) for a label

` ∈ Label . We require that all events in a security protocol have distinct labels,
except for corresponding send and read events (from different roles), which share
a common label.

These labels also serve a second purpose. Due to our decision to split commu-
nications into separate send and read events, we lost the intended correspondence
between these events. We use the event labels to keep this correspondence infor-
mation available. If a send event from one role definition shares a label with a
read event from another role definition this expresses that these are correspond-
ing events. We define the (partial) functions sendrole and readrole to determine
for a given label the sending role and the receiving role, respectively.

Our treatment of security claims is somewhat different from other approaches.
Rather than considering correctness of a security protocol as a property of the
protocol as a whole, we consider a more refined approach where claims are local
to each role. For this purpose, we introduce claim events.

A claim event has the form claim(r, c), where r is the claiming role and c

is the claim, taken from a set of claims Claim . An example of such an event is
claim(r, alive(r′)). This means that if an agent executing role r has executed
his part of the protocol up to the claim event, he can be sure that the agent
executing role r′ was alive. In Sections 3 and 4 we will give the definitions of
four claims: ni-synch , i-synch , ni-agree and i-agree .



The fact that security claims are local to a role is a consequence of our
approach to split communication events into separate send and read events and
to consider role definitions as a basic concept.

Finally, we define a security protocol p ∈ SecProt as a collection of role
definitions, or rather as a function from Role to RoleDef . In summary, we have
the following definitions.

SecProt = Role → RoleDef

RoleDef = RoleEvent∗

RoleEvent ⊇ {send `(r, r
′, m), read `(r, r

′, m), claim`(r, c) |

` ∈ Label , r, r′ ∈ Role , m ∈ RoleMess , c ∈ Claim}

sendrole(`) = r if send `(r, r
′, m) ∈ p(r) or read `(r, r

′, m) ∈ p(r′)

readrole(`) = r′ if send `(r, r
′, m) ∈ p(r) or read `(r, r

′, m) ∈ p(r′)

Please notice that we did not provide an exhaustive definition of RoleEvent .
We only require inclusion of the given events. The reason is that these events
suffice for our definition of authentication. Nevertheless, a formal semantics could
consider more role events, such as assignments to local variables.

The authentication property which will be defined in Section 3 expresses that
the message exchanges between the agents take place exactly in the order as
implied by the security protocol. In order to express this, we define the causality
relation on the events in a security protocol as a partial order. Since security
protocols are often visualised as Message Sequence Charts (MSCs, see [5]), it
comes as no surprise that the partial order semantics for MSCs can be used
to express the order of events in a security protocol. This partial order simply
expresses that the events in a role definition are sequentially ordered, and that
every read event is preceded by its corresponding send event. Adopting notation
from [2], we start with defining the role order ≺r for r ∈ Role as the total
order on its events. Event e causally precedes event e′ (notation e ≺r e′) if e

occurs before e′ in the role definition of r. Next, we define the send-before-read
order ≺sr which expresses that a send causally precedes the corresponding read
(i.e. send ` ≺

sr read `). Finally, we define the causality preorder ≺p of protocol p

as the transitive closure (denoted by +) of the union of all role orders and the
send-before-read order, i.e.

≺p= (
⋃

r∈Role

≺r ∪ ≺sr)+

Example The well-known Needham-Schroeder-Lowe protocol (NSL) (cf. [9, 6])
can be depicted by the MSC in Figure 1. The added i-synch claims at the end
of the roles will be defined in Section 3.
The NSL protocol has two roles, viz. one of the initiator I and one for the
responder R. The role definitions for the initiator and responder are

send1(I, R, {I, nI}pkR
) · read2(R, I, {R, nI , nR}pkI

) · send3(I, R, {nR}pkR
) · claim4(I, i-synch)

read1(I, R, {I, nI}pkR
) · send2(R, I, {R, nI , nR}pkI

) · read 3(I, R, {nR}pkR
) · claim5(R, i-synch)
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Fig. 1. The NSL protocol and the partial ordering on its events.

The indices of sends, reads and claims refer to the labels listed aside of the roles.
On top of the roles, the initial knowledge of the agents is listed. It is assumed
that both agents know the public key of the other and the private key of their
own. The generation of nonces nI and nR is visualized in the action boxes. The
hexagons contain the claims made by the agents. In fact, these are the security
goals the protocol is supposed to achieve. The causality preorder ≺p for NSL is
given by the lattice on the right in Figure 1.

2.2 Traces

Now that we have introduced security protocols, we can discuss the execution
of a security protocol (or rather a role in a security protocol) by an agent.
We start by defining the set of agents Agent . A role executed by an agent is
called a run. Whereas we can consider a run as an instantiated role, we can
consider run events (RunEvent) as instantiated role events. This instantiation
simply amounts to replacing abstract role names by concrete agent names. Since
the concrete messages sent in a run may be different from the abstract messages
specified in a role (e.g. because of the instantiation of role names by agent names),
we introduce the set of run messages RunMess. An agent can execute several
roles (possibly the same) in an interleaved way. Although it is not necessary for
the definitions below, a proper semantics will require that every (honest) agent
executes the events exactly as prescribed by its role definition.

Because we need to be able to distinguish the events from different runs (pos-
sibly stemming from the same role), we need to add information to disambiguate
run events. This is done by assigning a unique run identifier from the set RunId
to every run and extending the events of every run with their run identifier. An
event e extended with run identifier rid is denoted by e]rid. Thus, we have the



following run events.

RunEvent ⊇ {send `(a, a′, m)]rid, read `(a, a′, m)]rid, claim `(a, c)]rid |
rid ∈ RunId , ` ∈ Label , a, a′ ∈ Agent , m ∈ RunMess, c ∈ Claim}

Each of these events is executed by some agent, performing some role in the
protocol. The role of the actor of event e is denoted by role(e). It can be derived
easily from the label of the event (which is unique in the protocol specification)
taking into account if it is a send or read event, or a non-communication event.

The final step is to introduce the traces of a security protocol, induced by
some semantic definition (e.g. assuming operational behaviour of agents and an
intruder model). The semantics of security protocol p is denoted by T (p). We
assume that it is defined as a collection of sequences of run events.

T (p) ∈ P(RunEvent≤ω)

We denote the i-th event of trace α ∈ T (p) by αi (for i ≥ 0). If we require
a property of a security protocol p, we will, in our set-up, have to check this
property for all of the traces in T (p).

Thus, the semantics of a security protocol is expressed as a set of traces and
each such trace is an interleaving of a number of runs. An agent can execute
many such runs in an interleaved way and every run may be an instantiation
of each of the roles in the protocol definition. We assume T (p) to contain, for
example, traces corresponding to the double instantiation of p where agent a

is running both role r and r′, and agents b and c are running roles r′ and r,
respectively. But T (p) will also contain traces for the situation where role r is
taken up by agents a and c and role r′ by agents b and d with a talking to b and
c to d. More concretely, in the case of NSL described above, T (NSL) contains all
the shuffles of the following four traces induced by the instantiation just given
(and many more).

send1(a, b, {a, n1
a}pkb

)]1 · read2(b, a, {b, n1
a, n

2
b}pka

)]1 · send3(a, b, {n2
b}pkb

)]1 · claim4(a, i-synch)]1

read1(a, b, {a, n1
a}pkb

)]2 · send2(b, a, {b, n1
a, n

2
b}pka

)]2 · read3(a, b, {n2
b}pkb

)]2 · claim5(b, i-synch)]2

send1(c, a, {c, n3
c}pka

)]3 · read2(a, c, {a, n3
c, n

4
a}pkc

)]3 · send3(c, a, {n4
a}pka

)]3 · claim4(c, i-synch)]3

read1(c, a, {c, n3
c}pka

)]4 · send2(a, c, {a, n3
c , n

4
a}pkc

)]4 · read3(c, a, {n4
a}pka

)]4 · claim5(a, i-synch)]4

Please note that the send and read events that make up these traces are really
executed by the running agents. So, the occurrence of an event read `(r, r

′, m) in
trace α denotes that in this scenario α agent r′ really receives message m, which
might or might not have been sent by agent r. This means that the read and
send events are not intruder events. Nevertheless, the order and contents of these
events may be under control of an intruder, as specified in a formal semantic
definition. Due to the fact that the read and send events are executed by the
agents (performing some role in the protocol) it is clear that the extension of
these events with labels and run identifiers is by no means under control of the
intruder. The label (like a program counter) simply indicates the state of the
agent when executing his part of the protocol. The run identifier expresses in
which run of the agent activity takes place.



Although it is not common to include labels and run identifiers in the seman-
tics of a security protocol, they are often left implicit or occur when developing
tool support for a particular semantics. For an example of such use of labels
and run identifiers see [7]. Error traces of a protocol are displayed as follows:
“Msg α.1. IA → B : A, B; Msg α.2. B → IA : B, Nb; Msg β.1. IA → B : A, Nb”.
Clearly, α and β represent run identifiers and the numbers 1, 2, etc. (the program
counters in the role) represent labels. Making this information explicit allows us
to formally reason about these notions.

3 Synchronisation

In this section we formally define the notion of synchronization based on the
trace model introduced in Section 2. As is the case with other forms of authen-
tication, we will make a distinction between non-injective synchronisation, and
the somewhat stronger notion of injective synchronisation, which rules out a
class of replay attacks.

3.1 Non-injective Synchronisation

For the purpose of a modular presentation, we present the definition of non-
injective synchronisation in three steps. The first step is the definition of au-
thentication for a single message, or rather, for a single label shared by two cor-
responding send and read events. For this we define the predicate 1L-SYNCH
(for 1 label synchronisation). It has five arguments: the trace α being validated
up to index k, the label ` for which we check the authentication property, and
the two runs rid1 and rid2 containing the read and send events that must be val-
idated. This basic authentication property simply amounts to checking whether
the send labeled with ` from the first run is followed by the corresponding read
from the second run. These corresponding send and read events should exactly
agree upon the the sender, the recipient, and the contents of the message.

Definition 3.1 For all traces α, k ∈ N , labels ` and run identifiers rid1, rid2,
the single-label synchronization predicate 1L-SYNCH is given by

1L-SYNCH (α, k, `, rid1, rid2) ⇐⇒
∃i,j∈N ,a,b∈Agent ,m∈RunMess

i < j < k ∧ αi = send `(a, b, m)]rid1 ∧ αj = read `(a, b, m)]rid2

If 1L-SYNCH (α, k, `, rid1, rid2) holds, we say that the communication labeled
with `, sent by run rid1 and read by run rid2 has occurred correctly in a trace α

before position k.

The second step towards the definition of synchronisation is to extend the
1L-SYNCH predicate to range over multiple communications, given by a set of
labels. This predicate is denoted by ML-SYNCH (for multi-label synchronisa-
tion).



When dealing with multiple communications, we require consistency over
roles. For example, if an initiator receives two messages from a responder during
a run, we require that they are sent from the same responder in the same run.
The requirement that roles from a protocol are consistently mapped to runs
leads to the introduction of an instantiation function inst : Role → RunId . This
explains the four parameters of the ML-SYNCH predicate: α and k give the part
of the trace that is to be checked, L is the set of labels for each of which we check
the 1L-SYNCH property, and inst is the instantiation function which determines
a run for each role definition from the protocol. The definition of ML-SYNCH
consists of the requirement that for every label from L the predicate 1L-SYNCH
holds. In order to determine for a given label the sending role and the receiving
role, we use the auxiliary functions sendrole and readrole , respectively, which
have been introduced in Section 2.

Definition 3.2 For all traces α, k ∈ N , label set L and instantiation inst , the
multi-label synchronization predicate ML-SYNCH is given by

ML-SYNCH (α, k, L, inst) ⇐⇒
∀`∈L 1L-SYNCH (α, k, `, inst(sendrole(`)), inst(readrole(`)) )

If ML-SYNCH (α, k, L, inst) holds, we say that the set of labels L has correctly
occurred in a trace α before position k with respect to the instantiation inst .

For the third and final step towards the definition of synchronisation we need to
fix the set of labels that should be checked and we must quantify over the α, k

and inst parameters of ML-SYNCH .

It is tempting to take for L the set of all labels occurring in the protocol.
However, as a consequence of our choice to have security claims attached to
individual roles, rather than to a protocol as a whole, this would result in too
strong a predicate.

For any (local) synchronisation claim, we can at most require that all com-
munications that causally precede the claim, have occurred correctly. This is
because the claiming role may only expect these events to have been executed.
Since a communication consists of two events, we must make it more precise
when a communication precedes a claim. Clearly, it must be the case that if a
read event precedes the claim, the corresponding send event precedes as well.
However, in general we cannot expect the opposite. It may be the case that a
send (causally) occurs before a claim, while the corresponding read does not.
This observation leads to the definition of the set of labels that causally precede
a synchronisation claim.

Definition 3.3 The set prec(p, cl) of causally preceding communications of a
claim role event labeled with cl, for a security protocol p is given by

prec(p, cl) = {` | read `( , , ) ≺p claimcl( , )}



Section 2, and Figure 1. Note that for the NSL protocol, in agreement with the
discussion in Section 2, we have that prec(NSL, 4) 6= prec(NSL, 5). In particu-
lar, read3(I, R, {nR}pkR

) ≺p claim5(R,ni-synch), but read 3(I, R, {nR}pkR
) 6≺p

claim4(R,ni-synch), as can be seen in Figure 1.
Finally, we define the synchronisation predicate NI -SYNCH . It states that if

we encounter a synchronisation claim claim `(a,ni-synch)]rid as an event in any
of the traces α of a security protocol, the communications causally preceding
this claim must be well behaved. With respect to the instantiation function inst ,
we can simply require the existence of any such function, mapping roles to run
identifiers, with the restriction that it maps the role of the claiming agent to
the run containing this claim (i.e. inst(role(αk)) = rid, where αk is the claim
event).

Definition 3.4 For all security protocols p, the synchronisation predicate
NI -SYNCH for claims labeled with `, is given by

NI -SYNCH (p, `) ⇐⇒
∀α∈T(p),k∈N ,a∈Agent,rid∈RunId αk = claim`(a,ni-synch)]rid ⇒

∃inst :Role→RunId inst(role(αk)) = rid ∧ ML-SYNCH (α, k, prec(p, `), inst)

It expresses that for all instantiated claims in any trace of a given security
protocol, there exist runs for the other roles in the protocol, such that all com-
munications preceding the claim must have occurred correctly within these runs.

3.2 Injective synchronisation

Synchronisation guarantees that a single protocol role run has executed as ex-
pected. For each other role in the protocol, there exists a run that has sent and
read messages according to the protocol. However, this property does not rule
out a particular type of replay attacks. If we consider, for instance, a simple two-
party protocol, it can be the case that every run of the initiator neatly matches
the same run of the responder. Such a protocol could be abused by an intruder
replaying an old responder run for every new session. (See Figure 3 in Section 4.2
for a more detailed discussion.) This weakness of the protocol could easily be
detected by requiring that there is an injective relation between the claiming
run and the other runs. This notion of injectivity has been defined for several
authentication properties (see e.g. [8]). Here we will define it for synchronisation.

The definition of injective synchronisation proceeds in two steps. The first
step is to bring the definition of non-injective synchronisation into a form that
allows us to easily add the injectivity criterion. Note that in Definition 3.4
the relation between the claiming run (with run identifier rid) and the runs
playing the other roles (as expressed by the instantiation function inst) is not
made explicit. If we want to require that this relation is injective, we must first
formulate an explicit version of this definition. The functional dependence of
the instantiations inst on the claiming run rid will be expressed by a function



Inst : RunId ×Role → RunId . We can easily extract the instantiation functions
from Inst by taking inst = λr.Inst(rid, r), i.e. the bindings that are relevant for
the run identifier rid. These observations yield the following rewrite of Defini-
tion 3.4.

NI -SYNCH (p, `) ⇐⇒
∀α∈T(p)∃Inst :RunId×Role→RunId∀k∈N ,a∈Agent ,rid∈RunId

αk = claim`(a,ni-synch)]rid ⇒ Inst(rid, role(αk)) = rid

∧ ML-SYNCH (α, k, prec(p, `), λr.Inst(rid, r))

We can now define injective synchronisation in almost the same way as the
second formulation of NI -SYNCH , by requiring that the function Inst in the
definition is injective.

Definition 3.5 For all security protocols p, the injective synchronisation pred-
icate
I -SYNCH for claims labeled with `, is given by

I -SYNCH (p, `) ⇐⇒
∀α∈T(p)∃Inst :RunId×Role→RunId injective∀k∈N ,a∈Agent ,rid∈RunId

αk = claim`(a, i-synch)]rid ⇒ Inst(rid, role(αk)) = rid

∧ ML-SYNCH (α, k, prec(p, `), λr.Inst(rid, r))

It expresses that for all instantiated claims, there exist runs for the other roles
in the protocol. All communications preceding the claim must have occurred
correctly within these runs. Furthermore, for each such claim there are unique
runs executing the roles in the protocol.

4 Agreement

In this section we formalize a form of authentication called agreement. This con-
cept is weaker than synchronisation, as it places less restrictions on the ordering
of the occurring events. We first give formal definitions. We will argue that these
definitions correspond to a form of agreement as described by Lowe in [8]. Next,
we present an extension of the authentication hierarchy and provide examples
showing the strictness of the various relationships.

4.1 Non-injective and injective agreement

We construct the definition of agreement analogously to synchronisation. Syn-
chronisation required that all sends occur before their corresponding reads. The
definition of 1L-AGREE does not require that the send occurs before the corre-
sponding read.

Definition 4.1 For all traces α, k ∈ N , labels ` and run identifiers rid1, rid2,
the single-label agreement predicate 1L-AGREE is given by

1L-AGREE (α, k, `, rid1, rid2) ⇐⇒
∃i,j∈N ,a,b∈Agent,m∈RunMess

i < k ∧ j < k ∧ αi=send `(a, b, m)]rid1 ∧ αj=read `(a, b, m)]rid2



If 1L-AGREE (α, k, `, rid1, rid2) holds we say that the communication labeled
with `, sent by run rid1 and read by run rid2, is agreed upon in trace α before
position k.

There are no requirements on the order of the read and send. We observe that
if 1L-AGREE holds for some communication, all variables sent as part of the
message m are received exactly as expected. Therefore, both parties will agree
over the values of the variables that are sent. Further definitions are constructed
as with synchronisation. First we define a notion of multi-label agreement similar
to ML-SYNCH .

Definition 4.2 For all traces α, k ∈ N , set of labels L and run identifiers
rid1, rid2, the multi-label agreement predicate ML-AGREE is given by

ML-AGREE (α, k, L, inst) ⇐⇒
∀`∈L 1L-AGREE (α, k, `, inst(sendrole(`)), inst(readrole(`)))

If ML-AGREE (α, k, L, inst) holds we say that the set of labels L is agreed upon
in trace α before position k, for instantiation function inst .

Next we define non-injective agreement.

Definition 4.3 For all security protocols p, the agreement predicate NI -AGREE
for claims labeled with `, is given by

NI -AGREE (p, `) ⇐⇒
∀α∈T(p),k∈N ,a∈Agent,rid∈RunId

αk = claim`(a,ni-agree)]rid ⇒ ∃inst :Role→RunId inst(role(αk)) = rid

∧ ML-AGREE (α, k, prec(p, `), inst)

The agreement predicate expresses that for all instantiated claims in any trace of
a given security protocol, there exist runs for the other roles in the protocol, such
that all communication events causally preceding the claim must have occurred
before the claim.

Injective agreement is defined in the same way as injective synchronisation.

Definition 4.4 [I -AGREE ] For all security protocols p, the injective agreement
predicate I -AGREE for claims labeled with `, is given by

I -AGREE (p, `) ⇐⇒
∀α∈T(p) ∃Inst :RunId×Role→RunId injective ∀k∈N ,a∈Agent ,rid∈RunId

αk = claim`(a, i-agree)]rid ⇒ Inst(rid, role(αk)) = rid

∧ ML-AGREE (α, k, prec(p, `), λr.Inst(rid, r))

It expresses that for any trace and for any run of any role in the protocol there
exist unique runs for the other roles of the protocol such that for all claims oc-
curring in the trace all communications preceding the claim must have occurred
correctly within these runs.

In [8], Lowe defines several forms of authentication. The strongest form of au-
thentication, not involving time, is called full (injective) agreement:



Initiator I is in agreement with responder R, whenever I as initiator
completes a run of the protocol with R, then R as responder has been
running the protocol with I . Moreover, I and R agree on all data vari-
ables, and each run of I corresponds to a unique run of R.

We will argue that for any protocol for which an I -AGREE claim at the end
of a role holds, full (injective) agreement holds with respect to all other roles
and data items, and vice versa. Note that we will only consider the case where
agreement is claimed over all roles involved in the protocol.

The main difference between our approach and that of Lowe, is that we
consider abstract messages only. The definition of full injective agreement does
not depend on the actual messages that are passed through. Instead, Lowe refers
to the data items contained in messages. The relation between the messages and
the data items does imply however, that when a message is read exactly as it is
sent, both agents will agree over the variables sent in the message, and the other
way around. Thus, if all messages in a protocol are read as they were sent, there
must be agreement over all variables in the protocol.

The definition of I -AGREE does not involve all communications, but only
the set prec(p, `) of communications that precede a claim. However, it turns
out that the way in which full agreement is made precise in terms of CSP, as
can be checked by compiling Casper-code into CSP, it also takes only preceding
communications into account. For this, running-commit signals (see [11]) are
introduced in the protocol. For each role, a running signal is added to the last
communication preceding the agreement claim. In the role of the claim, a commit
signal is added to the last communication. Full injective agreement over all roles
requires that the running signals of each role precede the commit signal. This
corresponds to the order requirements of I -AGREE .

It follows that the notions of I -AGREE and full injective agreement over all
roles coincide.

4.2 Hierarchy

The formulations of the four security prop-
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@
@R
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I -SYNCH

NI -SYNCH I -AGREE

NI -AGREE

Fig. 2. Hierarchy of security proper-
ties.

erties in the previous sections clearly re-
veal their relative strengths in preventing
attacks. Every injective protocol is also
non-injective and if a protocol satisfies
agreement then it satisfies synchronisa-
tion too. Figure 2 shows this hierarchy.
An arrow from property X to property
Y means that every protocol satisfying X

also satisfies Y . Phrased differently, the
class of protocols satisfying X is included
in the class satisfying Y .

The proof of the following theorem simply follows from the definitions above.



Theorem 1. The security properties I -SYNCH , NI -SYNCH , I -AGREE, and
NI -AGREE satisfy the inclusion relation as depicted in Figure 2.

The question whether the inclusions in Figure 2 are strict is harder to an-
swer. This is due to the abstractness of our trace model. Since our approach
is parameterised over the actual semantics, and thus over the intruder model,
we cannot determine for a given protocol to which class it belongs. Therefore,
strictness of the inclusions can only be answered relative to a given semantics.
Consequently, the following reasoning will be at a conceptual level only.

If we take e.g. a model where all agents simply follow their roles and the
intruder has no capabilities at all, then the diamond in Figure 2 collapses into a
single class. The same holds if the intruder can only eavesdrop on the communi-
cations. However, in the Dolev-Yao model, all inclusions are strict. The case of
injectivity vs. non-injectivity has been studied extensively before. The MSC on
the left in Figure 3 shows a protocol that satisfies NI -SYNCH and NI -AGREE ,
but neither I -SYNCH , nor I -AGREE .
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I

pkI

R

{I, R}
pk
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I

ni-synch

msc Injectivity vs. non-injectivity
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I , pkR

I

pk−1

R , pkI

R

I, R

nonce nR

{R, nR}pkI

{nR, I}pkR

i-agree

msc Synchronisation vs. agreement

Fig. 3. Distinguishing Protocols

The intruder will only be able to construct message {I, R}pk
−1

I

after hav-

ing eavesdropped this message from a previous run. Therefore every read event
of this message is preceded by a corresponding send event, so the protocol is
both NI -SYNCH and NI -AGREE . However, once the intruder has learnt this
message, he can replay it as often as desired, so the protocol is not injective.

A distinguishing example between synchronisation and agreement is depicted
on the right in Figure 3. As confirmed by the Casper/FDR tool set, this proto-
col satisfies unilateral authentication in the sense of agreement (both injective
and non-injective). However, the protocol does not satisfy synchronisation (both
variants): the intruder can send message I, R long before I actually initiates the
protocol, making R to believe that I has requested the start of a session before
he actually did.



The two examples show that the diamond in Figure 2 is strict if the intruder
has the capabilities to eavesdrop, deflect and inject messages. Both examples
also imply that there are no arrows between NI -SYNCH and I -AGREE .

In Figure 4 we show how the difference between NI -SYNCH and NI -AGREE
might be exploited. Here, R is an Internet Service Provider, used by I . I pays R

for the time he is connected. When I wants to connect, R retrieves the certificate
of I from the trusted server S and uses this to authenticate I . After a successful
session, I is billed from the moment the first message was received by R.

This protocol is a slightly modified version of the Needham-Schroeder-Lowe
protocol. It can be exploited as follows. An intruder can send the first message
preemptively, causing R to initiate a session with what it believes is I . If at some
later time I decides to initiate a session with R and finishes it successfully, I will
receive a bill that is too high. In fact, although, this protocol satisfies agreement
for R, the first message is not authenticated at all.

This protocol does not satisfy synchronisation. The protocol can be easily
modified to satisfy NI -SYNCH and thus to be resilient against the sketched
type of timing attacks.

pk−1

I , pkR, pkR

I

pk−1

R , pkR

R

pk−1

R , pkI

S

I,R
I,R

{I, pkI}pk
−1

R

nonce nR

{R, nR}pkI

{nR, I}pkR

ni-agree

msc Synchronisation vs. agreement

Fig. 4. A protocol that satisfies NI -AGREE but not NI -SYNCH .

5 Conclusions

In this section we summarize the main contributions of our research and discuss
some directions for future work.

First of all, we have defined a general trace model for security protocols which
allows for the definition of security properties in an intensional style. This trace
model is not tied to a particular semantics, making it independent of e.g. the
execution model of an agent and the intruder model. The starting point of the
trace model is a role-based protocol description, where security claims are local to



the protocol roles. Such a subjective security claim expresses what an agent may
safely assume after having executed his part of the protocol. The events in our
model are extended with event labels and run identifiers to unambiguously define
the origin of an event. These attributes are not under control of an intruder, but
serve to identify the events when reasoning about protocols. The main motivation
for developing the trace model was to study intensionality of specifications (which
we call synchronisation) and agreement in an abstract framework, allowing us
to pinpoint what the exact differences are. Due to the uniform phrasing, the
two notions of authentication can be distinguished easily: agreement allows that
an intruder injects a (correct and expected) message before it is sent by the
originator of the message. As for agreement, we provide both an injective and a
non-injective variant of synchronisation.

Since we only assumed an abstract trace model, the theory presented in this
paper does not suffice to prove protocols (in)correct. For this purpose we are
currently defining a canonical operational semantics of security protocols which
satisfies the requirements for the trace model put forward here. Experiments
with this operational definition of synchronisation indicate that formal proofs
that security protocols satisfy synchronisation are feasible.

Finally, we think that it would be interesting to study extensions of our
model, such as timing and recentness as has been done in [8].
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