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Abstract

Authentication is one of the foremost goals of many security protocols. It is most
often formalised as a form of agreement, which expresses that the communicating
partners agree on the values of a number of variables. In this paper we formalise
and study an intensional form of authentication which we call synchronisation.
Synchronisation expresses that the messages are transmitted exactly as prescribed
by the protocol description. Synchronisation is a strictly stronger property than
agreement for the standard intruder model, because it can be used to detect pre-
play attacks. In order to prevent replay attacks on simple protocols, we also define
injective synchronisation. Given a synchronising protocol, we show that a sufficient
syntactic criterion exists that guarantees that the protocol is injective as well.
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1 Introduction

The security property studied the most in the field of security protocol analysis
is authentication. However, contrary to the requirement of secrecy, there is no
general consensus on the meaning of authentication. In fact, as indicated by
Lowe [22], there is a hierarchy of authentication properties, the most popular of
which is agreement. Agreement means that two parties involved in a protocol
are guaranteed to agree upon the values of variables after successful completion
of the protocol.
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Using terminology from Roscoe [27] agreement is a so-called extensional secu-
rity property, which means that it takes into account the effect the protocol
achieves. Roscoe observes that it is often hard to provide an extensional spec-
ification that exactly captures the requirements of the protocol and detects
all relevant attacks. In contrast to extensional characterisations, intensional
characterisations of security properties are induced by the form or structure of
the protocol. Roscoe introduces the notion of canonical intensional specifica-
tion, which expresses that “no node can believe a protocol run has completed
unless a correct series of messages has occurred (consistent as to all the various
parameters) up to and including the last message the given node communi-
cates.” So, it states that all parties involved in a protocol, after completion of
their role, are convinced that the protocol has been executed according to its
rules.

Roscoe clarifies his description of intensional specification by providing a sam-
ple implementation in CSP. However, to precisely understand the nature of
intensional specifications, a fundamental approach is beneficial. Therefore, we
formally define the notion of synchronisation, which is an intensional authen-
tication property requiring that all protocol messages occur in the expected
order with the expected values.

Important to the approach here is that we consider local synchronisation
claims. That means that an agent may decide that the complete protocol
has been executed exactly as expected, based on his local observations only.
These observations only take into account the contents of the communications
that the agent was involved in. Whenever such an agent successfully completes
a run of a synchronising protocol, all other parties involved in the protocol
have executed their part exactly as expected.

Thus, for a two-party protocol, we have the following informal definition of
synchronisation:

Initiator I considers a protocol synchronising, whenever I as initiator com-
pletes a run of the protocol with responder R, then R as responder has been
running the protocol with I. Moreover, all messages are received exactly as
they were sent, in the order as described by the protocol.

This definition extends in a natural way to multi-party protocols.

It is well-known that such an authentication property may give rise to replay
attacks. Consider, e.g., an electronic car key that sends an encrypted signal
to unlock a car. From the view point of the car, this protocol synchronises,
since an intruder cannot construct the encrypted unlock message himself, so
it must have been sent by the car key. However, once the intruder has been
able to eavesdrop on the communication between the car key and the car,
he can replay the unlock message and open the car at will. In general, such
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protocols are ruled out by requiring injective authentication. For the car key
example, it implies that for each time that the car receives an unlock message
there must have been a unique unlock event of the car key. Injectivity is a
property that is not captured in Roscoe’s definition of canonical intensional
specifications. In order to fill this gap, we introduce injective synchronisation,
which, in case of a two-party protocol informally states the following:

Initiator I considers a protocol injectively synchronising if the protocol syn-
chronises and each run of I corresponds to a unique run of R.

Most often, security properties, such as agreement, are first defined at the
conceptual level and then within a specific security model (cf. the CSP model
in [28]). For our definition of injective synchronisation we will provide as
general a framework as possible. For instance, we will abstract from the
precise contents of the protocol messages, because we only have to reason
about their correspondence. This makes it possible to easily interpret our re-
sults in different security protocol semantics, such as Strand Spaces [31] and
Casper/FDR [28], for example.

The framework that we define also allows us to express injective agreement
over all variables in an intensional way, which makes a formal comparison
possible. Injective synchronisation can be shown to be strictly stronger than
injective agreement in the standard intruder model, and thus can be added as
top element of Lowe’s authentication hierarchy. The rather subtle difference
between the two can be best explained using so called preplay attacks [24].
Such an attack occurs if an attacker is able to predict a protocol message and
inject it into the system before it was actually created by the intended sender.
Synchronising protocols are not susceptible to preplay attacks, while agreeing
protocols possibly are. Preplay attacks are not very common, and indeed most
protocols from the Spore library [30] that satisfy injective agreement, satisfy
injective synchronisation as well.

An application of our treatment is found in the verification of injectivity. In
practice, many verification tools are based on model checking and make use
of a counting argument to verify that a protocol is injective. This will, in
general, only provide an approximation of injectivity. Many other approaches,
with some notable exceptions, do not seem to pay much attention to injectivity.
Our formalisation of injective synchronisation allows us to describe a syntactic
property which is sufficient for deciding whether a synchronising protocol is
injective. By syntactic, we mean that it can be directly derived from the
syntactic description of the security protocol.

The above mentioned goals lead to the following structure of the present paper.
In Section 2 below we gather the machinery required for our description of
security protocols and provide a formal definition of injective synchronisation.
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The relation with injective agreement is described in Section 3. We also explain
how Lowe’s authentication hierarchy is extended. The question of how to verify
injective synchronisation is discussed in Section 4. Here, the loop property is
introduced as a syntactic criterion for verifying injectivity of a synchronising
protocol. In Section 5 we discuss related literature and we close off with some
concluding remarks in Section 6.

Acknowledgements. We would like to thank the anonymous reviewers whose
helpful comments have improved this paper.

2 Model and definition of synchronisation

In this section we introduce the notions of non-injective synchronisation and
injective synchronisation. Synchronisation is based on the property that every
successful execution of a protocol by an agent implies that its communication
partners exactly follow their roles in the protocol and exchange the intended
messages in the intended order. First, we provide a formal definition of a
security protocol and the order implied on its events, referred to as protocol
events. Next, we postulate a trace semantics involving traces of trace events
and introduce the concept of a cast that captures role instantiations or runs.
Finally, we provide the definition of the two versions of synchronisation. The
three-message version of the well-known Needham-Schroeder protocol [25] is
used as a running example.

Definition 1 (Abstract Security Protocol) An abstract security proto-
col P over the set Role is a tuple 〈PE , role, (≺R )R∈Role, ; 〉, where

(i) the set PE of protocol events is a disjoint union

PE = SendPE + ReadPE + ClaimPE

of the set SendPE of send protocol events, the set ReadPE of read protocol
events, and the set ClaimPE of claim protocol events;

(ii) the mapping role : PE → Role is the so-called role assignment function
of P ;

(iii) for each role R ∈ Role, the relation ≺R is a strict ordering on the set
role−1(R);

(iv) the communication relation ; of P is a 1–1 correspondence between
SendPE and ReadPE, i.e. a bijective map ; : SendPE → ReadPE.

The protocol order 4P of P is defined by

4P =
(

⋃

R∈Role

≺R ∪ ;

)

∗

,
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i.e., 4P is the least reflexive and transitive ordering on PE respecting each
role order ≺R as well as the communication relation ;. The notation ASP
denotes the collection of all abstract security protocols.

The set PE contains, at the level of the protocol description, all the actions
to be performed in the protocol. We distinguish protocol events for sending,
reading and claiming. Although one may include other protocol events as
well, e.g. to model internal activity within a role, we do not do so here; the
distinction of send protocol events, read protocol events, and claim events,
suffices for our purposes below.

We assume that each protocol event belongs to a single role; some syntactic
sugar can be used to distinguish similar protocol events that belong to different
roles. A protocol event is bound to a role via the role description function
role : PE → Role. We impose a (sequential) structure on the set of protocol
events belonging to a role R by means of the total ordering ≺R. Thus, for any
role R ∈ Role and ε1, ε2 ∈ PE such that role(ε1) = R and role(ε2) = R we
have that

ε1 ≺R ε2 ∨ ε1 = ε2 ∨ ε1 �R ε2.

In fact, we consider an abstract security protocol P as a collection of com-
municating sequential processes. Each of the sequential components is carried
by a specific role. The communication is governed by the communication re-
lation ;. This relation prescribes how send protocol events and read protocol
events match. We require that for each send protocol event σ there is a unique
read protocol event % such that σ ; %, and, vice versa, that for each read
protocol event % there is a unique send protocol event σ such that σ ; %.
No unmatched send protocol events, nor unmatched read protocol events are
allowed in the abstract protocol P .

Of course, at the level of the trace semantics of P as introduced below, a
strict matching as given by the communication relation ; is not required. For
example, in a Dolev-Yao setting where the intruder is capable of intercepting
messages, unmatched sends may occur in a trace. However, we stress that
at the level of an abstract security protocol, its roles and protocol events, the
intruder is not involved. Put otherwise, the abstract security protocol describes
what is intended to happen.

The orderings ≺R on the sets role−1(R) and the communication relation ;

induce naturally an ordering 4P across the roles, on the complete set PE of
protocol events. For example, a protocol event ε in a role R is considered to
occur before a protocol event ε′ in a role R

′ in case there is a send event σ of R

and a read protocol event % of R
′ such that

ε ≺R σ ∧ σ ; % ∧ % ≺R′ ε′.
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Intuitively, one may require 4P to be a partial order, excluding cycles such as
ε 4P ε′ ∧ ε′ 4P ε, for different protocol events ε, ε′. As we do not encounter
this in the remainder, the relation 4P is only required to be a preorder.

pkR, skI

I

pkI, skR

R

nonce nI

{I, nI}pkR

nonce nR

{nI, nR}pkI

{nR}pkR

ni-synch ni -synch

msc Needham-Schroeder

Fig. 1. The NS protocol

We illustrate Definition 1 with the short version of the Needham-Schroeder
protocol, referred to as NS . Throughout this paper we use Message Sequence
Charts (MSC) to illustrate security protocols and attacks. MSC is an ITU-
standardized protocol specification language [17]. Figure 1 contains an MSC
of the NS protocol. The initiator I holds her own secret key skI and the
public key pkR of the responder R. Symmetrically, the responder R possesses
his own secret key skR and the public key pkI of the initiator I. The initiator
first creates a new nonce nI, sends her name I together with the nonce nI,
protected by the public key pkR, to the responder. After receipt of this, the
responder generates a new nonce nR and sends it, together with the earlier
nonce nI, covered by the public key pkI to the initiator. She, in turn, unpacks
the message and returns the nonce nR of the responder, encrypted with his
public key. Both the initiator and the responder claim that the authentication
property ni -synch, explained below, holds.

We have Role = { I, R } as the set of roles with initiator I and responder R,
and for the set of protocol events we put

PE = { send I→R({I, nI}pkR), read I→R({I, nI}pkR),

sendR→I({nI, nR}pkI), readR→I({nI, nR}pkI),

sendI→R({nR}pkR), read I→R({nR}pkR),

claimI(ni -synch), claimR(ni -synch) }
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with the following role assignment

role−1(I) = { send I→R({I, nI}pkR),

readR→I({nI, nR}pkI), sendI→R({nR}pkR), claimI(ni -synch) }

role−1(R) = { read I→R({I, nI}pkR),

sendR→I({nI, nR}pkI), read I→R({nR}pkR), claimR(ni -synch) }.

Although some syntactical structure is suggested in the choice of protocol
events, such as the subscripts of sender and reader, the payload of a message,
including role names and nonces, protected by a public key, this is for presen-
tational purposes only. A less informative selection of protocol events names,
say σ1, σ2, σ3, %1, %2, %3, γ1 and γ2, or similar, could have been used as well.
The choice of claim protocol events claimI(ni-synch) and claimR(ni-synch)
containing the cryptic ni-synch is used, because the protocol serves as a ve-
hicle to illustrate the notion of non-injective synchronisation, abbreviated by
ni -synch, later.

The role orderings ≺I and ≺R on the roles I and R, respectively, are as follows:

send I→R({I, nI}pkR) ≺I readR→I({nI, nR}pkI)

≺I send I→R({nR}pkR) ≺I claimI(ni -synch)

read I→R({I, nI}pkR) ≺R sendR→I({nI, nR}pkI)

≺R read I→R({nR}pkR) ≺R claimR(ni-synch)

The communication order ; is given as:

send I→R({I, nI}pkR) ; read I→R({I, nI}pkR) (1)

sendR→I({nI, nR}pkI) ; readR→I({nI, nR}pkI) (2)

send I→R({nR}pkR) ; read I→R({nR}pkR). (3)

Note that, on the one hand, we have for the protocol order 4P of NS that

send I→R({nR}pkR) 4P read I→R({nR}pkR) 4P claimR(ni -synch)

but, on the other hand,

send I→R({nR}pkR) 4P read I→R({nR}pkR) 64P claimI(ni-synch)

Such a situation is relevant to the notion of synchronisation. For the claim
claimI(ni-synch) of the initiator role there are only two preceding pairs of
send and read events, viz. those of (1) and (2). For the claim claimR(ni-synch)
there are three preceding communication pairs, viz. those of (1), (2) and (3).
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We continue the discussion of the Needham-Schroeder example later, where we
will see that the authentication property of synchronisation holds with respect
to the claim claimI(ni -synch) but not for the claim claimR(ni -synch).

For the semantical interpretation of an abstract security protocol, we assume
that some trace semantics Tr is given. It should be noted that this requirement
can be relaxed; also other type of semantics can be used instead. For the sake
of presentation we stick to the trace model and refer to the conclusions for a
further discussion on this. Let TE be a set of so-called trace events. As for the
collection of protocol events, we assume that the set TE is a disjoint union

TE = SendTE + ReadTE + ClaimTE + IntrTE .

The sets SendTE , ReadTE , and ClaimTE represent trace events for sending,
reading and claiming belonging to normal role behaviour. As internal activity
is not taken into account at the protocol level, there are no trace events re-
flecting this. The elements of the set IntrTE , though, have no counterpart in
the set PE . These events, called intruder trace events, allow us to represent
intruder activity.

We postulate a semantical mapping Tr : ASP → P(TE ∗), for the collection
ASP of abstract security protocols, mapping an abstract security protocol
to a finite or infinite subset of finite strings of trace events. For technical
convenience it is assumed that, for an abstract security protocol P , a trace
event occurs at most once in a trace t ∈ Tr(P ). The precise semantics Tr(P )
of a protocol P is not relevant for our treatment of authentication here, and
is left implicit. However, in order to make the coupling of trace events in TE
and protocol events in PE explicit, we assume a partial function

pe : TE 7→ PE

that is defined on the subsets SendTE , ReadTE and ClaimTE , but not on
the set IntrTE of trace events representing malicious activity of the intruder.
(Here, f : X 7→ Y denotes a partial function f from a set X to a set Y .) The
mapping pe extends to traces, i.e. sequences of trace events, in a canonical way:
pe(ε) = ε for ε the empty sequence in TE ∗ and PE ∗, respectively, pe(e · t) =
pe(e) · pe(t) if e ∈ TE\IntrTE , and pe(e · t) = pe(t) if e ∈ IntrTE . The
mapping pe enables us to identify the protocol event to which a trace event
corresponds.

Traces consist of complete or partial role executions. A role can be executed
multiple times, and in different ways, which we call the instantiations of the
role. A specific role instantiation is called a run. We assume that there is some
mechanism to distinguish trace events that belong to different runs, and we
formalise this by partitioning the set of trace events. For this purpose, we
assume an equivalence relation π on TE\IntrTE , that groups the collection
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of non-intruder trace events into runs. We use the notation e1 ∼π e2, for trace
events e1, e2 /∈ IntrTE , if these trace events belong to the same equivalence
class of π. Similarly, for e ∈ TE\IntrTE , [e]π denotes the equivalence class
of π containing the trace event e. Thus, [e]π is the set of all events in the run,
or role instance, that contains e. Because a run is an instantiation of a single
role, we have that e ∼π e2 implies role(pe(e1)) = role(pe(e2)).

Furthermore, we assume a mapping

cont : SendTE ∪ ReadTE → Content ,

that determines the payload of a send or read event in a trace. The specific
purpose of cont is to establish whether a send and a read event match regarding
the content that was sent and received.

We assume in the model that it is possible that the intruder has compromised
a number of agents, e.g. has learnt their private key. In our examples we will
use one such agent E whose private key skE is known to the intruder. This
has a consequence for the evaluation of claims: it is possible that an agent A
tries to communicate with the agent E. In this case, the intruder can of course
complete the protocol without E ever being present. If an agent A makes a
claim c about the protocol whilst communicating with E, it will always fail.
We call a claim occurring in a communication with an compromised agent
invalid. Of interest is the case in which an agent tries to communicate with
agents that are not compromised by the intruder. We express this distinction
with the predicate Valid on claim trace events, that is true if and only if the
claim involves uncompromised agents only. In the typical case, we have that
Valid(c) holds if the intended communication partners do not include E, as
we will see in the example.

Typically, trace events are given by a more detailed syntax than protocol
events are. For example, while distinguishing sends, reads and claims, one
might feel the need to attach senders and readers to the send and read event,
resulting in constructs as sendA→B and readA→B . Such communications may
further have some content involving identities like A, B and E or nonces like
123 and 456 . A construct as {x}pkA represents, as usual, that x is encrypted
by the public key of party A. Below, the distinction between role events like
send I→R and read I→R, on the one hand, and trace events like sendA→B and
readA→B, on the other hand, is stressed in the notation.
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For the Needham-Schroeder protocol discussed above, the trace representing
the well-known Lowe attack [20] can have the form

sendA→E({A, 123}pkE) · takeA→E({A, 123}pkE) · fakeA→B({A, 123}pkB) ·

readA→B({A, 123}pkB) · sendB→A({123 , 456}pkA) · takeB→A({123 , 456}pkA) ·

fakeE→A({123 , 456}pkA) · readE→A({123 , 456}pkA) · sendA→E({456}pkE) ·

claimA(ni -synch) · takeA→E({456}pkE) · fakeA→B({456}pkB) ·

readA→B({456}pkB) · claimB(ni -synch).

Note, for the particular choice of trace semantics here, the presence of take
and fake actions in the former trace that model intruder activity. It is assumed
that the intruder knows the private key of E, so that he can act as man-in-
the-middle. Because A tries to communicate with the compromised agent E,
we have that ¬Valid(claimA). Of interest is the claim of B: we have that
Valid(claimB).

A realistic choice for pe maps the trace to the sequence of protocol events

send I→R({I, nI}pkR) ·

read I→R({I, nI}pkR) · sendR→I({nI, nR}pkI) ·

readR→I({nI, nR}pkI) · sendI→R({nR}pkR) ·

claimI(ni -synch) ·

read I→R({nR}pkR) · claimR(ni -synch).

As the partial function pe is not defined on intruder trace events, they have
vanished in the latter representation of the trace at the level of protocol events.
In this trace, two role instances (runs) are involved. Thus, an equivalence
relation π for Tr(P ) will distinguish the following subsets of trace events:

{ sendA→E({A, 123}pkE), readE→A({123 , 456}pkA),

sendA→E({456}pkE), claimA(ni -synch) }

{ readA→B({A, 123}pkB), sendB→A({123 , 456}pkA),

readA→B({456}pkB), claimB(ni -synch) }.

(4)

For a trace t ∈ TE ∗, we write ti for the i-th element of t. We use <t to denote
the strict trace ordering of t, i.e., ti <t tj if i < j. The subscript is omitted
from the notation <t, if the trace t is clear from the context. Furthermore, for
a trace event e, we write e ∈ t in case e = ti for some index i.
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The various notions of authentication discussed in this paper capture the in-
teraction of the agents involved in the protocol. In general, the semantics allow
for several protocol instances in a single trace in which several parties are in-
volved. Typically, there are more parties than roles in a trace. Also, it can be
very well the case that the same party is involved many times, possibly in dif-
ferent roles. Central is the question of who is doing what with whom. I.e., who
are, from the perspective of a party involved in a particular protocol instance
in a particular trace, the other parties involved in the protocol instance and
in which roles?

The above is specifically relevant to the occurrences of claim trace events, as
these events are intended to signify a moment in the trace where authentication
has been established. Therefore, we introduce the notion of a cast, borrowing
intuition from a theater play that is performed several times. The cast for
a particular performance of the play relates activity in the performance to
particular roles. Likewise, the concrete activities in a protocol instance at the
trace level, are assigned to the roles in the protocol. In the theater case, in
different performances an actor can play different roles. Also, the same role
can be taken up, for different performances of the play, by different actors.
Likewise, trace events associated with different roles may belong to the same
agent and trace events that are instances for the same role may belong to
different agents. For our purposes the coupling of roles and trace events is
more important, than the coupling of roles and actors. Therefore, we have the
following definition.

Definition 2 [Cast] A mapping Γ: ClaimTE → Role → P(TE ) is called a
cast function for the protocol P if

e ∈ Γ(c)(R) =⇒ role(pe(e)) = R ∧ Γ(c)(R) ⊆ [e]π (5)

for all e ∈ TE, c ∈ ClaimTE and R ∈ Role, and

c ∈ Γ(c)(role(c)). (6)

for all c ∈ ClaimTE. (Recall that role(c) expands to role(pe(c)) when c is a
trace event.)

A cast function Γ: ClaimTE → Role → P(TE ) is called an injective cast
function, if

Γ(c)(R) = Γ(c′)(R′) =⇒ c = c′ ∧ R = R
′

for every two claim trace events c, c′ and every two roles R, R
′. We use Cast(P )

to denote the collection of all cast functions for the protocol P .

The idea behind the notion of a cast function is the assignment of roles in the
context of a concrete claim event c. The image Γ(c) of Γ for c is a mapping
from Role to P(TE ). The subset Γ(c)(R) of TE consists of a number of trace
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events corresponding, in this cast, to the role R and falling within the same
equivalence class of the partitioning π, as captured by condition (5). In par-
ticular, we require in condition (6) the claim event c to be one of the events
attributed to the role of the claim. Note the inclusion Γ(c)(R) ⊆ [e]π above.
At this point, we do not require that every role will be performed completely,
leaving room for unfinished role executions.

An injective cast function is, with abuse of language, an injective mapping
when considered to be of functionality ClaimTE × Role → P(TE ), rather
than injective as a function of type ClaimTE → Role → P(TE ). The main
reason of sticking to the latter function type is the underlying intuition of
a cast. The mapping Γ(c) captures the perspective of the agent executing
the instance of the role of the claim trace event c. From the point of view
of the particular role of the agent, he expects certain activity to belong to
particular roles, like, for the Needham-Schroeder case, “apparently agent A
want to set up a session with me using nonce 123” or “it must be the case
that the initiator has received my response, for otherwise my nonce 456 would
not have returned”.

In the context of the Lowe attack trace introduced above, we have, e.g., as a
cast the mapping Γ such that

Γ(claimA(ni-synch))(I) = { sendA→E({A, 123}pkE),

readE→A({123 , 456}pkA), sendA→E({456}pkE), claimA(ni-synch) }

Γ(claimA(ni-synch))(R) = { takeA→E({A, 123}pkE),

fakeE→A({123 , 456}pkA), takeA→E({456}pkE) }

Γ(claimB(ni -synch))(I) = { sendA→E({A, 123}pkE),

readE→A({123 , 456}pkA), sendA→E({456}pkE), claimA(ni-synch) }

Γ(claimB(ni -synch))(R) = { readA→B({A, 123}pkB),

sendB→A({123 , 456}pkA), readA→B({456}pkB), claimB(ni-synch) }.

Note that, the cast Γ is bounded by the general restrictions of Definition 2
and the particular choice for the equivalence π (see formula (4)). For the claim
trace event claimA(ni -synch) regarding the initiator role I, and the claim
trace event claimB(ni -synch) regarding the responder role R, the images do
not differ among different casts. For the trace under consideration, there are
for Γ(claimA(ni -synch))(R) and Γ(claimB(ni -synch))(I), in principle alterna-
tives. Because of the limited trace we consider, for Γ(claimB(ni -synch))(I)
this amounts to the same set of trace events. For Γ(claimA(ni-synch))(R) the
less plausible sequence comprising Γ(claimB(ni -synch))(R) would do as well.
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Regarding the first two clauses above, the completely genuine trace events
of agent A are matched by activity of the intruder (who is assumed to have
access to the private key of agent E). Just bad luck for agent A, but when
takes and fakes are interpreted as reads and sends, nothing strange happens.
Agent A, however, cannot distinguish between these two cases. The situation
for the latter two clauses is more seriously wrong. Here, the role of responder
of agent B, who assumes he is talking to agent A, is matched by activity of
agent A engaged in an protocol session with agent E.

We now return to the main point of this paper: defining a strong form of
authentication. We have established an abstract view on security protocol
descriptions, and a second layer of trace events. We introduce an authentica-
tion property that captures the following correspondence: at the trace level,
we require that the same structures occur as the ones found at the protocol
description level. Informally put, we require that everything we intended to
happen in the protocol description also actually happens in the trace.

We first give the definition of the authentication property that we call non-
injective synchronisation, and explain it in detail below.

Definition 3 [NI -SYNCH ] A protocol P with a claim protocol event γ is
called non-injectively synchronising, notation NI -SYNCH (P, γ), if

∀t ∈ Tr(P ) ∃Γ ∈ Cast(P ) ∀c ∈ t, Valid(c), pe(c) = γ

∀σ, % : σ ; % 4P γ ∃s, r : s < t r < t c

pe(s) = σ ∧ s ∈ Γ(c)(role(σ)) ∧

pe(r) = % ∧ r ∈ Γ(c)(role(%)) ∧

cont(s) = cont(r).

Non-injective synchronisation is a trace property for a protocol P and a claim
role event γ. In particular, each trace t of the protocol P can contain a number
of instances of the claim event γ. We only consider the valid instances of these
claims, i.e. the claims of agents that communicate with agents that have not
been compromised. For each of these instances of the claim, we require that
there are actual communication partners. Thus, for all of these claims, there
must exist runs that fulfill the roles of the protocol. This is expressed by the
existence of the Γ function, which assigns the communication partner runs for
each claim instance and role of the protocol.

Given an assignment of communication partners by the cast function Γ, we
require, for each claim instance c, that the communications have occurred as
expected. This requirement must hold for each communication pair (s, r) that
precedes the claim role event, expressed as ∀σ, % : σ ; % 4P γ.
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In order for the communication σ ; % to have occurred correctly from the
viewpoint of the claim trace event c, there must exist actual send and read
events s and r, such that the following three conditions for correct communica-
tions hold: the order of the events must be correct, the events are instantiations
of the right role events by the runs as defined in Γ, and the message must be
communicated correctly.
For the first condition regarding the ordering in the trace, we require that just
as in the protocol description, s < t r < t c holds. The second condition re-
quires that the trace events are indeed the events corresponding to the correct
read and send events from the protocol, and that they are part of the runs
as assigned by the Γ function. For the third condition, we simply require that
the contents of the read message must be identical to the content of the sent
message.

Concretely, for the case of the Needham-Schroeder protocol NS , we have that
NI -SYNCH does not hold for the claim event claimR(ni -synch) of the respon-
der. Consider again the trace

sendA→E({A, 123}pkE) · takeA→E({A, 123}pkE) · fakeA→B({A, 123}pkB) ·

readA→B({A, 123}pkB) · sendB→A({123 , 456}pkA) · takeB→A({123 , 456}pkA) ·

fakeE→A({123 , 456}pkA) · readE→A({123 , 456}pkA) · sendA→E({456}pkE) ·

claimA(ni -synch) · takeA→E({456}pkE) · fakeA→B({456}pkB) ·

readA→B({456}pkB) · claimB(ni -synch).

representing the Lowe attack considered before. We want to show that for
this trace, there exists no cast for the claim trace event claimB(ni-synch) that
satisfies NI -SYNCH . Given the clustering of trace events prescribed by the
partitioning π and the requirement (6) of Definition 2, we have

Γ(claimB(ni -synch))(R) = { readA→B({A, 123}pkB),

sendB→A({123 , 456}pkA), readA→B({456}pkB), claimB(ni-synch) }.

We have as single possibility of Γ(claimB(ni -synch))(I), by condition (5) of
Definition 2,

Γ(claimB(ni -synch))(I) = { sendA→E({A, 123}pkE),

readE→A({123 , 456}pkA), sendA→E({456}pkE), claimA(ni-synch) }.

However, none of the two read trace events will have counterparts in the run
Γ(claimB(ni -synch))(I) that match in content (assuming the public keys pkB
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and pkE being different) as is required by the fact that

sendI→R({I, nI}pkR) ; read I→R({I, nI}pkR) 4P claimR(ni-synch) ∧

sendI→R({nR}pkR) ; read I→R({nR}pkR) 4P claimR(ni -synch).

On the other hand, it is to be expected that NI -SYNCH (NS , claimI(ni-synch))
holds. For the particular trace considered, the cast function Γ given as an in-
stance of Definition 2 allows for a matching of the trace events corresponding
to the protocol events preceding the claim claimI(ni -synch). However, for non-
injective synchronisation to be satisfied, such a cast should exist for all traces
in Tr(NS ), which we did not fully detail here.

Protocols that satisfy NI -SYNCH can still be vulnerable to so-called replay
attacks, which will be explored in more detail in Section 4.1. Therefore, we
modify NI -SYNCH slightly and require that the cast function is injective,
yielding the notion of injective synchronisation.

Definition 4 [I -SYNCH ] A protocol P with a claim protocol event γ is called
injectively synchronising, notation I -SYNCH (P, γ), if

∀t ∈ Tr(P ) ∃Γ ∈ Cast(P ), injective ∀c ∈ t, Valid(c), pe(c) = γ

∀σ, % : σ ; % 4P γ ∃s, r : s < t r < t c

pe(s) = σ ∧ s ∈ Γ(c)(role(σ)) ∧

pe(r) = % ∧ r ∈ Γ(c)(role(%)) ∧

cont(s) = cont(r).

For the Needham-Schroeder protocol in Figure 1, I -SYNCH holds for the
role I in the Dolev-Yao model: for each instance of the claim of role I in a
trace, there must also be a unique instance of the role R to synchronise with.

3 Extending the authentication hierarchy

In [22], Lowe defined a number of authentication properties and positioned
them in a hierarchy. In this section we study the relation between these prop-
erties and our notion of (injective) synchronisation. Since time is not consid-
ered in our model, we will restrict our attention to authentication properties
not involving time.

15



3.1 Agreement

The definitions provided by Lowe are all in an extensional style. For instance,
agreement expresses that after successful completion of the protocol the parties
agree on the values of all (or some) variables. In order to be able to compare
this to our approach, a common framework is required. For this purpose, we
tune the definitions of [22] here, to provide an intensional characterisation of
agreement, to arrange for such a comparison. From these definitions it easily
follows that injective synchronisation is stronger than injective agreement over
all variables, and thus forms a new top element in the authentication hierarchy.
Using these insights, we are able to show the difference between the several
forms of authentication by means of some simple examples.

The starting point for providing an intensional characterisation of agreement
is the following definition of injective agreement by Lowe [22].

Initiator I is in agreement with responder R, whenever I as initiator com-
pletes a run of the protocol with R, then R as responder has been running
the protocol with I. Moreover, I and R agree on all data variables, and each
run of I corresponds to a unique run of R.

Although this definition is conceptually clear, it is still informal. Therefore,
we will analyse this definition and translate the given concepts into our frame-
work.

The main issue to be clarified is the notion of a variable, which is not defined in
our approach. Since the values of the variables are determined by the contents
of the messages sent and received, we can reformulate the correspondence
between the variables as a requirement on the contents of the sent and received
messages. In a two-party protocol, it is clearly the case that if two parties agree
on the values of all variables, then they agree on the contents of all messages
exchanged, and vice versa.

Agreement in a multi-party protocol means that only the initiator and the
responder agree on their shared variables. There is no such requirement for
the variables maintained by the other roles in the protocol. In order to be
able to provide an intensional definition of agreement, we will have to extend
the agreement relation to all parties involved in the protocol. Therefore, we
will require that upon completion of the protocol all parties agree on all vari-
ables. This is somewhat stronger than the extensional definition provided by
Lowe, but for many multi-party protocols this seems to be a natural exten-
sion. Summarising, we see that the agreement requirement translates to the
demand that corresponding sends and receives have the same contents.

Given this interpretation of agreement, it is easy to see the correspondence
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with synchronisation. Like agreement, synchronisation requires correspondence
on the contents of all messages, but it additionally requires that a message
is sent before it can be received. The definition of Lowe does not bother
about this send/read order. Thus, we arrive at the following definition of
non-injective agreement, which is adapted from Definition 3 by removing the
requirement that send events occur before their corresponding read event.

Definition 5 (NI -AGREE) Given a protocol P with a claim protocol event γ,
non-injective agreement holds, notation NI -AGREE (P, γ), if

∀t ∈ Tr(P ) ∃Γ ∈ Cast(P ) ∀c ∈ t, Valid(c), pe(c) = γ

∀σ, % : σ ; % 4P γ ∃s, r : s < t c ∧ r < t c

pe(s) = σ ∧ s ∈ Γ(c)(role(σ)) ∧

pe(r) = % ∧ r ∈ Γ(c)(role(%)) ∧

cont(s) = cont(r)

The agreement predicate expresses that for all instantiated claims in any trace
of a given security protocol, there exist runs for the other roles in the protocol,
such that all communication events causally preceding the claim must have
occurred before the claim.

Injective agreement is defined in the same way as injective synchronisation is
obtained from non-injective synchronisation.

Definition 6 (I -AGREE) Given a protocol P with a claim protocol event γ,
injective agreement holds, notation I -AGREE (P, γ), if

∀t ∈ Tr(P ) ∃Γ ∈ Cast(P ), injective ∀c ∈ t, Valid(c), pe(c) = γ

∀σ, % : σ ; % 4P γ ∃s, r : s < t c ∧ r < t c

pe(s) = σ ∧ s ∈ Γ(c)(role(σ)) ∧

pe(r) = % ∧ r ∈ Γ(c)(role(%)) ∧

cont(s) = cont(r)

It expresses that for any trace and for any run of any role in the protocol
there exist unique runs for the other roles of the protocol such that for all
claims occurring in the trace all communications preceding the claim must
have occurred correctly within these runs.

The definition of I -AGREE does not involve all communications, but only
the set of events that causally precede a claim. However, it turns out that the
way in which agreement is made precise in terms of CSP, as can be checked by
compiling Casper-code into CSP, it also takes only preceding communications
into account. For this, running-commit signals (see [28]) are introduced in the
protocol. For each role, a running signal is added to the last communication
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preceding the agreement claim. In the role that includes the claim, a commit
signal is added to the last communication. Injective agreement over all roles
requires that the running signals of each role precede the commit signal. This
corresponds to the order requirements of I -AGREE .

The definitions of the four security properties above clearly reveal their relative
strengths in excluding attacks. Every injective protocol is also non-injective
and if a protocol satisfies synchronisation then it satisfies agreement too. Fig-
ure 2 shows this hierarchy. An arrow from property X to property Y means
that every protocol satisfying X also satisfies Y . Phrased differently, the class
of protocols satisfying X is included in the class satisfying Y .

�
�	

@
@R

@
@R

�
�	

I -SYNCH

NI -SYNCH I -AGREE

NI -AGREE

Fig. 2. Hierarchy of security properties.

The correctness of the hierarchy is captured by the following theorem.

Theorem 1 The security properties I -SYNCH , NI -SYNCH , I -AGREE, and
NI -AGREE satisfy the inclusion relation as depicted in Figure 2.

Proof. Straightforward from the definitions. 2

The question of whether the inclusions in Figure 2 are strict is harder to an-
swer. In part, this is due to the abstractness of our model. Since our approach
is parameterised over the actual semantics, and thus over the intruder model,
we cannot determine for a given protocol to which class it belongs. Therefore,
strictness of the inclusions can only be answered relative to a given semantics.
Consequently, the following reasoning will be at a conceptual level only.

If we take, e.g., a model where all agents simply follow their roles and the
intruder has no capabilities at all, then the diamond in Figure 2 collapses
into a single class. The same holds if the intruder can only eavesdrop on the
communications. However, in the Dolev-Yao model, all inclusions are strict,
as we will see below.

The case of injectivity vs. non-injectivity has been studied extensively before.
The MSC on the left in Figure 3 shows a protocol that satisfies NI -SYNCH
and NI -AGREE , but neither I -SYNCH , nor I -AGREE .

The intruder will only be able to construct message {I, R}skI after having
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Fig. 3. Distinguishing protocols

eavesdropped this message from a previous run. Therefore every read event
of this message is preceded by a corresponding send event, so the protocol is
both NI -SYNCH and NI -AGREE . However, once the intruder has learnt this
message, he can replay it as often as desired, so the protocol is not injective.

A distinguishing example between synchronisation and agreement is depicted
on the right in Figure 3. As confirmed by the Casper/FDR tool set, this proto-
col satisfies unilateral authentication in the sense of agreement (both injective
and non-injective). However, the protocol does not satisfy synchronisation
(both variants). This is the case, because the intruder can send message I, R
long before I actually initiates the protocol, making R to believe that I has
requested the start of a session before he actually did.

The two examples show that the inclusions of the diamond in Figure 2 are
strict if the intruder has the capabilities to eavesdrop, deflect and inject mes-
sages. Both examples also imply that there are no arrows between NI -SYNCH
and I -AGREE .

3.2 Synchronisation vs. agreement

As stated before, the difference between synchronisation and agreement is
rather subtle and, indeed, most authentication protocols in practice satisfy
both properties. The distinction is that synchronisation requires that corre-
sponding send and receive messages have to be executed in the expected order,
while for agreement a message may be received before it is sent. This can, for
instance, be caused by a message injection of the intruder. An attack in which
the intruder injects a message before its actual creation is called a preplay
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attack. Whether such a protocol weakness can be exploited by the attacker
depends on the intention of the protocol. Below we will sketch three examples
of possible weaknesses.

In the first example we consider the notion of predictable nonces. There may
be several reasons for such predictability, such as a bad pseudo-random gen-
erator, or the fact that the nonce is implemented as a counter. Consider, for
instance, the protocol in Figure 4. The purpose of this protocol is unilateral
authentication of responder R towards initiator I. This is established by using
nonce nI as a challenge. However, if the value of this nonce is predictable by
the intruder, the protocol has a major shortcoming. This is shown in the trace
in the right of Figure 4, which displays that the run of R has finished even
before the run of I started. The consequences of this preplay attack are sim-
ilar to many well-known replay attacks. The protocol satisfies (injective and
non-injective) agreement, but does not satisfy synchronisation (both variants).

pkR

I

skR

R

predictable nI

nI

{I, nI}skR

ni -agree

msc unilateral authentication I intruder R

predict nI

nI

{I, nI}skR

nI

{I, nI}skR

msc preplay attack

Fig. 4. Preplay attack due to a predictable nonce.

This type of preplay attacks is also called suppress-replay attacks [14,24].
As pointed out by Chen and Mitchell [24], practical protocols such as the
S/KEY user authentication scheme suffer from this kind of attack because
they use predictable challenges. Roscoe [27] found a similar problem for the
Needham-Schroeder Secret Key protocol in the case that the initiator’s nonce
is predictable.

The second example concerns the protocol in Figure 5, in which we assume
that an agent keeps a state which is shared by all its instances of the protocol.
The purpose of this protocol is again unilateral authentication, but now the
responder is in control of the nonce. After receiving a request from the initia-
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tor, the responder sends his nonce to the initiator. The initiator keeps a set
V in which he stores all nonces from previous instantiations of the protocol.
This is to prevent replay attacks and, thus, to ensure injectivity. If the nonce
is accepted as fresh, the initiator challenges the responder to prove his iden-
tity, which the responder does by replying the signed nonce. This may seem a
reasonable authentication protocol, and indeed it satisfies injective agreement.
However, the preplay attack shown in Figure 5 indicates a weakness of the pro-
tocol. An initiator can successfully execute his side of the protocol, while the
responder was not even alive when the initiator started the protocol. This ex-
ample shows that even a complex message interaction can be preplayed. Since
the protocol does not satisfy synchronisation, this weakness can be detected
by verifying synchronisation.

Two remarks apply to this example. The first remark is that testing whether
the nonce is already in V and the extension of V with the nonce should be
implemented as an atomic action (a test-and-set action) to achieve the desired
result. The second remark is that this protocol still has interesting properties
when leaving out the validation of nR’s freshness by the initiator (i.e. if we
remove the set V and its operations). The resulting protocol is not injective
anymore, since the intruder may replay the responder behaviour of an earlier
run of the protocol. However, this reduced protocol still satisfies non-injective
agreement. Since the displayed attack remains possible, the protocol does not
satisfy synchronisation. Thus, we have a stateless protocol suffering from a
preplay attack. It satisfies non-injective agreement but it does not satisfy non-
injective synchronisation.

V, pkR

I

skR

R

hello

nonce nR

nR

nR 6∈ V ;
V := V ∪ {nR}

{I, nR}pkR

{nR, I}skR

ni -agree

msc unilateral authentication

I intruder R

hello

nR

{I, nR}pkR

{nR, I}skR

hello

nR

{I, nR}pkR

{nR, I}skR

msc preplay attack

Fig. 5. Preplay attack because the nonce is controlled by the responder.
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In the previous two examples we have seen how the intruder can preplay a
complete protocol session and use it later to fool the initiator into thinking
that the responder is still alive. In the third example, we see that it can already
be harmful if only a single message is preplayed by the intruder.

In Figure 6 R is an Internet Service Provider, used by I. Assume that I pays
R for the time he is connected. When I wants to connect, R retrieves the
certificate of I from the trusted server S and uses this to authenticate I. After
a successful session, I is billed from the moment the first message was received
by R.

skI, pkR, pkS

I

skR, pkS

R

skS, pkI

S

I, R
I, R

{I, pkI}skS

nonce nR

{R, nR}pkI

{nR, I}pkR

ni -agree

msc synchronisation vs. agreement

Fig. 6. A protocol satisfying NI -AGREE but not NI -SYNCH .

This protocol is a slightly modified version of the Needham-Schroeder-Lowe
protocol. It can be exploited as follows. An intruder can send the first mes-
sage pre-emptively, causing R to initiate a session with what it believes is I.
If at some later time I decides to initiate a session with R and finishes it
successfully, I will receive a bill that is too high. In fact, although, this pro-
tocol satisfies agreement for R, the first message is not authenticated at all.
In contrast, this protocol does not satisfy synchronisation. The protocol can
be easily modified to satisfy NI -SYNCH and thus to be resilient against the
sketched type of timing attacks.

This type of attack may seem of little relevance, but it depends on the inter-
pretation of the messages whether such unexpected behaviour can cause harm
or not. In the rather contrived example above, a typical interpretation of the
messages concerning billing time allows the intruder to exploit this unexpected
behaviour. Following the observations of Roscoe [27], this sort of behaviour,
while seemingly innocent was certainly unexpected by the protocol designer.
After finding such unexpected behaviour, the designer has two options. First,
he may decide that this behaviour is acceptable, but then he has to take the
implications of this behaviour into account and extend his mental model of
the protocol. He should make sure that this behaviour does not interfere with

22



any other analysis which is based on the intended order of the protocol events.
Still according to Roscoe, the second option is to strengthen the protocol as to
make it compatible with the mental model again. As pointed out by Roscoe,
the TMN protocol, and a seemingly correct strengthening thereof, suffer from
the same weakness as the protocol in Figure 6.

We conclude by stating that failure of a protocol to respect synchronisation
does not always indicate an exploitable weakness of the protocol. However,
such unexpected behaviour should always receive extra attention and should
at least lead to adjusting the mental model of the protocol.

4 Verifying injective synchronisation

Several tools exist to verify whether a protocol satisfies some form of agree-
ment, e.g. [21,3,29]. Because synchronisation is very similar to agreement, we
expect that it will be feasible to adapt most of the verification tools to be able
to handle at least non-injective synchronisation.

In refinement or forward model-checking approaches, agreement is commonly
verified by inserting running and commit or similar signals in the protocol.
When somebody commits to some values, the other party needs to have emit-
ted a running signal. The commit signal corresponds to the claim in our frame-
work, whereas the running signal denotes the last communication of the other
role that causally precedes the claim. These signals are introduced to ease ver-
ification: instead of having to inspect the trace leading up to the claim, only
the set of emitted signals needs to be inspected. In our framework, agreement
is a property of the trace prefix ending in a claim. By introducing running
and commit signals, agreement can be verified by inspecting the set of signals.
In much the same way, it is possible to verify synchronisation by introducing
such signals for each communication that precedes the claim.

We have developed a protocol verification tool that can verify non-injective
agreement and non-injective synchronisation as defined here (see [6]). The tool
can compute trace prefixes of a protocol leading up to a claim. Given such
a trace prefix, verification involves checking whether a suitable Γ exists such
that the communications have occurred as expected.

In order to verify injective agreement, many tools rely on a counting argument:
if a trace prefix contains n commit signals, there should be at least n preceding
running signals in the trace prefix. If enough commit signals are considered in
this way, this should ensure injectivity. The main drawback of this method is
that the verification complexity is exponential in the length of the traces, and
thus in the number of running claims considered. Another approach to veri-

23



fying injectivity uses detailed knowledge of the data model: if the agreement
includes data items that are guaranteed to be unique for each instance of the
claim, injectivity can be derived. However, not all injective protocols include
such unique data items. In some cases it can also be non-trivial to establish
the required uniqueness property, as we show in the next section.

This section will focus on the verification of injectivity for protocols that satisfy
non-injective synchronisation. We propose and study a property, the LOOP
property, that can be syntactically verified. We prove a theorem that shows
that LOOP is sufficient to guarantee injectivity. Our result is generic in the
sense that it holds for a wide range of security protocol models, and does not
depend on the details of message content or nonce freshness.

The remainder of this section will proceed as follows. In Section 4.1 we elab-
orate on the difficulties posed by injectivity, and informally describe our the-
orem. In Section 4.2 we define a class of security protocol models for which
our theorem holds. Then, in Section 4.3 we propose and study the LOOP
property, and prove the main theorem.

4.1 Injectivity of synchronisation

As stated in Section 1, protocols satisfying non-injective synchronisation may
still be vulnerable to so-called replay attacks. In a replay attack the intruder
replays a message taken from a different context, thereby fooling the honest
participants into thinking they have successfully completed the protocol run.
See [23].
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{I, nR}skR
learn {I, nR}skR
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msc replay attack

Fig. 7. An authentication protocol that is vulnerable to a replay attack.

The left-hand protocol in Figure 7 shows an example of a protocol where
the parties agree upon the values of the variables (i.e. nonce nR), while the
right-hand scenario shows a replay attack on this protocol. The intruder can
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overhear the message sent and can fool I in a future run to think that R has
sent this message.

In order to rule out such flawed protocols, the additional property of injectivity
is required. The unilateral authentication protocol from Figure 7 clearly does
not satisfy injectivity, as is shown by the replay attack in the right-hand side
of the figure. A simple fix would be to have the initiator determine the value
of the nonce, as in Figure 8.
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pkR, skR

R

nonce nI

nI

{I, nI}skR

agree(nI)

msc unilateral authentication

Fig. 8. Fixing the injectivity problem.

The introduction of a causal chain of messages from the initiator to the re-
sponder and back to the initiator seems to do the trick. We will call such a
chain a loop. The presence of such a loop plays a key role in the discussion on
injectivity below.

It is folklore that a nonce handshake is sufficient to ensure injectivity. Here
we identify a more abstract property, viz. the occurrence of a loop, which is
independent of the data model, and thus applicable to a wide range of security
protocol models. To give an indication of the limitations of the data based
approach, consider a protocol where a nonce n is created, and some function
is applied to it. The result f(n) is sent to the responder, who applies another
function and replies with g(f(n)). Now, to check whether such a protocol can
be injective based on the freshness of n in a data-based model, we need to
know some details of f and g. If for example f(x) = x mod 2, the protocol
will not be injective. Therefore, we propose to only reason about loops, which
does not require any information about the contents of messages.

In the next subsection we study the question whether there is a method to
validate injectivity of a security protocol which is generic in the sense that it
can be applied within a large class of verification methodologies, regardless
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of the data model that is used. Our main result is that, for a large class of
security protocol semantics, the LOOP property introduced above guarantees
that a synchronising protocol is also injective.

4.2 A class of security protocol models

The class of security protocol semantics for which our result holds, is charac-
terised by the closure of the set of execution traces under swapping of events.
This class contains, e.g., the process algebraic approach with the standard
Dolev-Yao intruder model. Apart from this swap property, we will need no
other assumptions on the data model and the intruder model. Since the LOOP
property can easily be verified by means of static analysis of the security proto-
col description, we provide, in fact, a practical syntactic criterion for verifying
injectivity.

We introduce the notation t = u1; u2 to denote that t is a concatenation of
trace event sequences u1 and u2.

Definition 7 (Swap) A security protocol semantics satisfies the SWAP prop-
erty if the following two conditions hold:

(i) The trace set Tr(P ) is closed with respect to non-read swaps, i.e., for all
trace events e′ such that pe(e′) 6∈ ReadPE it holds that

t; e; e′; t′ ∈ Tr(P ) ∧ e 6∼π e′ ⇒ t; e′; e; t′ ∈ Tr(P )

for all trace events e and traces t, t′.
(ii) The trace set Tr(P ) is closed with respect to read swaps, i.e., for s, r, e

with pe(s) ∈ SendPE, pe(r) ∈ ReadPE we have that

t; s; t′; e; r; t′′ ∈ Tr(P ) ∧ cont(s) = cont(r) ∧ e 6∼π r

⇒ t; s; t′; r; e; t′′ ∈ Tr(P )

for all traces t, t′, t′′.

These properties state that we can shift a non-read event to the left as long
as it does not cross any other events of the same role instance. For the read
event we have an additional constraint: we can only shift it to the left if there
remains an earlier send of the same message.

For the remainder of this section we assume the protocol P contains a claim γ.
We introduce a predicate χ and a set χ′ for protocols that satisfy non-injective
agreement for this claim γ. Given a trace t, a claim event c, and a cast Γ that
maps the roles to runs, we express the auxiliary predicate χ on the domain
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Tr(P ) × Cast(P ) × ClaimTE by

χ(t, Γ, c) ⇐⇒ pe(c) = γ ∧

∀σ, % : σ ; % ∧ % 4P γ ∃s, r : s < t r < t c

pe(s) = σ ∧ s ∈ Γ(c)(role(σ)) ∧

pe(r) = % ∧ r ∈ Γ(c)(role(%)) ∧

cont(s) = cont(r)

The first conjunct of this predicate expresses the fact that the run executing
the claim role is determined by the parameter c. The second conjunct expresses
that in the trace t, the claim c is valid with respect to the specific cast Γ,
i.e., that the partners have executed all communications as expected. In the
formula this is expressed by the fact that send and read events are executed
by the expected runs, viz. Γ(c)(role(pe(s))) and Γ(c)(role(pe(r))), respectively,
with identical contents, and in the right order.

Given a valid synchronisation claim c in a trace t, there exists a role instantia-
tion function Γ such that χ(t, Γ, c) holds. The predicate χ tells us that certain
events exist in the trace. Because we want to reason about these events in the
following, we decide to make this set of events explicit. We define the set of
events χ′(t, Γ, c) by

χ′(t, Γ, c) = { e ∈ t | e ∈ Γ(c)(role(e)) ∧ pe(e) 4P pe(c) }

Assuming that χ holds, its set of events χ′ has two interesting properties. If
there is a read in this set, there is also a matching send in the set. Furthermore,
given an event of a role in the set, all preceding events of the same role are
also in the set.

To prove our main result, the SWAP property from Definition 7 suffices. How-
ever, to ease the explanation of the proof, we introduce two additional lemmas.
These lemmas are implied by the model and the two swap conditions.

The first lemma generalises the swapping of two events to the swapping of
a set of events. The lemma does not hold for any set of events: we now use
results obtained for a set of events defined by χ, that are involved in a synchro-
nisation claim. Based on the two swap properties, we can shift these events (in
their original order) to the beginning of the trace. This trace transformation
function shift : P(TE ) × TE ∗ → TE ∗ is defined by

shift(E, t) =







t if t ∩ E = ∅

e; shift(E, u1; u2) if t = u1; e; u2 ∧ u1 ∩ E = ∅ ∧ e ∈ E

Here, the intersection of a trace and a set yields the collection of elements
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of the set occurring in the trace. This function effectively reorders a trace.
The next lemma formulates conditions assuring that the reordering of a trace
in Tr(P ) is in Tr(P ) as well.

Lemma 1 Given a protocol P and a trace t ∈ Tr(P ), claim event c and role
instantiation function Γ:

χ(t, Γ, c) ∧ t′ = shift(χ′(t, Γ, c), t) ⇒ t′ ∈ Tr(P ) ∧ χ(t′, Γ, c).

Proof. Induction on the size of the finite set χ′(t, Γ, c), because χ(t, Γ, c)
implies that the read events can be swapped. Recall that, by convention, each
event occurs at most once in a trace. 2

The lemma directly generalises to more claim instances (of the same claim).
Thus, instead of a single claim run, we can consider sets of claim runs.

Lemma 2 Given a trace t, a set of claim events C ⊆ t and cast Γ ∈ Cast(P ):

(∀c ∈ C : χ(t, Γ, c)) ∧ t′ = shift(
⋃

c∈C

χ′(t, Γ, c), t) ⇒

t′ ∈ Tr(P ) ∧ (∀c ∈ C : χ(t′, Γ, c))

Proof. Similar to the proof of Lemma 1. 2

If we apply the shift function to a trace of the system, and the conditions
of the lemma are met, we get a reordered trace, that is also in Tr(P ). The
new trace consists of two segments: in the first segment there are only the
preceding events of the claim events in C , and all other events are in the
second segment.

Intuitively, these lemmas express that the events involved in a valid synchro-
nisation claim are independent of the other events in the trace. A valid syn-
chronisation can occur at any point in the trace, because it does not require
the involvement of other runs, or of the intruder. However, other events in the
trace might depend on events involved in the synchronisation. Although we
cannot shift the synchronising events to the right, we can shift them to the
left, which ensures that any dependencies will not be broken.

We use Lemma 1 and Lemma 2 in the injectivity proof in the next section.
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4.3 The LOOP property

We define a property of protocols, which we call the LOOP property. For
protocols with only two roles, it resembles a ping-pong property. First the
claim role executes an event, then the other role, and then the claim role
again. For example, the LOOP property does not hold for the protocol in
Figure 7, but it does hold for the protocols in Figures 8 and 1.

We generalise this for multi-party protocols with any number of roles. We
require that the partner roles have an event that must occur after the start of
the claim run, but before the claim event itself.

Definition 8 A security protocol P has the LOOP property with respect to a
claim γ if

∀ε 4P γ, role(ε) 6= role(γ)

∃ε′, ε′′ : ε′ 4P ε′′ 4P γ ∧ role(ε′) = role(γ) ∧ role(ε′′) = role(ε). (7)

The property tells us that for each role that has an event ε that precedes the
claim γ, there exists a loop from the claim role to the role and back. This
structure is identified in the formula by ε′ 4P ε′′ 4P γ.

Lemma 3 Given a security protocol P with a claim γ: If all roles R 6=
role(γ) that have events preceding γ, start with a read event, then we have
that LOOP(P, γ).

The proof of this lemma follows from the definition of the protocol order 4P :
if a role R has an event ε′′ that precedes the claim γ, and starts with a read
event, then there must be a preceding event on some other role. Because all
roles except for the claiming role start with a read, and role definitions are
non-cyclic and finite, there must ultimately exist an event ε′ of role role(γ)
that precedes ε′′, and thus we can conclude that LOOP(P, γ) holds.

In practice, this lemma tells us that the LOOP property always holds for the
initiating role of a protocol. Thus, we only have to check whether the LOOP
property holds for responder roles.

Now we can state a theorem, which provides a syntactic condition for the
injectivity of a protocol that synchronises.

Theorem 2

NI -SYNCH (P, γ) ∧ LOOP(P, γ) ⇒ I -SYNCH (P, γ)
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Proof. By contradiction. Assume that the implication does not hold. Thus we
have

NI -SYNCH (P, γ) ∧ LOOP(P, γ) ∧ ¬I -SYNCH (P, γ). (8)

The remainder of the proof is done in two steps. The first step of the proof
establishes a trace t of the protocol, in which there are two runs that syn-
chronise with the same run. In the second step we use the shifting lemmas
to transform t into another trace of the protocol. For this new trace, we will
show that NI -SYNCH cannot hold, which contradicts the assumptions.

From now on, we will omit the type information for t and Γ in the quantifiers
and assume that t ∈ Tr(P ).

Given that the protocol synchronises, but is not injective, we derive from
definition 3 and 4 and formula (8) that

∀t ∃Γ ∀c ∈ t : pe(c) = γ ⇒ χ(t, Γ, c) ∧

¬∀t ∃Γ injective ∀c ∈ t : pe(c) = γ ⇒ χ(t, Γ, c) (9)

We push the negation on the right through the quantifiers, yielding

∀t ∃Γ ∀c ∈ t : pe(c) = γ ⇒ χ(t, Γ, c) ∧

∃t ∀Γ¬(Γ injective ∧ ∀c ∈ t : pe(c) = γ ⇒ χ(t, Γ, c)). (10)

Based on the existential quantifiers in (10), we choose a trace t and instanti-
ation function Γ such that

∀c ∈ t : pe(c) = γ ⇒ χ(t, Γ, c) ∧

¬(Γ injective ∧ ∀c ∈ t : pe(c) = γ ⇒ χ(t, Γ, c)). (11)

Note that in (11) the left conjunct also occurs as a sub-formula in the right
conjunct. Rewriting yields

∀c ∈ t : pe(c) = γ ⇒ χ(t, Γ, c) ∧ ¬(Γ injective). (12)

Making the non-injectivity for the function Γ explicit as explained in Defini-
tion 2, there must exist two claim events, for which χ holds:

∃c1, c2, R1, R2 : χ(t, Γ, c1) ∧ χ(t, Γ, c2)

∧ Γ(c1)(R1) = Γ(c2)(R2) ∧ (c1 6= c2 ∨ R1 6= R2) (13)

From the predicate χ and formula (13), we have that the run Γ(c1)(R1) must
be executing the role R1. Because Γ(c1)(R1) = Γ(c2)(R2) it is also executing
role R2. As defined in Section 2, runs only execute a single role, and we derive
that R1 = R2. The fourth conjunct now reduces to c1 6= c2.
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Put R = R1 = R2. We choose two claim events c1, c2 such that Formula (13)
holds for R. Now there exists a trace event set S such that

Γ(c1)(R) = Γ(c2)(R) = S

From the definition of χ, we obtain that if R would be equal to role(γ),
we would have S = c1 and S = c2, implying c1 = c2 and contradicting
Equation (13). Thus, we have R 6= role(γ).

We have now established that the trace t contains events from at least three
role instances. Two of these, [c1]π and [c2]π, are executing the claim role,
while the third, S is executing a different role R. Furthermore, we have that
the claims c1 and c2 synchronise with S.

This completes the first step of the proof. We will now proceed by transforming
t into a trace for which NI -SYNCH cannot hold, for the second part of the
proof.

Because we have χ(t, Γ, c1) and χ(t, Γ, c2), on the basis of Lemma 2 we can
apply shift using c1 and c2 to get a trace t′ ∈ Tr(P )

t′ = shift(χ′(t, Γ, c1) ∪ χ′(t, Γ, c2), t)

In the trace t′ we now have two distinct segments. All events involved with the
synchronisation of c1 and c2 are now in the initial segment of t′. This includes
the events of S that precede the claim. The second segment of t′ contains all
other events, that are not involved in the preceding events of c1 and c2.

We will now reorder the initial segment of t′. To this end, we apply the shift
function a second time, now only for c1. This will also yield a trace of the
protocol, because the conditions of Lemma 2 hold for t′, as the application of
shift to t maintained the order of the events in the shifted set, which implies
that χ(t′, Γ, c1) holds. Thus, we also know that the trace t′′ is an element of
Tr(P ), where

t′′ = shift(χ′(t′, Γ, c1), t′)

Because the shift function maintains the order of the involved events, we have
that t′′ = u1; u2; u3, where

set(u1) =χ′(t′, Γ, c1)

set(u2) =χ′(t, Γ, c2) \ χ′(t′, Γ, c1)

All events that are not involved with the synchronisation claims c1 and c2,
are in u3.

Observe that u1 includes all events of S that are involved with the claim
of the run c1. As all events are unique, these are not part of u2. From the
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construction of the involved events set, we know that all involved events of
role R are also in S, because all other role instances are executing other roles
(as indicated by Γ). This implies that there are no events of role R in the u2
segment at all: these are all in u1.

Now we have arrived at a contradiction. t′′ is in the set Tr(P ). The loop
property combined with NI -SYNCH requires that for each role, there is an
event after the first event of the claim role, that occurs before the claim. For
the run c2 all events are in u2 (including the start and the claim), but in
this segment there is no event of role R. Thus, there can be no Γ for t′′ such
that χ(t′′, Γ, c2) holds. This implies that NI -SYNCH does not hold for the
protocol, which contradicts the assumptions. 2

Thus, we have established that LOOP is a sufficient condition to guarantee
injectivity for protocols that satisfy NI -SYNCH .

5 Related work

Historically, many different interpretations of authentication exist. Here we fo-
cus on authentication of communication protocols. Early authentication con-
cepts simply mention that one “end” of the channel can assure itself regarding
the identity of the other end, as in e.g. [25,26]. An identity is considered to be
an “end”. These concepts seem very similar to Lowe’s definition of aliveness
in [22]. For this form of authentication, it is only required that the party to
be authenticated performs some action to prove his identity (i.e. applying his
secret key) regardless of the context, or whom he is proving his identity to.
This is a rather weak form of authentication.

Some more advanced notions of authentication can be found in [19], for exam-
ple, where mechanisms are sketched to prevent message stream modification.
This can be prevented by achieving three subgoals: determine message au-
thenticity, integrity, and ordering. Although no formalisation is provided, this
concept is akin to our notion of non-injective synchronisation.

The international standard ISO/IEC 9798-1 [11] states that authentication
requires verification of an entity’s claimed identity. In response, Gollmann
points out in [13] that the concept of a sender of a message should be treated
with caution, and that replays should be prevented. Gollmann argues that
authentication of an entire communication session is done by first setting up
a session key, and that further messages are authenticated on the basis of this
key. Based on this assumption, four authentication goals are identified. These
goals explicitly assume that the protocols are implemented using private keys
and session keys. Our definition of injective synchronisation is independent
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of protocol details, though. Therefore, it can be applied to a wider range of
protocols.

An alternative formulation of authentication is given by Diffie, Oorschot, and
Wiener in [8]. Here, participants are required to have matching message his-
tories. The message history is allowed to be partial, if the last message sent
is never received, which corresponds to our notion of messages that causally
precede a claim. This notion corresponds closely to non-injective agreement.

As mentioned in the introduction, Roscoe introduces in [27] intensional specifi-
cations. These can be viewed as authentication of communications. The notion
of injectivity does not seem to play a role in Roscoe’s definition. Besides fur-
ther research by Roscoe et al, there have been few attempts at formalising
intensional forms of authentication. A notable exception is the definition of
authentication by Adi, Debbabi and Mejri in [2]. Their authentication prop-
erty requires a strict order on the messages. Furthermore, injectivity of the
runs is required.
The authentication definition of [2] differs from injective synchronisation on
two main points. First, it has a parameter, consisting of the set of communi-
cations to be authenticated. In our work, this parameter is fixed: it is defined
as the set of communications that causally precede the claim event. We argue
that this choice results in the strongest possible form of authentication. If the
parameter is chosen to be a proper subset of the causally preceding commu-
nications set, it can be shown that the authentication is strictly weaker than
injective synchronisation for the normal intruder model. On the other hand,
if the parameter includes a communication that does not causally precede the
claim, authentication will not hold for any protocol in all execution models
that allow agents to abort runs, or that allow the network to delay messages.
A second difference is that the authentication definition is strictly tailored for
protocols involving two parties that communicate directly with each other.
Thus, it cannot straightforwardly be used to express that two parties authen-
ticate each other when they only communicate via e.g. a server. Also, it is not
clear how it generalises to multi-party settings.

In [22], Lowe introduces an entire hierarchy of extensional specifications, corre-
sponding to authentication of data. This builds on earlier work of [8] and [13],
resulting in four different forms of authentication, viz. aliveness, weak agree-
ment, non-injective agreement and injective agreement. On top of this, agree-
ment on subsets of data items and recentness are considered (two topics we
do not address here). In the course of time many subtly different extensional
authentication properties have been proposed. Most of these derive directly
from the work by Lowe.

In [4], Boyd proposes an alternative hierarchy of extensional goals for authen-
tication protocols, which are oriented towards goals regarding established keys
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as well as the end results for the user. Similar to Gollmann, Boyd assumes that
authentication is comprised of session key establishment and further commu-
nications being authenticated through the use of this key.

Authentication and agreement are also studied in [10] by Focardi and Mar-
tinelli in the context of the so-called GNDC scheme. In a process algebra ex-
tended with inference systems reflecting cryptographic actions, one can reduce
reasoning about security properties with respect to any arbitrary environment
to the analysis of the behavior of the security protocol in the most general en-
vironment. It is argued that the GNDC scheme is valid for establishing various
security properties, in particular agreement (as well as its weaker variants).
In [9], Focardi and Martinelli recast Lowe’s notion of agreement in the GNDC
scheme, and show that it is strictly stronger than two other notions of authen-
tication: GNDC-authentication and spi-authentication from [1]. This implies
that the latter two notions are also strictly weaker than injective synchroni-
sation.

With respect to the analysis and verification of injectivity, we note that most
approaches implement Lowe’s definition of injectivity by way of a counting
strategy: in any possible execution of the protocol the number of initiator runs
may not exceed the number of corresponding responder runs. This counting
argument can easily be used in a model-checking approach. Indeed, this is how
injectivity is verified in the Casper/FDR tool chain [21,28]. Since it is only
possible to model a finite and fixed number of scenarios, this approach will
only provide an approximation of injectivity. Other approaches to the verifi-
cation of security protocols, e.g. those based on logics (such as [5]) or on term
rewriting (such as [12]) do not consider injectivity. The Strand Spaces [31]
approach does not provide formal means to deal with injectivity. Instead, it
is proposed to check authentication based on nonces, for example by using
so-called solicited authentication tests as defined in [15]. These tests guaran-
tee injectivity, based on nonce freshness. Authentication and injectivity are
strongly connected in this view. In the HLPSL framework used by the Avispa
tool set [16], injectivity of a data item is verified by ensuring that it is not
replayed. If the correct data items are chosen, this can be used to verify that
injective agreement holds.
We mention two examples of security protocol formalisms that deal explic-
itly with injectivity. Gordon and Jeffrey have devised a method [18] to verify
injective correspondence relations for the π-calculus. This method allows for
verification by type-checking of (injective) correspondences. A second example
can be found in the protocol logic by Adi, Debbabi and Mejri [2], where pat-
tern matching is used to express injectivity for two-party protocols. However,
it is not clear how verification can be done efficiently.
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6 Conclusions

In this section we summarise the main contributions of our research and discuss
some directions for future work.

First of all, we have defined a general trace model for security protocols which
allows for the definition of security properties in an intensional style. This
model is not tied to a particular semantics, making it independent of e.g. the
execution model of an agent and the intruder model. The starting point of
the model is a role-based protocol description, where security claims are lo-
cal to the protocol roles. Such a subjective security claim expresses what an
agent may safely assume after having executed his part of the protocol. The
main motivation for developing the model was to study synchronisation and
agreement in an abstract setting, allowing us to pinpoint what the exact dif-
ferences are. To this end, we formalised two forms of agreement: injective and
non-injective agreement over all variables and all roles. Due to the uniform
phrasing, the two notions of authentication can be distinguished easily: agree-
ment allows that an intruder injects a (correct and expected) message before
it is sent by the originator of the message. As for agreement, we provide both
an injective and a non-injective variant of synchronisation.

Our definitions of synchronisation and agreement abstract away from the pro-
tocol and the semantic model as much as possible, e.g. they do not refer to
the details of the message elements. Given a trace, we only need to have an
equality relation between the contents of send and read events, and to know
the ordering of the events in a protocol description, in order to be able to
verify every form of authentication defined here. This contrasts with other
definitions of authentication, where often much more information about the
protocol and its semantics is required to verify authentication for a given trace.
In fact, for our approach, the definitions do not even require a trace semantics
or a full ordering on the events within a role. The definitions will also work
with the partially-ordered structures of the Strand Spaces model of [31], but
also with the preorder on the events of a role of the AVISPA model in [16];
the only requirement on the role event order is that each event must have a
finite set of preceding events.
From the definitions of synchronisation and agreement, we construct a hier-
archy of authentication properties depicted in Figure 2. We show that with
respect to the Dolev-Yao intruder model, injective synchronisation is strictly
stronger than injective agreement.

For the abstract model, we have only included those elements that are neces-
sary to explain synchronisation. If this model is extended to a full semantics, as
we did in e.g. [7], formal proofs that security protocols satisfy synchronisation
can be constructed.
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Theorem 2 states that, for a large class of security protocol models, injectivity
of authentication protocols is easy to verify, once synchronisation has been
established. Until now, injectivity and authentication have been strongly con-
nected. Our new results establish that it suffices to verify the non-injective
variant of synchronisation. Verifying injectivity is a simple and separate task,
which does not depend on any specific (data) model.
For our injectivity result, we did not choose a specific security protocol model.
Instead, as already mentioned, we have characterised a class of models in
which Theorem 2 holds. This class contains nearly all models found in the
literature, such as the Strand Spaces model, Casper/FDR without time, and
term rewrite systems [31,21,12], as well as many models that allow for non-
linear (branching) protocol specifications. These models share the following
properties:

(i) Multiple instances of the protocol are truly independent. They do not
share variables, memory, or time.

(ii) The intruder has the ability to duplicate messages, as holds, for example,
in the standard Dolev-Yao intruder model.

The question arises whether the theorem also holds in an intruder-less model.
This is in fact the case, but of less interest, because injectivity always holds
for synchronising or agreeing protocols when there is no intruder.
Automated verification of the LOOP property can be implemented easily. We
are currently working on an extension of the Scyther tool [6]. The algorithm is
an instance of the reachability problem in a finite acyclic graph, and therefore
has linear complexity.

I R

I, R

nonce nR

{I, nR}skR

ni -agree

msc example protocol

Fig. 9. A unilateral agreement protocol, with LOOP , but not injective.

Almost all correct authentication protocols in the literature satisfy NI -SYNCH
as well as LOOP . It seems that LOOP is a necessary condition for injectiv-
ity. We know that this holds for the Dolev-Yao intruder model. However, for
peculiar intruder models, LOOP is not a necessary condition for injectivity.
In the models where LOOP is also a necessary condition for injectivity, our
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results imply a minimum number of messages in a multi-party authentication
protocol. We will investigate this in future work.
The LOOP property guarantees injectivity for synchronising protocols. This
raises the question whether there is a similar property to show injectivity of
agreeing protocols. It can be seen from the example in Figure 9, that LOOP
does not suffice to guarantee injectivity. The protocol satisfies the loop prop-
erty for the claim role, and the protocol satisfies non-injective agreement, but
not injective agreement. Finding an alternative for agreeing protocols is an
interesting challenge for future research.
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