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Abstract

Injectivity is essential when studying the correctness of authentication protocols, because non-
injective protocols may suffer from replay attacks. The standard ways of verifying injectivity either
make use of a counting argument, which only seems to be applicable in a verification methodology
based on model-checking, or draw conclusions on the basis of the details of the data-model used. We
propose and study a property, the loop property, that can be syntactically verified and is sufficient
to guarantee injectivity. Our result is generic in the sense that it holds for a wide range of security
protocol models, and does not depend on the details of message contents or nonce freshness.
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1 Introduction

The security property studied the most in the field of security protocol analysis
is authentication. Contrary to the requirement of secrecy, there is no general
consensus on the meaning of authentication. In fact, as indicated by Lowe [10],
there is a hierarchy of authentication properties, the most popular of which
is agreement. Agreement means that two parties involved in a protocol are
guaranteed to agree upon the values of variables after successful completion
of the protocol.

In [4] we extended Lowe’s hierarchy by introducing the notion of synchro-

nization, a security property requiring that all protocol messages occur in
the expected order with the values as expected. Thus, synchronization is an
intensional property, as defined by Roscoe in [13]. It can be easily shown
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that the synchronization property implies agreement. Moreover, assuming
the standard Dolev-Yao intruder model, it is strictly stronger than agreement;
some protocols satisfy agreement but not synchronization. The differences are
rather subtle, which is evidenced by the fact that almost all familiar (correct)
security protocols satisfy the synchronization requirement.

It is well known that security properties satisfying agreement may still be
vulnerable to so-called replay attacks. In a replay attack the intruder replays a
message taken from a different context, thereby fooling the honest participants
into thinking they have successfully completed the protocol run [11]. The left-
hand protocol in Figure 1 shows an example of a protocol where the parties
agree upon the values of the variables (i.e. nonce nR), while the right-hand
scenario shows a replay attack on this protocol. The drawings are in the
form of a Message Sequence Chart and must be interpreted as follows. The
responder R has a public/private key pair pkR, skR, creates a nonce, and
sends his encrypted identification message to the inititiator. After reception
of this message, the initiator I can conclude that he shares the value of nR

with the responder, as expressed in the hexagon. In the right-hand MSC, two
agents a and b execute this protocol in the roles of initiator and responder,
respectively. Now, the intruder can overhear the message sent and can fool a

in a future run to think that b has sent this message.

pkR

I

pkR, skR

R

nonce nR

{I, nR}skR

agree(nR)

msc Unilateral authentication

a(I) b(R) intruder a(I)

nonce nb

{a, nb}skb

learn {a, nb}skb

{a, nb}skb

agree(nb) agree(nb)

msc Replay attack

Fig. 1. An authentication protocol that is vulnerable to a replay attack.

In order to rule out such flawed protocols, the additional property of in-

jectivity, proposed in [10], is required. This amounts to requiring that each
run of an agent executing the initiator role corresponds to a unique run of its
communication partner running the responder role. The unilateral authenti-
cation protocol from Figure 1 clearly does not satisfy injectivity, as is shown
by the replay attack in the right-hand side of the figure. A simple fix would
be to have the initiator determine the value of the nonce, as in Figure 2.
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Fig. 2. Fixing the injectivity problem.

The introduction of a causal chain of messages from the initiator to the
responder and back to the initiator seems to do the trick. We will call such
a chain a loop. This property plays a key role in the discussion on injectivity
below.

It is folklore that e.g. a nonce handshake is sufficient to ensure injectivity.
Here we identify a more abstract property, viz. the occurrence of a loop, which
is independent of the data model, and thus applicable to a wide range of
security protocol models. To give an indication of the limitations of the data
based approach, consider a protocol where a nonce n is created, and some
function is applied to it. The result f(n) is sent to the responder, who applies
another function and replies with g(f(n)). Now, to check whether such a
protocol can be injective based on the freshness of n in a data-based model,
we need to know some details of f and g. If for example f(x) = x mod 2, the
protocol will not be injective. Our method does not require any information
about the contents of messages.

Most approaches to injectivity make Lowe’s definition of injectivity more
precise by using a counting strategy: in any possible execution of the protocol
the number of initiator runs may not exceed the number of corresponding re-
sponder runs. This counting argument can easily be used in a model-checking
approach. Indeed, this is how injectivity is verified in the Casper/FDR tool
chain [9,14]. Since it is only possible to model a finite and fixed number of sce-
narios, this approach will only provide an approximation of injectivity. Other
approaches to the verification of security protocols, e.g. those based on logics
(such as [2]) or on term rewriting (such as [5]) do not seem to pay much atten-
tion to injectivity. The Strand Spaces [15] approach, does not provide formal
means to deal with injectivity. Instead, it is proposed to check authentication
based on nonces, for example by using so-called solicited authentication tests

C.J.F. Cremers et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 23–38 25



as defined in [6]. These tests guarantee injectivity, based on nonce freshness.
Authentication and injectivity are strongly connected in this view.

We mention two examples of security protocol formalisms that deal explic-
itly with injectivity. Gordon and Jeffrey have devised a method [7] to verify
injective correspondence relations for the π-calculus. This method allows for
verification by type-checking (injective) correspondences. A second example
is the electronic commerce protocol logic by Adi, Debbabi and Mejri [1], where
pattern matching is used to express injectivity for two-party protocols. How-
ever, it is not clear how this can be verified efficiently.

In this paper we study the question whether there is a method to validate
injectivity of a security protocol which is generic in the sense that it can be
applied within a large class of verification methodologies, regardless of the
data model that is used. Starting point of our research is the definition of
injective synchronization as provided in [4]. This definition of injectivity does
not exploit counting, but simply amounts to requiring that the function which
assigns agents to protocol roles is an injective function. We will review the
details of this definition later. Our main result is that, for a large class of
security protocol semantics, the loop property introduced above guarantees
that a synchronizing protocol is also injective.

The class of security protocol semantics for which our result holds, is
characterized by the closure of the set of execution traces under swapping
of events. This class contains e.g. the process algebraic approach with the
standard Dolev-Yao intruder model. Apart from this swap property, we will
need no other assumptions on the data model and the intruder model. Since
the loop property can easily be verified by means of static analysis of the
security protocol description, we provide a practical syntactic criterion for
verifying injectivity.

The achievement of this paper is that we have identified a general property
that allows for a modular proof of injective synchronization: once non-injective
synchronization has been proven, it is easy to prove injective synchronization.
Interestingly, the property does not depend on the data model, and therefore
does not rely on the properties of e.g. nonces, or functions that are applied to
the nonces.

The remainder of this paper is structured as follows. In Section 2 we
describe a formal model of security protocols and the underlying assumptions
of our main result. In Section 3 we formalize injective authentication and the
loop property and we prove their relation. Finally, in Section 4 we draw some
conclusions and indicate options for future research.
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2 Security protocols

A security protocol is abstractly defined as a mapping from some finite set Role

of roles to the set RoleEvent∗ of finite sequences of so-called role events taken
from the set RoleEvent . For a security protocol p : Role → RoleEvent∗, a role
r ∈ Role represents a principal taking part in p with activity p(r). Sending
and receiving messages is amongst such activity, as well as making claims. We
assume

RoleEvent ⊇ { send �(r, r
′, m), read �(r, r

′, m), claim�(r, c) |

� ∈ Label , r, r′ ∈ Role, m ∈ RoleMess , c ∈ Claim }

The role event send �(r, r
′, m) is interpreted as: role r sends message m to be

delivered to role r′, and read �(r, r
′, m) means that role r′ reads a message of

the form m, with sender r. For an event claim�(r, c), we have that whenever
r claims c, claim c is true.

Role events are all decorated with labels, typically � taken from the set Label .
Each role event in a security protocol has a unique label, except for corre-
sponding send and read events. We say that the send event send �(r, r

′, m1)
and read �(r, r

′, m2) match with sender r, receiver r′. (Note that we allow for
the messages being different as, generally, the perspective of the sender and
that of the receiver differ too.) The format of messages in RoleMess is left
unspecified, as is the format of claims in Claim. Other types of role events
may be present in RoleEvent as well.

The causality relation �p defines a partial order on the events in a secu-
rity protocol p. It is defined as the least reflexive and transitive relation on
RoleEvent such that

• e �p e′ if e precedes e′ in p(r) for some role r;

• e �p e′ if e = send �(r, r
′, m) ∈ p(r), e′ = read �(r, r

′, m) ∈ p(r′) for some
roles r, r′.

Example The well-known Needham-Schroeder-Lowe protocol (NSL) [12,8] as
depicted in Figure 3 on the left, has two roles: that of an initiator I and of a
responder R. The injective synchronization claims at the end of the roles, here
abbreviated to i -synch, will be defined in Section 3.1.

It is assumed that both agents know the public key of the other and the private
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Fig. 3. The NSL protocol and the partial ordering on its events.

key of their own. Formally we have

NSL(I) = send1(I,R, {I, nI}pkR) · read2(R, I, {R, nI, nR}pkI) ·

send3(I,R, {nR}pkR) · claim4(I, i-synch)

NSL(R) = read1(I, R, {I, nI}pkR) · send2(R, I, {R, nI, nR}pkI) ·

read3(I,R, {nR}pkR) · claim5(R, i-synch).

The causality preorder �p for NSL (of which send1 is the smallest element) is
given by the lattice on the right in Figure 3.

The semantics of a security protocol is a set of traces. However, in order to
deal with the possibility of several role definitions being executed by the same
party, we first introduce some additional machinery. Let Agent be the set
of agents. A role executed by an agent is called a run. Because each agent
can execute multiple (possibly identical) instances of a role, we assume that
a unique identifier rid from RunId has been assigned to each run. An event
e with run identifier rid is denoted by e�rid. This yields a set RunEvent of
so-called run events:

RunEvent ⊇ { send �(a, a′, m)�rid, read �(a, a′, m)�rid, claim�(a, c)�rid |

rid ∈ RunId , � ∈ Label , a, a′ ∈ Agent , m ∈ RunMess, c ∈ Claim }

The interpretation of, e.g., send �(a, a′, m)�rid is that agent a sends during
execution of its run rid a message m to agent a′.

The precise semantics of a security protocol is left implicit in this paper.
For our purposes it suffices to assume that the semantics captures the oper-
ational behaviour of agents and some particular intruder model and that the
semantics yields a collection of traces. Moreover, the semantics takes care, by
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means of run identifiers, of multiple instances of the security protocol. The
semantics of a security protocol p is denoted by Tr(p) ⊆ RunEvent∗. A trace
α ∈ Tr(p) is an interleaving of runs. For a such trace α, we use αi to denote
the i-th event of α.

Please note that the labels and run identifiers are not part of the messages,
and are therefore not under control of the intruder. They represent informa-
tion that is often left implicit in the semantical models. The label indicates the
state of the agent when the event is executed, and the run identifier expresses
in which run an event takes place.

The reader may fill in his or her favourite semantics for the mapping Tr .
However, we need two general requirements on this mapping for the reasoning
below. We assume the semantics Tr(p) to have the following two properties:

– The trace set Tr(p) is closed with respect to non-read swaps, i.e., for all
events e′ �= read ( , , ) it holds that

α; e�rid; e′�rid′; α′ ∈ Tr(p) ⇒ α; e′�rid′; e�rid; α′ ∈ Tr(p)

for all traces α, α′, events e and two run identifiers rid �= rid′.

– The trace set Tr(p) is closed with respect to read swaps, i.e.

α; send �(m)�rid′′; α′; e�rid; read �′(m)�rid′; α′′ ∈ Tr(p) ⇒

α; send �(m)�rid′′; α′; read �′(m)�rid′; e�rid; α′′ ∈ Tr(p)

for all traces α, α′, events e and run identifiers rid, rid′, rid′′ such that rid �=
rid′.

These properties state that we can shift a non-read event to the left as long
as it doesn’t cross any other events of the same run. For the read event we
have an additional constraint: we can only shift it to the left if there remains
an earlier send of the same message.

3 A Syntactic Criterion for Injectivity

In this section we define a syntactic criterion for authentication protocols,
called the loop property, and show that it suffices to prove injectivity. First
we define a strong authentication property, called synchronization. Second,
we define the syntactic criterion and prove the main result.

3.1 Synchronization

Synchronization is a strong form of authentication. Whenever an agent claims
synchronization, we require the interaction thus far being well behaved: all
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events that lead up to the claim must have occurred exactly as expected.
See [4].

The general definition of synchronization refers to a specific protocol p and
a claim label. For simplicity of notation, we will assume in the following that
there is a single protocol p having a single claim role event denoted by claim.
However, note that multiple claim run events may occur in a trace. This is
the case when the role carrying the claim has been assigned to various agents
or more than once to the same agent.

Consider the protocol in Figure 2, and assume the agree claim has been
replaced by a ni -synch claim. The protocol claim is valid iff for all traces
of the protocol, each instantiated claim in the trace is valid. Thus, if in a
trace a run with identifier rid1 claims synchronization, we don’t know who
the communication partner is, but we expect that there is another run rid2
that executes the other role R, such that the following events occur in the
trace in the given order:

(i) Run rid1 sends a nonce.

(ii) Run rid2 reads this exact nonce.

(iii) Run rid2 sends a message containing the signed nonce.

(iv) Run rid1 reads this exact message.

(v) Run rid1 claims synchronization.

As the run rid2 fulfills the role R in this example, we require that such a
run exists for each ni -synch claim instance. Thus, given a trace, we require
for each claim instance that there are runs, that fulfill the other roles. This
relation is given by a role instantiation function cast , with type { rid | ∃iαi =
claim�rid } × Role → RunId . For each claim in the trace, it relates runs to
each role, i.e. the function gives for each claiming run a complete cast for
the protocol. In the above example we would have: cast(rid1, I) = rid1 and
cast(rid1, R) = rid2.

This cast is not fixed. We require that for each claim run, for each run
of the role of the protocol in which the claim occurs, that there exist runs
that fulfill the other roles. The cast function is the result of combining, for all
claims in the trace, the role instantiations for that claim.

In order to define synchronization formally, we introduce the functions
sendrole and readrole to determine for a given label the sending role and the
receiving role, respectively.

sendrole(�) = r if send �(r, r
′, m) ∈ p(r) or read �(r, r

′, m) ∈ p(r′)

readrole(�) = r′ if send �(r, r
′, m) ∈ p(r) or read �(r, r

′, m) ∈ p(r′)
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Furthermore, we use claimrole to denote the name of the role in which the
claim of the protocol occurs. Note that in a trace there can be more than one
instance of this role.

Next, we express when a claim instance in a trace is valid. Given a trace
α, a claiming run rid, and a relation cast that maps the roles to runs, we
express the auxiliary predicate χ on the domain Tr(p) × (RunId × Role →
RunId) × RunId by

χ(α, cast , rid) ⇐⇒ cast(rid, claimrole) = rid ∧

∀read�( )�pclaim ∃i,j∈N ,a,b∈Agent,m∈RunMess

i < j

∧ αi = send �(a, b, m)�cast(rid, sendrole(�))

∧ αj = read �(a, b, m)�cast(rid, readrole(�))

(1)

The first conjunct of this predicate expresses the fact that the run executing
the claim role is fixed by the parameter rid. The second conjunct expresses
that in the trace α, the claim of run rid is valid with respect to the specific
cast , i.e. that the partners have executed all communications as expected. In
the formula this is expressed by the fact that send and read events are executed
by the expected runs, with identical message m, and in the right order i < j.

Using this predicate, we define non-injective synchronization as the validity
of all claims that occur in the trace, for some cast function:

NI -SYNCH ⇐⇒ ∀α∈Tr(p)∃cast ∀i,rid αi = claim�rid ⇒ χ(α, cast , rid)

Thus, if for all traces a cast exists, such that for every run that claims syn-
chronisation the χ predicate holds, the protocol synchronizes. Provided that
χ(α, cast, rid) holds, cast has the following two properties: First, each claim
run fulfills the claim role itself, and thus: ∀rid cast(rid, claimrole) = rid. Sec-
ond, cast only assigns runs to roles, when these runs are executing that role,
so we have: ∀rid,r role(cast(rid, r)) = r.

The cast function provides a natural handle for introducing injectivity. In-
jectivity requires that two different claim instances synchronize with different
partner runs. Thus, we say that a role instantiation function cast is injective
if

∀(rid1,r1)�=(rid2,r2) cast(rid1, r1) �= cast(rid2, r2)

We incorporate this injectivity requirement into the definition of NI -SYNCH .
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The definition of injective synchronization is then given by

I -SYNCH ⇐⇒ ∀α∈Tr(p)∃cast injective ∀i,rid αi = claim�rid ⇒ χ(α, cast , rid)

So, on top of the synchronization requirement, we now demand that for all
communications preceding the claim of the protocol, there are unique runs
executing the protocol roles.

Having defined synchronization formally, we investigate some properties of
synchronizing protocols. Given a valid synchronization claim of a run rid in a
trace α, there exists a role instantiation function cast such that χ(α, cast , rid)
holds. The predicate χ tells us that certain events exist in the trace. Because
we want to reason about these events in the following, we decide to make
this set of events explicit. Slightly abusing notation, we use e to denote the
unique role event corresponding to the run event e. The function runid(e)
simply yields the run identifier of a run event e. We define the set of events
χ′(α, cast , rid) by

χ′(α, cast , rid) = { e | ∃i αi = e∧runid(e) = cast(rid, role(e)) ∧ e �p claim }

Assuming that χ holds, its set of events χ′ has two interesting properties. If
there is a read in this set, there is also a matching send in the set. Furthermore,
given an event of a role in the set, all preceding events of the same role are
also in the set.

To prove our main result, the two swap properties introduced in Section 2
suffice. However, to ease the explanation of the proof, we introduce two ad-
ditional lemmas. These lemmas are implied by the model and the two swap
properties.

The first lemma generalizes the swapping of two events to the swapping
of a set of events. The lemma does not hold for any set of events: we now
use results obtained for a set of events defined by χ, that are involved in a
synchronisation claim. Based on the two swap properties, we can shift these
events (in their original order) to the beginning of the trace. To express such
shifting of sets of events, we introduce a shift function on traces. We define a
trace transformation function shift : P(RunEvent)×RunEvent∗ → RunEvent∗

by

shift(E, α) =

{
α if ∀i(αi �∈ E)

e; shift(E, β; β ′) if α = β; e; β ′ ∧ ∀i(βi �∈ E) ∧ e ∈ E

This function effectively reorders a trace. The next lemma formulates condi-
tions assuring that the reordering of a trace in Tr(p) is in Tr(p) as well.
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Lemma 3.1 Given a protocol p and a trace α ∈ Tr(p), claim run rid and

role instantiation function cast:

χ(α, cast, rid) ∧ α′ = shift(χ′(α, cast, rid), α) ⇒

α′ ∈ Tr(p) ∧ χ(α′, cast , rid)

Proof. Induction on the size of the finite set χ′(α, cast , rid), because
χ(α, cast, rid) implies that the read events can be swapped. �

The lemma directly generalizes to more claim instances (of the same claim).
Thus, instead of a single claim run, we can consider sets of claim runs.

Lemma 3.2 Given a trace α ∈ Tr(p), a set of claim runs CR ∈ P(RunId)
and instantiation function cast : RunId × Role → RunId:

(∀rid∈CR χ(α, cast , rid)) ∧ α′ = shift(
⋃

rid∈CR

χ′(α, cast, rid), α) ⇒

α′ ∈ Tr(p) ∧ (∀rid∈CR χ(α′, cast , rid))

Proof. Similar to the proof of Lemma 3.1. �

If we apply the shift function to a trace of the system, and the conditions
of the lemma are met, we get a reordered trace, that is also in Tr(p). The
new trace consists of two segments: in the first segment there are only the
preceding events of the claim runs in CR, and all other events are in the second
segment.

Intuitively, these lemmas express that the events involved in a valid syn-
chronization claim are independent of the other events in the trace. A valid
synchronization can occur at any point in the trace, because it does not re-
quire the involvement of other runs, or of the intruder. However, other events
in the trace might depend on events involved in the synchronization. Thus we
cannot shift the synchronizing events to the right; but we can shift them to
the left, which ensures that any dependencies are not be broken.

We use these lemmas in the injectivity proof in the next section.

3.2 The LOOP property

We define a property of protocols, which we call the LOOP property. For
protocols with only two roles, it resembles a ping-pong property: First the
claim role executes an event, then the other role, and then the claim role
again. For example, the LOOP property does not hold for the protocol in
Figure 1, but it does hold for the protocols in Figures 2 and 3.
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We generalize this for multiparty protocols with any number of roles. We
require that the partner roles have an event that must occur after the start of
the claim run, but before the claim event itself.

Definition 3.3 A security protocol p has the LOOP property iff

∀e�pclaim,role(e)�=claimrole∃e′,e′′

e′ �p e′′ �p claim ∧ role(e′) = claimrole ∧ role(e′′) = role(e) (2)

Now we can state the main theorem, which gives us a syntactic condition
for the injectivity of a protocol that synchronizes.

Theorem 3.4

NI -SYNCH ∧ LOOP ⇒ I -SYNCH

Proof. By contradiction. Assume that the implication does not hold. Thus
we have

NI -SYNCH ∧ LOOP ∧ ¬I -SYNCH (3)

The remainder of the proof is done in two steps. The first step of the proof
establishes a trace α of the protocol, in which there are two runs that syn-
chronize with the same run. In the second step we use the shifting lemmas
to transform α into another trace of the protocol. For this new trace, we will
show that NI -SYNCH cannot hold, which contradicts the assumptions.

From now on, we will omit the type information for α and cast in the
quantifiers and assume that α ∈ Tr(p). Given that the protocol synchronizes,
but that it is not injective, we derive from the definitions of NI -SYNCH ,
I -SYNCH and formula (3) that

∀α∃cast ∀i,rid αi = claim�rid ⇒ χ(α, cast , rid) ∧

¬∀α∃cast injective ∀i,rid αi = claim�rid ⇒ χ(α, cast , rid) (4)

We push the negation on the right through the quantifiers, yielding

∀α∃cast ∀i,rid αi = claim�rid ⇒ χ(α, cast , rid) ∧

∃α∀cast¬(cast injective ∧ ∀i,rid αi = claim�rid ⇒ χ(α, cast, rid)) (5)

Based on the existential quantifiers in (5), we choose a trace α and instantia-
tion function cast such that

∀i,rid αi = claim�rid ⇒ χ(α, cast , rid) ∧

¬(cast injective ∧ ∀i,rid αi = claim�rid ⇒ χ(α, cast, rid)) (6)
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Note that in (6) the left conjunct also occurs as a sub-formula in the right
conjunct. Rewriting yields

∀i,rid αi = claim�rid ⇒ χ(α, cast , rid) ∧ ¬cast injective (7)

Making the non-injectiveness for the function cast explicit, there must exist
two run identifiers, for which χ holds:

∃(rid1,r1),(rid2,r2),rid3 χ(α, cast , rid1) ∧ χ(α, cast , rid2) ∧

cast(rid1, r1) = cast(rid2, r2) ∧ (rid1, r1) �= (rid2, r2) (8)

From the predicate χ and formula (8), we have that the run cast(rid1, r1)
must be executing the role r1. Because cast(rid1, r1) = cast(rid2, r2) it is also
executing role r2. As runs only execute a single role, it must be that r1 = r2.
The inequality from the existential quantifier now reduces to rid1 �= rid2.

Put r = r1 = r2. We choose two run identifiers rid1, rid2 such that
Formula (8) holds for r. Now there exists a run identifier rid3 such that

cast(rid1, r) = cast(rid2, r) = rid3

From the definition of χ, we obtain that if r would be equal to claimrole,
we would have rid3 = rid1 and rid3 = rid2, implying rid1 = rid2 and
contradicting Equation (8). Thus, we have r �= claimrole.

We have now established that the trace α contains at least three runs. Two
of these, rid1 and rid2, are executing the claim role, while the third, rid3 is
executing a different role r. Furthermore, we have that the claims of rid1 and
rid2 synchronize with rid3. This completes the first step of the proof. We
will now proceed by transforming α into a trace for which NI -SYNCH cannot
hold, for the second part of the proof.

Because we have χ(α, cast , rid1) and χ(α, cast , rid2), on the basis of Lemma
3.2 we can apply shift using rid1 and rid2 to get a trace α′ ∈ Tr(p)

α′ = shift(χ′(α, cast , rid1) ∪ χ′(α, cast , rid2), α)

In the trace α′ we now have two distinct segments. All events involved with
the synchronization of rid1 and rid2 are now in the initial segment of α′. This
includes the events of rid3 that precede the claim. The second segment of α′

contains all other events, that are not involved in the preceding events of rid1
and rid2.

We will now reorder the initial segment of α′. To this end, we apply
the shift function a second time, now only for rid1. This will also yield a
trace of the protocol, because the conditions of Lemma 3.2 hold for α′, as
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the application of shift to α maintained the order of the events in the shifted
set, which implies that χ(α′, cast , rid1) holds. Thus, we also know that the
following trace is an element of Tr(p):

α′′ = shift(χ′(α′, cast , {rid1}), α′)

Because the shift function maintains the order of the involved events, we have
that α′′ = β; γ; δ, where

∀i βi ∈χ′(α′, cast , {rid1})

∀i γi ∈χ′(α, cast , {rid1, rid2}) \ χ′(α′, cast , {rid1})

All events that are not involved with the synchronization claims of rid1 and
rid2, are in δ.

Observe that β includes all events of rid3 that are involved with the claim
of the run rid1. As all events are unique, these are not part of γ. From the
construction of the involved events set, we know that all involved events of
role r are those of run rid3, because all other runs are executing other roles
(as indicated by cast). This implies that there are no events of role r in the γ

at all: these are all in β.

Now we have arrived at a contradiction. α′′ is in the set Tr(p). The loop
property combined with NI -SYNCH requires that for each role, there is an
event after the first event of the claim role, that occurs before the claim. For
the run rid2 all events are in γ (including the start and the claim), but in this
segment there is no event of role r. Thus, there can be no cast for α′′ such
that χ(α′′, cast , rid2) holds. This implies that NI -SYNCH does not hold for
the protocol, which contradicts the assumptions. �

4 Conclusions and Future Work

We have shown that for a large class of security protocol models, injectivity
of authentication protocols is easy to verify, once synchronization has been
established. Until now, injectivity and authentication have been strongly con-
nected. Our new results establish that it suffices to verify the non-injective
variant of synchronization. Verifying injectivity is a simple and separate task,
which does not depend on any specific (data) model.

We did not choose a specific security protocol model for this result. Instead,
we have characterized a class of models in which the theorem holds. This class
contains nearly all models found in the literature, such as the Strand Spaces
model, Casper/FDR without time, and term rewrite systems [15,9,5]. These
models share the following properties:
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• Multiple instances of the protocol are truly independent. They do not share
variables, memory, or time.

• The intruder has the ability to duplicate messages. This holds, for example,
in the standard Dolev-Yao intruder model.

The question arises whether the theorem also holds in an intruderless model.
This is in fact the case, but of less interest, because injectivity always holds
for synchronizing or agreeing protocols when there is no intruder.

Verifying the LOOP property can be easily implemented. We are currently
working on an extension of the Scyther tool [3]. The algorithm is an instance
of the reachability problem in an acyclic finite graph, and therefore linear.

I R

I,R

nonce nR

{I, nR}skR

ni-agree

msc Example protocol

Fig. 4. A unilateral agreement protocol, with LOOP, but not injective.

Almost all correct protocols satisfy NI -SYNCH as well as LOOP . It seems
that LOOP is a necessary condition for injectivity. We know that this holds for
the Dolev-Yao intruder model. However, for peculiar intruder models LOOP

is not a necessary condition for injectivity.

In the models where LOOP is also a necessary condition for injectivity, our
results imply a minimum number of messages in a multi-party authentication
protocol. We will investigate this in future work.

Here we have only considered synchronization, and not agreement. This
raises the question whether there is a similar property to show injectivity
of agreeing protocols. It can be seen from the example in Figure 4, that
LOOP does not suffice to guarantee injectivity. The protocol satisfies the loop
property for the claim role, and the protocol satisfies non-injective agreement,
but not injective agreement. Finding an alternative for agreeing protocols is
an interesting challenge for future research.
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