
Designs, Codes and Cryptography manuscript No.
(will be inserted by the editor)

Strengthening the Security of Authenticated Key Exchange against Bad
Randomness

Michèle Feltz · Cas Cremers

Received: date / Accepted: date

Abstract Recent history has revealed that many random number generators (RNGs) used in cryp-
tographic algorithms and protocols were not providing appropriate randomness, either by accident
or on purpose. Subsequently, researchers have proposed new algorithms and protocols that are less
dependent on the random number generator. One exception is that all prominent authenticated key
exchange (AKE) protocols are insecure given bad randomness, even when using good long-term
keying material.

We analyse the security of AKE protocols in the presence of adversaries that can perform attacks
based on chosen randomness, i. e., attacks in which the adversary controls the randomness used in
protocol sessions. We propose novel stateful protocols, which modify memory shared among a user’s
sessions, and show in what sense they are secure against this worst case randomness failure. We
develop a stronger security notion for AKE protocols that captures the security that we can achieve
under such failures, and prove that our main protocol is correct in this model. Our protocols make
substantially weaker assumptions on the RNG than existing protocols.

Keywords Authenticated Key Exchange (AKE) · Security Models · Stateless Protocols · Stateful
Protocols · Chosen Randomness

Mathematics Subject Classification (2000) 94A60 Cryptography

1 Introduction

Authenticated Key Exchange (AKE) protocols are a critical building block in most security infras-
tructures. They provide the glue between asymmetric cryptography (e.g., for addressing the key
distribution problem) and symmetric cryptography (e.g., for efficient encryption of large amounts
of data). Since the proposal of the Diffie-Hellman key exchange protocol, much research effort has
gone into improving AKE protocol designs, achieving ever stronger notions of security. These include
protocols such as the TLS and IKE handshakes, as well as pure key exchange protocols such as
MQV, HMQV, and NAXOS. A common factor among these designs is that they explicitly rely on
the existence of another building block: a random number generator.

Constructing a good random number generator (RNG) is hard, as indicated by a large number of
security vulnerabilities that involve either flawed or weakened random number generators. Recently
there have been a surprising number of examples in which bad random number generators were

M. Feltz (�)
E-mail: mmc.feltz@gmail.com

C. Cremers
University of Oxford, United Kingdom
E-mail: cas.cremers@cs.ox.ac.uk

2 Michèle Feltz, Cas Cremers

substantially weakening the security guarantees of cryptographic systems. We recall some instances.
In 2008, Bello discovered a randomness vulnerability in Debian’s OpenSSL package; keys generated
by the RNG of this package were predictable [1]. Affected keys included SSH keys, OpenVPN keys,
DNSSEC keys, key material for use in X.509 certificates and ephemeral Diffie-Hellman keys leading
to compromised session keys in SSL/TLS connections [1]. In 2012 it was shown that the RSA keys
of many users can be easily factored because the prime factors from which they are derived were
not sufficiently random [2]. In August 2013 attackers took control of Bitcoin transactions due to
flaws in Android’s Java and OpenSSL RNG [3]. As multiple transactions were signed using the same
randomness in the ECDSA signature generation, the attacker was able to recover the long-term secret
signing key of the user initiating the transactions, enabling the attacker to perform transactions on
the user’s behalf. After the Snowden revelations, it has become clear that the NSA was involved in
the backdoor found in a NIST-standardized random number generator [4, 5, 6]. This random number
generator was the default in RSA’s BSAFE toolkit and also made its way into ISO/IEC standards.
This backdoor can be effectively used to break the security of deployed internet protocols, such as
TLS [6].

As a result, researchers have worked on providing cryptographic mechanisms that depend less
on the random number generator (e. g., for digital signatures [5,7] or in the public key encryption
setting [8, 9]). Unfortunately, the security of state-of-the-art key exchange protocols still depends
critically on the RNG.

One might intuitively think that a faulty/broken/malicious RNG is not a protocol problem, and
should be solved by the RNG designers instead. There are two main arguments against this view.

First, designing for security implies reducing single points of failure and reducing the assumptions
under which the protocol is secure. In many AKE protocols, the RNG is such a single point of failure.
Our techniques show that this can be avoided: if the RNG becomes insecure, we may still retain some
security at the AKE level.

Second, there are solutions to bad randomness that can be naturally implemented at the higher
(AKE) level, but not at the RNG level. In particular, our work confirms earlier results. For example,
the approach from [10] involves replacing the randomness x in the exponent of the ephemeral public
Diffie-Hellman key gx by a combination of the randomness and a static secret a, namely gH(a,x).
This forces the attacker to learn both the randomness and the static secret if he wants to recompute
the exponent. If one would like to provide a solution at the level of the RNG’s design, there is no
secret to leverage. At the level of the AKE protocol, we have natural access to a long-term secret
that can be leveraged to reduce the dependency on good randomness, enabling security under weaker
assumptions.

Contributions.

In this work, we propose new protocols for authenticated key exchange (AKE) that offer stronger
security against bad randomness than previous protocols. Thus, our protocols are secure under
significantly weaker assumptions (on the RNG) than previous protocols.

To achieve and prove this stronger notion of security, we design a strong eCK-like security model
that additionally incorporates the adversarial ability of choosing session-specific randomness, which
corresponds to the worst-case RNG scenario. Previous works that considered such a capability
concluded that AKE security cannot be achieved against such an adversary. In contrast, we show
that these works implicitly assumed that protocols are stateless, i.e., that different sessions of the
same user do not write into shared memory. Our protocols leverage state shared among sessions to
achieve a stronger notion of security.

Related work.

Randomness failures. The first models addressing the leakage of session-specific information include
the eCK model [10] and the CK model [11]. The eCK model considers an information-leaking RNG
that leaks values after they have been generated, which is modelled via the query ephemeral-key.
Intermediate protocol computations are assumed to be outside of the adversary’s control. In contrast,
the CK model considers long-term keys stored in secure memory (e.g., an HSM), whereas protocol
computations are (partly) done in less-protected memory. The adversary has read-only access to the
less-protected memory through a query session-state. However, in the vast majority of proofs in the

Strengthening the Security of AKE against Bad Randomness 3

CK model, the less-protected memory has been defined to contain exactly the randomness, thereby
effectively modeling an information-leaking RNG. Unlike our work, the CK and eCK models do not
consider predictable, failing, or compromised RNGs.

Yang et al. [12] first analyzed AKE security w.r.t. adversaries who can manipulate random values.
They define two security models: Reset-1 and Reset-2. In the Reset-1 model the adversary controls the
randomness of each session, with the restrictions that the adversary (a) does not issue corrupt queries
to the actor and peer of the test session, and (b) the randomness used in the test and partner session
is not used in any other session. The Reset-2 model captures repeated secret randomness in multiple
sessions due to reset attacks, but no chosen-randomness attacks. Critically, the Reset-1 model does
not capture weak perfect forward secrecy and both models do not allow the adversary to perform reset
attacks against the target session or its partner session. Both models are based on their impossibility
result that no protocol can be secure against reset-and-replay attacks on the target session [12, p.
120]. In a reset-and-replay attack the adversary first sets the randomness of a session to the same
randomness as used in a previous session of the same user and then replays messages to the session
so that both sessions compute the same session key [12]. Yang et al. [12] propose a transformation
that turns any stateless protocol secure in the Reset-2 model into a stateless protocol secure in the
Reset-1 model. We show that stateful protocols achieve stronger security guarantees against attacks
based on bad randomness; in particular, they can achieve security against reset-and-replay attacks on
the target session.

Ristenpart and Yilek [13] show that virtual machine (VM) snapshots can lead to VM reset
attacks. As a countermeasure, they propose a framework for hedging cryptographic operations based
on preprocessing potentially bad RNG-supplied randomness together with additional inputs with
HMAC to provide pseudorandomness for the cryptographic operation; their framework uses hedging
techniques for public-key encryption of Bellare et al. [8]. Hedging a cryptographic operation means
designing it in such a way that, given good randomness, the operation provably (in the random oracle
model) achieves strong security goals, and, given bad randomness, the operation achieves weaker, but
still meaningful, security goals [8]. Our models cover VM reset attacks on stateless protocols, i.e.,
resettable randomness, and we thereby address some of their future work.

Kamara and Katz [14] provide security notions for private-key encryption schemes that incorporate
chosen-randomness attacks modelling the ability of the adversary to completely control the randomness
used in the encryption process. In their definitions, the adversary has complete control over the
random coins used by the encryption oracle, but has no control over the randomness involved in the
encryption of the challenge ciphertext, which is supposed to be secret (i. e. unknown to the adversary)
and chosen uniformly at random by the challenger.

Bellare and Tackmann [15] investigate randomness failures (and, in particular, subversion of
random number generators) in the context of public-key encryption (PKE) and introduce nonce-based

public-key encryption. The differences between nonce-based PKE schemes and standard PKE schemes
are that a) the sender needs to run a seed-generation algorithm and b) the encryption algorithm
is deterministic, taking as input a nonce n and a seed s in addition to an encryption key k and a
message m ∈ {0, 1}∗. They also provide two new security definitions for nonce-based PKE schemes
and construct a nonce-based PKE scheme based on a hedged extractor that achieves both security
notions, that is, the scheme guarantees security if either the sender’s seed is secret and message-nonce
pairs do not repeat, or even if the sender’s seed is compromised and the nonces are unpredictable.
Bellare and Tackmann give constructions of a hedged extractor in the random oracle model and in
the standard model yielding concrete nonce-based PKE schemes in the random oracle model and in
the standard model, respectively.

Stateless and stateful AKE protocols. Most AKE protocols (e. g., HMQV [16], NAXOS [10], CMQV [17])
are stateless, i.e., they only modify session-specific memory, whereas the memory that is shared
among sessions is invariant under protocol execution. Furthermore, the security of stateful AKE
protocols, which update the memory that is shared among sessions during execution of the protocol,
has not been considered in the context of randomness failures.

A few stateful protocols have been suggested. For example, in [18], Blake-Wilson et al. propose
to modify their Protocol 2 by concatenating the secret value that is used as the secret material to

4 Michèle Feltz, Cas Cremers

derive the session key with the value of a counter. We denote this new protocol by Protocol 2C.
Instead of running the protocol each time a session key is required, a new session key is obtained by
simply incrementing the counter and computing a new hash value [18]. The idea of using a counter
variable is presented in the context of special applications for which it might not be desirable to
run the protocol whenever a new session key has to be established. However, no security proof of
Protocol 2C has been given. In Section 4 we present a new protocol, which we call CNX, and prove
its security in a model capturing chosen-randomness attacks. The CNX protocol includes a global
counter value, which is shared across the sessions of a user, as input to the hash function H1 used in
the computation of the outgoing messages.

Overview.

In Section 2 we define a generic AKE framework that includes queries for the adversary to reveal
randomness and to choose the randomness used by sessions. In Section 3 we introduce the notions of
stateful and stateless protocols, and show that no stateless protocol can achieve security in a model
that permits the adversary to choose the randomness of sessions and to reveal certain session keys.
The proof sketch of this statement is as follows. The adversary can make two sessions of the same
user, say B̂, accept the same session key without being partnered (or matching sessions) by making
them use the same randomness and sending the messages of the partner session to both sessions. As
the two sessions of user B̂ are not partnered, the adversary can learn the session key of either of them
by revealing the session key of the other, non-partnered, session. We then proceed by showing an
initial attempt at addressing this issue with a novel stateful protocol in Section 4. In Section 5 we
step back and consider the question: what is the optimal security that stateful protocols can achieve
under chosen randomness? We use our findings in Section 6 to develop a stronger security model
against chosen randomness. We propose a protocol that is provably secure in our stronger security
model. We conclude in Section 7.

2 Authenticated key exchange framework

We first define a framework to reason about the security of different classes of AKE protocols against
adversaries with diverse capabilities. This framework allows to express existing models such as the
eCK model [10], the eCKw model [19] and the eCK-PFS model [19] as well as extensions of these
models that permit the adversary to choose the randomness used in protocol sessions.

actor the session’s actor (the user running the session)
peer the session’s peer (the intended communication partner)
role taken role; either I (initiator) or R (responder)
sent, recv concatenation of all messages sent, respectively received, in the session
status session status; either active, accepted, or rejected
key key established in the session
rand randomness used in the session
data any additional session-specific or protocol-specific data
step protocol step to be executed (in the session)

Table 1 Elements of the session state

2.1 Security model

Sessions and session-specific memory. Let P be a finite set of N binary strings representing user
identifiers. Each user can execute multiple instances of an AKE protocol, called sessions, concurrently.
We can uniquely identify specific sessions of a user by referring to the order in which they are created.
Thus, the i-th session of user P̂ is denoted by the tuple (P̂ , i) ∈ P × N. These tuples are not used by
the protocol, but allow the adversary to identify the sessions he created. We model each user by a

Strengthening the Security of AKE against Bad Randomness 5

probabilistic Turing machine. For each user P̂ , the state of its Turing machine consists of the memory
contents of the user, where we differentiate between session-specific memory and user memory, which
is shared among different sessions. We take an abstract view on the session-specific memory and
assume that it can be separated into distinct named fields, referred to as variables and listed in
Table 1. Some of these variables are set upon session creation, whereas others are set or updated
during execution of the protocol. The next step to be executed by the protocol is stored in the
variable step. Alternatively, this value could be stored in the variable data. We choose to store it in
a separate variable for clarity. We say that a session s has accepted (or is completed) if the value
of its status variable taking values in the set {active, accepted, rejected} is accepted. We denote
by sts the session-specific memory related to session s. The session-specific memory contains the
session-specific variables of Table 1. Initially we assume that each session-specific variable is undefined,
denoted by ⊥.

User memory. The user memory of some user stores the user’s long-term public/secret key pair,
the public key of all other users Q̂ ∈ P as well as additional variables that might be required by the
protocol. The information stored in the user memory is accessed and possibly updated by sessions
of the user according to the protocol specification. In contrast to session-specific information, data
stored in the user memory of some user P̂ is shared among different sessions of the user P̂ . We denote
by st P̂ the user memory of user P̂ ∈ P.

Game state and game behaviour (see also [20]). The adversary, modeled as a probabilistic
polynomial-time algorithm, interacts with the users in the set P within a game through queries in a
set Q. The state of the game (or game state) contains session-specific state information sts for all
sessions s, user-specific information st P̂ for each user P̂ ∈ P as well as other information related to the
game such as some bit that the adversary attempts to guess. The game behaviour, which we denote
by Φ, describes how the game processes the queries in Q. More precisely, the game behaviour Φ is an
algorithm taking as input the current state of the game GST , a query q ∈ Q, a protocol π, and a
security parameter k, and returning a new state GST ′ as well as a response response ∈ {0, 1}∗ ∪ {⊥, ?}
to the adversary’s query q.

Definition 1 (h-message protocol) Let k be a security parameter. An h-message protocol π, where
h is the sum of the number of messages sent and received during a protocol session that accepts,
consists of

– a set of domain parameters,
– a probabilistic polynomial-time key generation algorithm KeyGen, which takes as input 1k and

outputs a public/secret key pair, and
– a deterministic polynomial-time algorithm Ψ executed by a user in a session. This algorithm takes

as input 1k, the session-specific memory sts of a session s, the user memory st P̂ of the actor P̂ of
session s, and a message m ∈ {0, 1}∗, and outputs a triple (m′, st ′s, st ′

P̂
), where m′ ∈ {0, 1}∗ ∪ {?}

is a message, st ′s is an updated internal session state, and st ′
P̂

is an updated state of the user

memory of user P̂ .

If h is even, then the number of messages m′ 6= ? output by Ψ during a protocol session is h
2 for both

roles initiator and responder. If h is odd, then the number of messages m′ 6= ? output by Ψ during a
protocol session is h+1

2 for the initiator role and h−1
2 for the responder role.

The output of the key exchange algorithm Ψ (see Definition 1) may include the value ? to indicate
that the session does not generate an outgoing message.

Setup of the game. A setup algorithm SetupG is used to generate a set of a fixed number N of user
identifiers, to set all session-specific variables to ⊥, and to initialize the user memory of each user.
The algorithm SetupG takes as input the protocol π and the security parameter 1k, and outputs an
initial game state GSTinit. More precisely, the setup algorithm proceeds as follows:

1. generate a set P = {P̂1, ..., P̂N} of N distinct binary strings (representing user identifiers),
2. for all users P̂ ∈ P: generate a long-term public/secret key pair (pkP̂ , skP̂) using algorithm KeyGen,

6 Michèle Feltz, Cas Cremers

3. for all users P̂ ∈ P: store the key pair (pkP̂ , skP̂) together with the set {(P̂ , pkP̂) | P̂ ∈ P \ {P̂}} in
the user memory st P̂ , and

4. store and initialize with public values all other user-specific variables used by the protocol.

Queries. The specification of some of the queries that we define below is similar to queries defined
in the framework of Boyd et al. [21]. The public-info query, which was informally introduced in [20, p.
4], allows the adversary to obtain information that was generated during the setup phase of the game
such as the users’ identifiers and their public keys.

– public-info(). The query returns a set L of information, which contains the set {(P̂ , pkP̂) | P̂ ∈ P}
as well as the initial values of all other variables stored in the user memory of each user, except
for the users’ long-term secret key, if such variables are used by the protocol.

The queries in the set QR = {create, send} model regular execution of the protocol.

– create(P̂ , r[, Q̂]). The query models the creation of a new session s for the user with identifier P̂ .
It requires that P̂ ∈ P, Q̂ ∈ P, and that r ∈ {I,R}; otherwise, it returns ⊥. Session variables are
initialized as

(sactor , srole , ssent , srecv , sstatus , skey , sstep) ← (P̂ , r, ε, ε, active,⊥, 1) .

A bit string in {0, 1}k is sampled uniformly at random and assigned to srand . 1 If the optional
peer identifier Q̂ is provided, the variable speer is set to Q̂.
The key exchange algorithm Ψ is executed on input (1k, sts, st P̂ , ε). The algorithm returns a triple
(m′, st ′s, st ′

P̂
). We set sts ← st ′s and st P̂ ← st ′

P̂
. The query returns m′.

– send(P̂ , i,m). The query models sending message m to the i’th session of user P̂ , which we denote
by s. It requires that sstatus = active; otherwise it returns ⊥. The algorithm Ψ is run on input
(1k, sts, st P̂ ,m), and outputs a triple (m′, st ′s, st ′

P̂
). We set sts ← st ′s and st P̂ ← st ′

P̂
. The query

returns m′.

We next define the queries in the set QC = {session-key, corrupt, randomness, cr-create}, which model the
corruption of a user’s secrets. The randomness query models the adversary’s capability of revealing
the randomness srand of a particular session s. In contrast, the cr-create query models the adversary’s
capability of choosing the randomness used within a session. We do not explicitly model repeated
randomness, i. e., secret uniform bits that have been used in previous key exchange sessions; as we
show in Appendix 6.2, security in a model that permits the adversary to reveal the randomness used
in sessions and to choose the randomness of sessions implies security in a model capturing repeated
randomness.
In the definition of the queries session-key and randomness we denote the i’th session of user P̂ by s.

– session-key(P̂ , i). The query requires that sstatus = accepted; otherwise, it returns ⊥. The query
returns the session key skey of session s.

– corrupt(P̂). If P̂ /∈ P, then S returns ⊥. Otherwise the query returns the long-term secret key skP̂
of user P̂ .

– randomness(P̂ , i). If sstatus 6= ⊥, then the randomness srand used in session s is returned. Otherwise,
the query returns ⊥.

– cr-create(P̂ , r, rnd[, Q̂]). The query models the creation of a new session s, using randomness rnd
chosen by the adversary, for the user P̂ . The query requires that P̂ ∈ P, Q̂ ∈ P, rnd ∈ {0, 1}k, and
that r ∈ {I,R}; otherwise, it returns ⊥. The session variables are initialized as

(sactor , srole , ssent , srecv , sstatus , skey , srand , sstep)

← (P̂ , r, ε, ε, active,⊥, rnd, 1) .

If the optional peer identifier Q̂ is provided, the variable speer is set to Q̂.
The key exchange algorithm Ψ is executed on input (1k, sts, st P̂ , ε). The algorithm returns a triple
(m′, st ′s, st ′

P̂
). We set sts ← st ′s and st P̂ ← st ′

P̂
. The query returns m′.

1 Note that our syntax implies that all randomness required during the execution of session s is deterministically
derived from srand .

Strengthening the Security of AKE against Bad Randomness 7

The set QnoCR = QR ∪ (QC \ {cr-create}) contains all execution and corruption queries, except the
query cr-create.

The notion of matching sessions specifies when two sessions are supposed to be intended commu-
nication partners. It is formalized below via matching conversations as in [10,19].

Definition 2 (Matching sessions) Let π be an h-message protocol. We say that two sessions s
and s′ of π are matching if sstatus = s′status = accepted and sactor = s′peer ∧ speer = s′actor ∧ ssent =
s′recv ∧ srecv = s′sent ∧ srole 6= s′role .

We next define a parameterized family of AKE security models. The parameters for each model
consist of a subset Q of the above adversary queries and a freshness predicate F , which restricts the
adversary from performing certain combinations of queries.

Definition 3 (AKE security model) Let π be an h-message protocol. Let Q be a set of adversary
queries such that QR ⊆ Q ⊆ QR ∪QC. Let F be a freshness predicate, that is, a predicate that takes a
session of protocol π and a sequence of queries (including arguments and results) in Q. We call (Q,F)
an AKE security model.

Remark 1 In this work we fix a particular definition for matching sessions (namely, Definition 2) and
construct strong security models with respect to this definition. It is straightforward to adapt these
models to other definitions of matching sessions that are suitable for analyzing protocols such as
(H)MQV that allow two sessions performing the same role to compute the same session key.

2.2 Security experiment

We associate to each AKE security model X = (Q,F) a security experiment W (X), defined below,
played by an adversary E against a challenger. To win the experiment, the adversary aims to
distinguish a real session key from a random key, modelled through the following query.

– test-session(s). This query requires that sstatus = accepted; otherwise, it returns ⊥. A bit b is
chosen at random. If b = 0, then skey is returned. If b = 1, then a random key is returned according
to the probability distribution of keys generated by the protocol.

Definition 4 (Security experiment) Let k be a security parameter and π be an h-message protocol.
Let X = (Q,F) be an AKE security model. We define experiment W (X), between an adversary E

and a challenger who implements all the users, as follows:

1. The game is initialized with domain parameters for security parameter k and the setup algorithm
SetupG is executed.

2. The adversary E first issues the query public-info, and then performs any sequence of queries from
the set Q.

3. At some point in the experiment, E issues a test-session query to a session s that has accepted
and satisfies F at the time the query is issued.

4. The adversary may continue with queries from Q, under the condition that the test session must
continue to satisfy F .

5. Finally, E outputs a bit b′ as his guess for b.

The adversary E wins the security experiment W (X) if he correctly guesses the bit b chosen by the
challenger during the test-session query (i. e., if b = b′, where b′ is E’s guess). Success of E in the
experiment is expressed in terms of E’s advantage in distinguishing whether he received the real
or a random session key in response to the test-session query. The advantage of adversary E in the
above security experiment against a key exchange protocol π for security parameter k is defined as
Advπ,EW (X)

(k) = |2P (b = b′)− 1|.

Definition 5 (AKE security) A key exchange protocol π is said to be secure in AKE security model

X = (Q,F) if, for all PPT adversaries E, it holds that

8 Michèle Feltz, Cas Cremers

– if two users successfully complete matching sessions, then they compute the same session key,

– the probability of event Multiple-Match
W (X)
π,E (k) is negligible, where

Multiple-Match
W (X)
π,E (k) denotes the event that there exists a session that has accepted with at

least two matching sessions, and
– E has no more than a negligible advantage in winning the W (X) security experiment, that is,

there exists a negligible function negl in the security parameter k such that Advπ,EW (X)
(k) ≤ negl(k).

Informally, the second requirement in Definition 5 (see also [22]) states that, for a given session of
protocol π that has accepted, it holds that its matching session, if it exists, is unique.

3 Chosen randomness and stateless protocols

3.1 Stateless and stateful protocols

We start by defining a global class of AKE protocols. Such protocols are required to be executable,
i. e., if the messages of two users Â and B̂ are faithfully relayed to each other, then both users end up
with a shared session key [22,23,24]. A second requirement ensures that protocol messages depend on
session-specific randomness.

Definition 6 (Protocol class AKE) We define AKE as the class of all h-message protocols, where h
is the sum of the number of messages sent and received during a protocol session that accepts, that
meet the following requirements: In the presence of an eavesdropping adversary,

– if the messages of two sessions s and s′ with sactor = s′peer ∧ speer = s′actor ∧ srole 6= s′role
are faithfully relayed to one another (that is, such that ssent = s′recv ∧ srecv = s′sent), then
sstatus = s′status = accepted and skey = s′key .

– the probability that two sessions of the same user output in all protocol steps identical messages
is negligible in the security parameter.

We distinguish between stateless and stateful protocols. Stateless protocols leave the state of a
user’s memory st P̂ (where P̂ ∈ P), that is, the memory that is shared among sessions, invariant under
execution of the protocol. In contrast, the state of a user’s memory st P̂ is modified when executing a
protocol that is not stateless. The vast majority of two-message AKE protocols proposed in the last
two decades (e. g. NAXOS, HMQV, CMQV) are stateless.

Definition 7 (Stateless protocol, SL) Let A,B, and C be sets. Let proj3 : A × B × C → C be the
map given by proj3(a, b, c) = c for all (a, b, c) ∈ A× B × C. Let π be a protocol in the class AKE. We
say that π is a stateless protocol if

proj3
(
Ψ(1k, sts, st P̂ ,m)

)
= st P̂ ,

for all (k, sts, st P̂ ,m) ∈ N× {sts | s ∈ P × N} × {st P̂ | P̂ ∈ P} × {0, 1}
∗.

We denote by SL the class of all stateless protocols.

If a protocol is not stateless, we say that it is stateful.

Remark 2 Stateless protocols cannot provide message replay detection to reject messages that have
been received in earlier sessions of the same user as this would require storing all previously received
messages in a table in the user memory and, upon receipt of a valid message in a session, accessing
the table in the user memory and checking whether the message corresponds to a message in the
table.

Strengthening the Security of AKE against Bad Randomness 9

3.2 Insecurity of stateless protocols against chosen-randomness attacks

Yang et al. state that no protocol can be secure against reset-and-replay attacks on the target
session [12, p. 120]. However their statement only holds because of an implicit assumption on the
protocol class that they consider. In particular, their definition of the protocols’ execution model
implies that they only consider stateless protocols, according to our Definition 7.2

The following proposition states that no stateless protocol is secure in a model that permits the
adversary to choose the randomness of sessions and to reveal certain session keys. This model gives
the adversary access to the minimal set of queries for the proposition to hold.

Proposition 1 (Impossibility result for AKE∩SL) Let X = (Q,F) be an AKE security model, where(
QR∪{cr-create, session-key}

)
⊆ Q ⊆ QR∪QC and F is defined as follows. A session s is said to satisfy F

if no session-key(s) query has been issued and, for all sessions s∗ such that s∗ matches s, no session-key(s∗)
query has been issued. No protocol in the class AKE ∩ SL can satisfy security in the model X.

Proof of Proposition 1. The proof is based on an attack sketched by Yang et al. [12]. Let π be an
arbitrary protocol in SL. There exists an adversary E that wins the W (X) game against the challenger
with non-negligible probability as follows. The adversary E chooses randomness r1 ∈ {0, 1}k and
creates a responder session s′ of user B̂ via the query cr-create(B̂,R, r1, Â). E then completes a
protocol execution between the users Â and B̂; Â and B̂ complete sessions s and s′, respectively. E
creates another responder session s′′ of user B̂ via the query cr-create(B̂,R, r1, Â), where r1 is the
same randomness as used to create session s′, and replays the messages from session s to session s′′.
As the randomness used in session s′′ is identical to the randomness used in session s′ and π ∈ SL,
the messages that E receives from session s′′ are the same as the messages sent by session s′. Now, E
chooses the completed session s′ as the test session, and reveals the session key computed in session
s′′ via a session-key(s′′) query. As the session keys computed in sessions s′ and s′′ are the same and
both sessions are non-matching, the adversary learns the session key of the test session. ut

4 CNX: Preventing key repetition

In this section we first describe a general method of how to prevent replay attacks combined with
chosen-randomness attacks, where two sessions of the same user accept the same session key without
being matching sessions (see, for example, the attack in the proof of Proposition 1). We then apply
our method to a concrete protocol, namely to the NAXOS protocol.

Let π ∈ Λ ∩ SL, where the protocol class Λ is defined in Definition 10. Let H : {0, 1}∗ → Zq (with
||q|| = k, where k denotes the security parameter) be a hash function. We propose the following
security-strengthening method to build a protocol π′ with the goal to achieve security against eCK-like
adversaries who, in addition, can perform replay attacks combined with chosen-randomness attacks
on different sessions of the same user so that they accept the same session key without being matching
sessions. The resulting protocol π′ uses the user’s state to prevent key repetition by implementing a
counter. More precisely, protocol π′ is defined in the same way as protocol π except that in protocol
π′:

– Each user P̂ ∈ P maintains a counter l, taking values in N, initialized with 0 and incremented by
one upon creation of a new session. This counter variable is stored in the user memory stP̂ . We

write st P̂ .l to access the counter variable l of user P̂ . We assume that the “read and increment” is
atomic, i.e., different sessions are guaranteed to obtain different values.

– The user memory of each user P̂ ∈ P is given by stπ
′

P̂
= (stπ

P̂
, l).

2 The crucial observation is that the protocol execution algorithm P in [12] uses abstract session-specific state
information for a user U ’s session i, denoted by StiU . Additionally, the framework includes user-specific information:
the identity U , and public/private keys pkU , skU . It follows from their definition of the protocol execution algorithm
that a protocol can only update the session-specific state StiU , but cannot change any state that can be accessed by
other sessions of the same user. Hence, stateful protocols are not modeled in their framework.

10 Michèle Feltz, Cas Cremers

Initiator I Responder R

stÂ: a, {(P̂ , pkP̂) | P̂ ∈ P}, l stB̂ : b, {(P̂ , pkP̂) | P̂ ∈ P}, l

stÂ.l← stÂ.l + 1 stB̂ .l← stB̂ .l + 1
sdata ← stÂ.l s′data ← stB̂ .l

X ← gH1(srand ,a,sdata)
X−−−−−→

Y ← gH1(s
′
rand ,b,s

′
data)

σ1 ← AH1(s
′
rand ,b,s

′
data)

σ2 ← Xb

σ3 ← XH1(s
′
rand ,b,s

′
data)

s′key ← H2(σ1, σ2, σ3, Â, B̂)

σ1 ← Y a
Y←−−−−− s′status ← accepted

σ2 ← BH1(srand ,a,sdata)

σ3 ← Y H1(srand ,a,sdata)

skey ← H2(σ1, σ2, σ3, Â, B̂)
sstatus ← accepted

Fig. 1 The CNX protocol

– The functions fI and fR (of Definition 10) are instantiated as follows in protocol π′:

fI(r, v, stπ
′

Â
) = H(r, a, v)

fR(r, v, stπ
′

B̂
) = H(r, b, v).

– The key exchange algorithm for protocol π′ is defined in a similar way as the one for protocol π
except that if sstep = 1, the algorithm for π′ first executes the instructions

stπ
′

P̂
.l← stπ

′

P̂
.l + 1;

sdata ← stπ
′

P̂
.l

before executing the remaining instructions of protocol π (with fI , fR as defined in the previous
point).

We next apply our security-strengthening method to the NAXOS protocol. NAXOS is a modern
Diffie-Hellman type protocol that is less efficient than HMQV, but enjoys a simpler security proof in
the eCKw model [25]. Similarly, our method can be applied to other protocols such as CMQV.

Let H1 : {0, 1}∗ → Zq and H2 : {0, 1}∗ → {0, 1}k be two hash functions. For user Â, we write a as
a shorthand for skÂ and write A as a shorthand for pkÂ = ga, and define (b,B) similarly for user B̂.
Applying our security-strengthening method to the NAXOS protocol yields a new protocol, which
we call the the CNX (“Counter-NaXos”) protocol, shown in Figure 1. In contrast to the NAXOS
protocol, the CNX protocol is a stateful protocol belonging to the class AKE \ SL.

The model CR-eCKw, which we define below, is given by the set of queries Q = QnoCR∪{cr-create}
and its freshness predicate is obtained from the freshness predicate of the eCKw model [25] by adding
two conditions taking into account combinations of corrupt and cr-create queries. We start by recalling
the notion of an origin session [25], which is used to relate a received message that was not constructed
by the adversary to the session it originates from.

Definition 8 (origin session [25]) We say that a session s′ with s′status 6= ⊥ is an origin session for
a session s with sstatus = accepted if s′send = srecv .

Definition 9 (CR-eCKw) The CR-eCKw model is defined by (Q,F), where Q = QnoCR ∪ {cr-create}
and a session s is said to satisfy F if all of the following conditions hold:

1. no session-key(s) query has been issued, and
2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been issued, and

Strengthening the Security of AKE against Bad Randomness 11

3. not both queries corrupt(sactor) and (randomness(s) or cr-create(.) creating session s) have been
issued, and

4. for all sessions s′ such that s′ is an origin session for session s, not both queries corrupt(speer) and
(randomness(s′) or cr-create(.) creating session s′) have been issued, and

5. if there exists no origin session for session s, then no corrupt(speer) query has been issued.

The following proposition states that the CNX protocol is secure in model CR-eCKw.

Proposition 2 Let k be a security parameter. Under the GAP-CDH assumption [26] in the cyclic group

G of prime order q with ||q|| = k, the CNX protocol is secure in model CR-eCKw, when the hash functions

H1 : {0, 1}∗ → Zq and H2 : {0, 1}∗ → {0, 1}k are modeled as independent random oracles.

We refer the reader to Appendix A for the proof of Proposition 2.

Remark 3 (comparison with [12]) Yang et al. [12] argue that whenever the randomness of one session
is identical to the randomness of another session of the same user, the adversary can learn the session
key of either of the two sessions by performing a replay attack combined with a session-key query (as
both sessions compute the same session key, but are non-matching). While Proposition 1 confirms
that this statement holds for all protocols in the class AKE ∩ SL, we have shown that there exists
a protocol in AKE, namely CNX, that achieves security even under such reset-and-replay attacks
against the target session.

5 Impossibility result for chosen randomness

The CNX protocol prevents key repetition even in the presence of chosen randomness. The natural
next question is: can we offer even more guarantees in the presence of chosen randomness? We tackle
this question in three steps. In this section we prove an impossibility result for a class of protocols
with respect to chosen randomness. We use this impossibility result to construct a stronger security
model against chosen randomness in Section 6.1. Then, in Section 6.3, we construct a protocol that is
secure in this model, thereby offering even stronger guarantees than CNX.

In this paper we restrict ourselves to the subclass Λ of the class AKE. The class Λ contains all
two-message Diffie-Hellman type protocols that may only access and update user memory upon
creation of sessions. Our results also apply to larger classes of AKE protocols, as we show in [27].

Definition 10 (Protocol class Λ) Let k be a security parameter. The protocol class Λ consists of
all two-message protocols in the class AKE of the following form, specified by polynomial-time (in the
security parameter k) computable functions fI , fR, FI , FR:

– Domain parameters (G, g, q), where G = 〈g〉 is a group of prime order q with ||q|| = k, generated
by g.

– KeyGen(1k): Choose a ∈R [0, q − 1]. Set A← ga. Return secret key sk = a and public key pk = A.
– The specification of how users respond to create and send queries as well as how the session key is

computed is given in Figure 23.
– The protocol can only access and update user memory upon creation of sessions.

The class Λ contains, e. g., the protocols NAXOS, HMQV, CMQV, CNX, and NXPR (presented
in Section 6.3).4 However, it does not contain, e. g., protocols providing message replay detection as
such protocols need to access and update the list of received messages stored in the user memory
upon receipt of a message.

We now provide an impossibility result for protocols in the class Λ. Theorem 1 shows the
impossibility of achieving certain security guarantees in protocol class Λ. That is, given an arbitrary
protocol from class Λ, our impossibility result indicates attacks that are applicable to this protocol.
From Theorem 1 we then derive a strong security model in Section 6.1 and show that there exists a
protocol that is secure in this model in Section 6.3.

3 Note that the ephemeral secret keys x and y can either be stored in a session-specific variable and reused in the
key derivation phase or recomputed in the key derivation phase.

4 In the long version of this paper, the class Λ is referred to as INDP-DH ∩ ISM.

12 Michèle Feltz, Cas Cremers

Initiator I Responder R

sactor = Â, speer = B̂ s′actor = B̂, s′peer = Â

stÂ: a, {(P̂ , pkP̂) | P̂ ∈ P}, l stB̂ : b, {(P̂ , pkP̂) | P̂ ∈ P}, l

x← fI(srand , sdata , stÂ)

X ← gx
X

−−−−−−−→ y ← fR(s′rand , s
′
data , stB̂)

Y
←−−−−−−− Y ← gy

skey ← FI
(
x, Y, stÂ

)
s′key ← FR

(
y,X, stB̂

)
sstatus ← accepted s′status ← accepted

Fig. 2 Messages for generic two-message Diffie-Hellman type protocol in the class Λ

Theorem 1 Let π be an arbitrary protocol in the class Λ. Let X = (QR ∪ QC, F) be the AKE security

model with F being true for all sessions s and all sequences of queries. Let s∗ denote the test session. There

exist adversaries who win the security experiment W (X) against protocol π with non-negligible probability

by issuing either

1. a query session-key(s∗), or

2. a query session-key(s′), where s′ and s∗ are matching sessions, or

3. a query corrupt(s∗actor) in combination with queries (randomness(s̃) or cr-create(s̃)) on all sessions s̃

for which s̃actor = s∗actor that were started not later than session s∗ (and therefore includes s∗), or

4. for any session s], such that s] is an origin session for session s∗:
a query corrupt(s]actor) in combination with queries (randomness(s̃) or cr-create(s̃)) on all sessions s̃

for which s̃actor = s]actor before the start of session s], or

5. a query corrupt(s∗peer) before completion of session s∗ and impersonating the peer s∗peer to session s∗,
or

6. a query corrupt(s∗peer) after completion of session s∗ and impersonating the peer s∗peer to session s∗.

Proof Let π ∈ Λ. There exist PPT adversaries who win the security game W (X) against protocol π
with non-negligible probability, as follows.

Scenario 1 and 2: Since π ∈ Λ, π is also a member of AKE. By the definition of AKE protocols, an
adversary E1 can establish via a sequence of create and send queries two sessions s and s′ that
are matching according to Definition 2. He next issues the test-session query to one of the two
sessions, say to session s. He then issues a session-key query to either session s (the test session)
or s′ (the matching session). Since by the definition of AKE, the matching sessions compute the
same key, E1 thereby learns the session key of session s.

Scenario 3: We consider a sequence of queries in which the adversary E3 creates sessions by using
create or cr-create, and which contain at least two sessions s∗ and s′ that are matching. Such a
sequence exists because π ∈ AKE. E3 now chooses session s∗ as the test session. We use Â to
denote the actor of the test session, i.e., Â = s∗actor . E3 issues the query corrupt(Â). E3 also issues
randomness(s̃) for all sessions s̃ that (a) were started no later than the test session, (b) for which
s̃actor = Â, and (c) were not created using cr-create. The adversary now has all public and secret
information available to Â for executing these sessions. In particular, E3 also has the randomness
of all sessions up to the test session, because he either chose it (by cr-create) or revealed it (by
randomness). He can thus emulate the first created session of Â, denoted by s1, by executing the
algorithm Ψ on input (1k, sts1 , stÂ,m

′). By the definition of Λ, the intermediate computations
of the protocol only depend on values known to E3, and it can therefore also compute the new
contents of the state. By induction, E3 can compute this for all subsequent sessions up to and
including the test session s∗, which implies that it can compute the session key of s∗.

Scenario 4: We consider a sequence of queries in which the adversary E4 creates sessions by using
create or cr-create, and which contain at least two sessions s∗ and s′ such that s′ is an origin session
for session s∗ and s∗status = accepted. Such a sequence exists because π ∈ Λ. E4 now chooses session
s∗ as the test session. E4 issues the query corrupt(s∗peer). E4 also issues randomness(s̃) for all sessions
s̃ that (a) were started no later than the origin session s′, (b) for which s̃actor = s∗peer , and (c)

Strengthening the Security of AKE against Bad Randomness 13

were not created using cr-create. The adversary now has all public and secret information available
to s∗peer for executing these sessions. In particular, E4 also has the randomness of all sessions up
to the origin session, because he either chose it (by cr-create) or revealed it (by randomness). He
can thus emulate the first created session of s∗peer , denoted by s1, by executing the algorithm Ψ

on input (1k, sts1 , sts∗peer , ε). By the definition of Λ, the intermediate computations of the protocol
only depend on values known to E4, and it can therefore also compute the new contents of the
state. By induction, E4 can compute this for all subsequent sessions up to and including the
origin session s′. The adversary now emulates the session key computation of a matching session
and computes the session key of session s∗ by executing Ψ on input (1k, sts′ , sts∗peer ,m), where m
denotes the outgoing message of session s∗.

Scenario 5: Adversary E5 issues a corrupt query to some user, say user Q̂. He then creates a responder
session s by issuing the query create(P̂ ,R, Q̂). The adversary now impersonates user Q̂ to sactor
as follows. E5 chooses randomness r ∈R {0, 1}k and runs the protocol with P̂ on behalf of Q̂ by
executing the algorithm Ψ . The algorithm Ψ executed by the adversary takes as input, among
others, the user state of user Q̂ containing its long-term secret key skQ̂ and the set L returned as
response to the public-info query. Once session s has accepted, he chooses the latter as the test
session. The adversary can compute the session key of session s, for which no origin session exists,
by emulating a matching session.

Scenario 6: Adversary E6 first creates an initiator session s at Â with peer B̂ via the query
create(Â, I, B̂) and receives as a response the message m = X, where X is the Diffie-Hellman
exponential generated in session s. E6 chooses a value z ∈R Zq, computes Z = gz, and sends
message m̃ = Z to session s. Upon receiving message m̃ in session s, Â executes Ψ(1k, sts, stÂ, m̃).
E6 then chooses the completed session s as the test session and reveals the long-term secret key of
user B̂ via the query corrupt(B̂). This enables him to compute the session key of the test session
as FR(fR(z, stB̂), stB̂ , X). Note that the query public-info returned the initial values of additional
variables stored in the user memory. This is a generalisation of Krawczyk’s attack [16, p. 15].

6 Stronger security against chosen randomness

6.1 Security model

Theorem 1 gives rise to the model ΩΛ below. In contrast to previous AKE security models (including
eCK, CR-eCKw, and Reset-1), the ΩΛ model permits the adversary to compromise the randomness of
the target session and the long-term secret key of the actor of that session as long as the randomness of
at least one of the previous sessions of the same user has not been compromised. A similar statement
holds for sessions that are origin sessions for the target session.

Definition 11 The model ΩΛ is defined by (Q,F), where Q = QR ∪ QC and a session s is said to
satisfy F if all of the following conditions hold:

1. no session-key(s) has been issued,
2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been issued,
3. not all queries corrupt(sactor) as well as (randomness or cr-create) on all sessions s̃ with s̃actor =

sactor , where the query create or cr-create creating session s̃ occurred before or at creation of
session s, have been issued,

4. for all sessions s′ such that s′ is an origin session for session s, not all queries corrupt(speer) as
well as (randomness or cr-create) on all sessions s̃ with s̃actor = s′actor , where the query create or
cr-create creating session s̃ occurred before or at creation of session s′, have been issued, and

5. if there exists no origin session for session s, then no corrupt(speer) query has been issued.

Proposition 3 The CNX protocol is insecure in model ΩΛ.

Proof of Proposition 3. The following attack shows that the CNX protocol is insecure in ΩΛ. The
adversary creates an initiator session s of user Â via the query create(Â, I, B̂) and an initiator session

14 Michèle Feltz, Cas Cremers

s” of user B̂ by issuing the query create(B̂, I, Ĉ). He then creates a responder session s′ via the query
create(B̂,R, Â) and activates session s′ by sending the message X = gx sent by session s to session
s′. The adversary then sends message Y sent by session s′ to session s. Session s accepts the key
skey = H2(Y a, BH1(srand ,a,sdata), Y H1(srand ,a,sdata), Â, B̂) as the session key, while session s′ accepts as

its key s′key = H2(AH1(s
′
rand ,b,s

′
data), Xb, XH1(s

′
rand ,b,s

′
data), Â, B̂). The completed session s is chosen as

the test session. Now a randomness query to session s′ revealing the randomness of session s′ followed
by a corrupt(B̂) query revealing the long-term secret key of user B̂, allows the adversary to compute
the session key of the test session s (as he knows the counter value used in session s′). Note that the
test session is fresh in ΩΛ since the adversary did issue neither the query randomness nor the query
cr-create to session s” of user B̂, where the query create(B̂, I, Ĉ) creating session s′′ occurred before
creation of session s′. ut

Proposition 4 The model ΩΛ is stronger than the model CR-eCKw with respect to AKE.

Proof We first show that model ΩΛ is at least as strong as model CR-eCKw. The first condition of
Definition 5 is satisfied as matching is defined in the same way for both models ΩΛ and CR-eCKw. To
see that the second condition of Definition 5 holds, it suffices to show that if there exists an adversary

E such that the probability of event Multiple-Match
W (CR-eCKw)
π,E (k) is non-negligible, then there exists

an adversary E′ such that the probability of event Multiple-Match
W (ΩΛ)
π,E′ (k) is non-negligible. This is

straightforward. Let π ∈ Π. To show that the third condition of Definition 5 holds, we construct an
adversary E′ attacking protocol π in model ΩΛ using an adversary E attacking π in model CR-eCKw,
where π ∈ AKE. Whenever E issues a query q ∈ QnoCR∪{cr-create, test-session}, adversary E′ issues the
same query and forwards the answer received to E. Note that if the freshness condition of CR-eCKw

holds for the test session, then the freshness condition of ΩΛ is also satisfied.
The CNX protocol provides an example of a protocol that is secure in model CR-eCKw, but

insecure in model ΩΛ (see Proposition 3). ut

6.2 Security against repeated randomness failures

In this section we show that security in our model ΩΛ implies security against repeated randomness.
To this end, we introduce the query reset-create, defined below, which allows the adversary to create
a session that uses the same randomness as used in a previous session of the same user.

The query reset-create below creates a new session with the same randomness as used in a previous
session of the same user. Practically, this query models a flawed RNG that produces the same value
more than once. A similar query is found in the Reset-2 model of Yang et al. [12].

– reset-create(P̂ , r, i[, Q̂]). The query models the creation of a new session s, using the same randomness
as in session s′ = (P̂ , i), for the user P̂ . The query requires that P̂ ∈ P, Q̂ ∈ P, r ∈ {I,R}, and
that s′status 6= ⊥; otherwise, it returns ⊥. The session variables are initialized as

(sactor , srole , ssent , srecv , sstatus , skey , srand , sstep)

← (P̂ , r, ε, ε, active,⊥, s′rand , 1) .

If the optional peer identifier Q̂ is provided, the variable speer is set to Q̂. The key exchange
algorithm Ψ is executed on input (1k, sts, st P̂ , ε). The algorithm returns a triple (m′, st ′s, st ′

P̂
). We

set sts ← st ′s and st P̂ ← st ′
P̂

. The query returns m′.

Proposition 5 below states that security in a model that permits the adversary to reveal the
randomness used in sessions and to control the randomness of sessions implies security against
repeated randomness failures.

The relative strengths of security between game-based security models was investigated by Choo
et al. [28], and formally defined by Cremers and Feltz [19] as follows. Let secure(X,Π) be a predicate
that is true if and only if the protocol Π is secure in security model X.

Strengthening the Security of AKE against Bad Randomness 15

Definition 12 ([19]) Let π be a class of AKE protocols. Let X and Y be two security models. We
say that model Y is at least as strong as model X with respect to π, denoted by X ≤πSec Y , if

∀ Π ∈ π. secure(Y,Π)⇒ secure(X,Π). (1)

We say that model Y is stronger than model X with respect to protocol class π, if X ≤πSec Y and not
Y ≤πSec X.

Proposition 5 Let F be defined as follows: a session s is said to satisfy F if no session-key(s) query

has been issued and, for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been is-

sued. Let X = (Q,F) with Q = QR ∪ {reset-create, session-key}. Let Y = (Q′, F) with Q′ = QR ∪
{cr-create, randomness, session-key}. The model Y is at least as strong as the model X w.r.t. AKE.

Proof The first condition of Definition 5 is satisfied since matching is defined in the same way for both
models X and Y . Let π ∈ Π. To show that the second and third condition of Definition 5 hold, we
construct an adversary E′ attacking protocol π in model Y using an adversary E attacking π in model
X. Adversary E′ proceeds as follows. Whenever E issues a query create, send, session-key or test-session,
adversary E′ issues the same query and forwards the answer received to E. Whenever E issues a
query reset-create(P̂ , r, i[, Q̂]) to create a new session of user P̂ , adversary E′ first checks whether the
status of session s = (P̂ , i) is different from ⊥. If this is the case, then E′ issues the following sequence
of queries: 1. randomness(P̂ , i), and 2. cr-create(P̂ , r, srand [, Q̂]). At the end of E’s execution, i. e. after

it has output its guess bit b, E′ outputs b as well. Hence, it holds that Advπ,EW (X)
(k) ≤ Advπ,E

′

W (Y)
(k),

where k denotes the security parameter. Since by assumption protocol π is secure in Y , there is a

negligible function g such that Advπ,E
′

W (Y)
(k) ≤ g(k). It follows that protocol π is secure in X. ut

Corollary 1 follows from Proposition 5 and from the fact that Implication (1) is transitive.

Corollary 1 Let X and Y be defined as in Proposition 5. Let Z = (Q′′, F ′′) with QR ⊆ Q′′ ⊆ QR ∪QC.

If model Z is at least as strong as model Y with respect to AKE, then model Z is also at least as strong as

model X with respect to AKE.

We show in Proposition 6 that security in ΩΛ implies security against repeated randomness,
modelled by the query reset-create. Hence, security in ΩΛ also implies security against reset-and-replay
attacks on the target session or its partner session.

Proposition 6 Let F be defined as follows: a session s is said to satisfy F if no session-key(s) query has

been issued and, for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been issued. Let

X = (Q,F) with Q = QR ∪ {reset-create, session-key}. The model ΩΛ is at least as strong as the model X

with respect to AKE.

Proof Let Y be defined as in Proposition 5. The proof that model ΩΛ is at least as strong as the
model Y with respect to Π proceeds in a similar way as the proof of Proposition 5. The proposition
then follows from Corollary 1. ut

6.3 NXPR: Achieving strong AKE security against chosen randomness

In this section we first describe a general method of how to prevent attacks based on the compromise
of random values that are used in sessions of a user and the long-term secret keys of that user. We
then apply our method to a concrete protocol, namely to the NAXOS protocol.

Let π ∈ Λ ∩ SL, where the protocol class Λ is defined in Definition 10. Let H : {0, 1}∗ → Zq (with
||q|| = k, where k denotes the security parameter) be a hash function. We propose the following
security-strengthening method to build a protocol π′ with the goal to achieve security even under
compromise of the randomness of the target session and the long-term secret key of the actor of that
session as long as the randomness of at least one of the previous sessions of the same user has not
been compromised. The resulting protocol π′ includes the user’s long-term private key, the current

16 Michèle Feltz, Cas Cremers

session’s randomness, and the randomness of all sessions (of the same user) that have been previously
created, as input to the hash function H. The protocol uses the user’s state to store the concatenation
of all previously generated random values of the user. More precisely, protocol π′ is defined in the
same way as protocol π except that in protocol π′:

– Each user P̂ ∈ P maintains a variable l ∈ {0, 1}∗ initialized with the empty string ε. This variable
l stores the concatenation of all previously generated random values in sessions of user P̂ . It is
stored in the user memory stP̂ . We write st P̂ .l to access the variable l of user P̂ .

– The user memory of each user P̂ ∈ P is given by stπ
′

P̂
= (stπ

P̂
, l).

– The functions fI and fR (of Definition 10) are instantiated as follows in protocol π′:

fI(r, v, stπ
′

Â
) = H(r, v, a),

where v denotes the concatenation of the random values that have been generated in all the
previous sessions of user Â;

fR(r, v, stπ
′

B̂
) = H(r, v, b),

where v denotes the concatenation of the random values that have been generated in all the
previous sessions of user B̂;

– The key exchange algorithm for protocol π′ is defined in a similar way as the one for protocol π
except that if sstep = 1, the algorithm for π′ executes the instructions

sdata ← stπ
′

P̂
.l;

stπ
′

P̂
.l← (srand , sdata)

before executing the remaining instructions of protocol π (with fI , fR as defined in the previous
point).
In other words, upon creation of a session of user P̂ , the value of the variable l, which stores
the concatenation of all previously generated random values of the user, is assigned to the
variable sdata . The variable l is then updated and assigned the concatenation of the randomness
that has been generated in the current session and the randomness that has been generated in all
the previous sessions of the user.

Initiator I Responder R

stÂ: a, {(P̂ , pkP̂) | P̂ ∈ P}, l stB̂ : b, {(P̂ , pkP̂) | P̂ ∈ P}, l

sdata ← stÂ.l s′data ← stB̂ .l
stÂ.l← (srand , sdata) stB̂ .l← (s′rand , s

′
data)

X ← gH1(srand ,sdata ,a)
X−−−−−→

Y ← gH1(s
′
rand ,s

′
data ,b)

σ1 ← AH1(s
′
rand ,s

′
data ,b)

σ2 ← Xb

σ3 ← XH1(s
′
rand ,s

′
data ,b)

s′key ← H2(σ1, σ2, σ3, Â, B̂)

σ1 ← Y a
Y←−−−−− s′status ← accepted

σ2 ← BH1(srand ,sdata ,a)

σ3 ← Y H1(srand ,sdata ,a)

skey ← H2(σ1, σ2, σ3, Â, B̂)
sstatus ← accepted

Fig. 3 The NXPR protocol

We next apply our security-strengthening method to the NAXOS protocol. Let H1, H2, (a,A),
and (b,B) be defined as in Section 4. Applying our security-strengthening method to the NAXOS
protocol yields a new stateful protocol, which we call the NXPR (“NaXos with Previous Randomness”)

Strengthening the Security of AKE against Bad Randomness 17

protocol, shown in Figure 3. We show in Proposition 7 that the NXPR protocol is secure in the ΩΛ
model. It thus provides even stronger security guarantees than the CNX protocol.

If we compare NXPR to the CNX protocol, we see that CNX used the user’s state to prevent key
repetition, essentially by implementing a counter. NXPR has an implicit counter (i.e., the number of
previously generated random values) and incorporates all randomness previously generated by the
user. This construction ensures that partially leaking or choosing randomness does not imply loss of
the exponent H1(. . .), even if the adversary knows a user’s long-term secret key.

Proposition 7 Let k be a security parameter. Under the GAP-CDH assumption [26] in the cyclic group

G of prime order q with ||q|| = k, the NXPR protocol is secure in the ΩΛ model, when the hash functions

H1 : {0, 1}∗ → Zq and H2 : {0, 1}∗ → {0, 1}k are modeled as independent random oracles.

We refer the reader to Appendix B for the proof of Proposition 7.

Intuitively, the NXPR protocol is resilient against the attack described in the proof of Proposition 1
since if the adversary creates a responder session s′′ at B̂ via the query cr-create(B̂,R, rnd , Â), where
rnd are the random coins used in the previous responder session s′ of user B̂, then the session key
computed in session s′′ is different (and independent via the RO assumption) from the session key
computed in session s′ since the outgoing message of session s′′ is different to the message sent in
session s′.

Remark 4 (user state comparison of NXPR to CNX) In contrast to the CNX protocol, the NXPR
protocol requires each user to store the concatenation of the randomness generated in all his sessions
in the user memory. Thus, before the n’th session of user P̂ is created (where n > 1), the user
memory st P̂ contains its long-term secret key, the long-term public key of all users Q̂ ∈ P, and
the concatenation of n− 1 bit strings of length k corresponding to the randomness generated in all
previous sessions of user P̂ .

Remark 5 Instead of concatenating the randomness used in all previous sessions with the current
randomness, one could determine the randomness of the n’th session of user Â, with long-term secret
key a, as H1(snrand , H1(sn−1

rand , H1(..., H1(s1rand , a)))), i. e., the hash of the concatenation of the current
session’s randomness together with a previously stored value of fixed length k. The advantage of this
minor modification would be that each user needs to store its long-term secret key and a bit string of
fixed length k, which is updated upon activation of new session of the user.

7 Conclusions

In this paper we explored the limits of authenticated key exchange security with respect to adversaries
who can perform chosen-randomness attacks, whereby they control the randomness used in protocol
sessions. While stateless protocols fail to achieve security against attacks based on this worst case
randomness failure, we constructed stateful variants of the NAXOS protocol that provide security
even against such attacks. We use the user’s state only locally: our protocols do not require any form
of state synchronisation between communicating users. Our new protocols allow us to weaken the
assumptions made on the security of the RNG used to generate session-specific randomness.

Stepping back, we see that our analysis identifies the double purpose of randomness in AKE
protocols. The first purpose of randomness in AKE is to ensure that the session keys of subsequent
sessions are different. Both the CNX and the NXPR protocol leverage the users’ state to ensure this
goal is met even when the RNG fails. The second purpose of randomness in AKE is to provide a
session-specific secret. In state-of-the-art protocols this session-specific secret is combined with the
user’s long-term secret to serve as a combined secret for the session key. For these protocols this
means that if the randomness of a specific session is bad (e.g., chosen or predictable for the adversary)
then the session-key is only protected by the long-term key. In contrast, our NXPR protocol reduces
the impact of some bad randomness by combining all previously generated randomness with the
long-term key to protect the session key.

18 Michèle Feltz, Cas Cremers

It is intriguing that all broken/flawed/subverted RNGs that we mentioned in the introduction
already maintain local state as part of their design. However, the local state of the RNG serves a
different purpose than what we need for AKE protocols. History has made abundantly clear that the
presence of local state in the RNG’s design does not guarantee that it has not been subverted [6, 29].

Moving forward, we hope that future practical protocols can be made less dependent on their
complex, and often external, RNG libraries. For example, in TLS 1.2, the RNG is a single point
of failure: if an adversary observes a DH-based TLS handshake and learns/predicts/chooses the
randomness used by one user in this session, he can directly compute the session keys, even without
knowing any long-term secrets. This is a weakness in the design of TLS that enables an adversary to
turn the NIST RNG backdoor into an actual attack on Internet traffic, as described in [6]. Given the
history surrounding RNG subversion and its role in Internet communications, we argue that it is
prudent to make the next versions of protocols such as TLS and IKE more resilient against RNG
problems. The technical means are available.

References

1. Debian, “Debian Security Advisory DSA – 1571-1 openssl – predictable random number generator,” http:
//www.debian.org/security/2008/dsa-1571 (Accessed 05/11/2013).

2. A. Lenstra, J. Hughes, M. Augier, J. Bos, T. Kleinjung, and C. Wachter, “Public keys,” in Advances in
Cryptology – Crypto 2012, ser. LNCS, vol. 7417. Springer, pp. 626–642.

3. R. Marvin, “Google admits an Android crypto PRNG flaw led to Bitcoin heist (August 2013),” http://sdt.bz/
64008 (Accessed 01/10/2013).

4. N. Perlroth, J. Larson, and S. Shane, “N.S.A. able to foil basic safeguards of privacy on web,” the New York
Times, 5 Sept. 2013.

5. N. Koblitz and A. Menezes, “The random oracle model: A twenty-year retrospective,” Cryptology ePrint Archive,
Report 2015/140, 2015, http://eprint.iacr.org/.

6. D. J. Bernstein, T. Lange, and R. Niederhagen, “Dual EC: A Standardized Back Door,” Cryptology ePrint
Archive, Report 2015/767, 2015, http://eprint.iacr.org/ (Retrieved July 2015).

7. T. Pornin, “Deterministic usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature
Algorithm (ECDSA), RFC 6979,” August 2013.

8. M. Bellare, Z. Brakerski, M. Naor, T. Ristenpart, G. Segev, H. Shacham, and S. Yilek, “Hedged Public-Key
encryption: How to protect against bad randomness,” in Advances in Cryptology - ASIACRYPT 2009, ser.
LNCS. Springer-Verlag, 2009, pp. 232–249.

9. S. Yilek, “Resettable public-key encryption: How to encrypt on a virtual machine,” in Proceedings of the 2010
International Conference on Topics in Cryptology, ser. CT-RSA’10. Berlin, Heidelberg: Springer–Verlag, 2010,
pp. 41–56.

10. B. LaMacchia, K. Lauter, and A. Mityagin, “Stronger security of authenticated key exchange,” in ProvSec’07,
ser. LNCS, W. Susilo, J. K. Liu, and Y. Mu, Eds., vol. 4784. Springer, 2007, pp. 1–16.

11. R. Canetti and H. Krawczyk, “Analysis of key-exchange protocols and their use for building secure channels,”
in EUROCRYPT’01, ser. LNCS, B. Pfitzmann, Ed., vol. 2045. Springer London, UK, 2001, pp. 453–474.

12. G. Yang, S. Duan, D. S. Wong, C. H. Tan, and H. Wang, “Authenticated key exchange under
bad randomness,” in Proceedings of the 15th international conference on Financial Cryptography and
Data Security, ser. FC’11. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 113–126. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-27576-0 10

13. T. Ristenpart and S. Yilek, “When good randomness goes bad: Virtual machine reset vulnerabilities and
hedging deployed cryptography,” in Proceedings of the Network and Distributed System Security Symposium,
ser. NDSS’10, 2010.

14. S. Kamara and J. Katz, “How to encrypt with a malicious random number generator,” in Fast Software
Encryption, ser. LNCS, vol. 5086. Springer, 2008, pp. 303–315.

15. M. Bellare and B. Tackmann, “Nonce-based cryptography: Retaining security when randomness fails,” Cryptology
ePrint Archive, Report 2016/290, 2016, http://eprint.iacr.org/.

16. H. Krawczyk, “HMQV: A high-performance secure Diffie-Hellman protocol,” in Advances in Cryptology -
CRYPTO 2005, ser. LNCS, V. Shoup, Ed., vol. 3621. Springer, 2005, pp. 546–566.

17. B. Ustaoglu, “Obtaining a secure and efficient key agreement protocol from (H)MQV and NAXOS,” Cryptology
ePrint Archive, Report 2007/123, 2007, version June 22, 2009.

18. S. Blake-Wilson, D. Johnson, and A. Menezes, “Key agreement protocols and their security analysis,” in
Crytography and Coding, ser. LNCS, M. Darnell, Ed. Springer Berlin Heidelberg, 1997, vol. 1355, pp. 30–45.
[Online]. Available: http://dx.doi.org/10.1007/BFb0024447

19. C. Cremers and M. Feltz, “Beyond eCK: Perfect forward secrecy under actor compromise and ephemeral-key
reveal,” Designs, Codes and Cryptography, vol. 74, no. 1, pp. 183–218, Jan. 2015.

20. C. Brzuska, M. Fischlin, B. Warinschi, and S. Williams, “Composability of Bellare-Rogaway key exchange
protocols,” in Proceedings of the 18th ACM conference on Computer and communications security, ser. CCS ’11.
New York, NY, USA: ACM, 2011, pp. 51–62. [Online]. Available: http://doi.acm.org/10.1145/2046707.2046716

http://www.debian.org/security/2008/dsa-1571
http://www.debian.org/security/2008/dsa-1571
http://sdt.bz/64008
http://sdt.bz/64008
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-27576-0_10
http://eprint.iacr.org/
http://dx.doi.org/10.1007/BFb0024447
http://doi.acm.org/10.1145/2046707.2046716

Strengthening the Security of AKE against Bad Randomness 19

21. C. Boyd, C. Cremers, M. Feltz, K. Paterson, B. Poettering, and D. Stebila, “ASICS: Authenticated key exchange
security incorporating certification systems,” in Computer Security – ESORICS 2013, ser. LNCS, J. Crampton,
S. Jajodia, and K. Mayes, Eds. Springer Berlin Heidelberg, 2013, vol. 8134, pp. 381–399.

22. M. Bellare and P. Rogaway, “Entity authentication and key distribution,” in 13th annual International Cryptology
Conference on Advances in Cryptology, ser. CRYPTO ’93. Springer New York, NY, USA, 1994, pp. 232–249.

23. ——, “Provably secure session key distribution: the three party case,” in 27th annual ACM symposium on
Theory of computing, ser. STOC ’95. ACM New York, NY, USA, 1995, pp. 57–66.

24. M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated key exchange secure against dictionary attacks,” in
19th International Conference on Theory and Application of Cryptographic Techniques, ser. EUROCRYPT’00.
Springer, 2000, pp. 139–155.

25. C. Cremers and M. Feltz, “Beyond eCK: Perfect Forward Secrecy under Actor Compromise and Ephemeral-Key
Reveal,” in Proceedings of the 17th European conference on Research in computer security, ser. ESORICS.
Berlin, Heidelberg: Springer-Verlag, 2012.

26. T. Okamoto and D. Pointcheval, “The gap-problems: a new class of problems for the security of cryptographic
schemes,” in PKC’2001, ser. LNCS, K. Kim, Ed., vol. 1992. Springer, 2001, pp. 104–118.

27. M. Feltz and C. Cremers, “On the Limits of Authenticated Key Exchange Security with an Application to Bad
Randomness,” Cryptology ePrint Archive, Report 2014/369, 2014, http://eprint.iacr.org/.

28. K.-K. R. Choo, C. Boyd, and Y. Hitchcock, “Examining indistinguishability-based proof models for key
establishment protocols,” in Advances in Cryptology - ASIACRYPT 2005, 11th International Conference on
the Theory and Application of Cryptology and Information Security, Chennai, India, December 4-8, 2005,
Proceedings, ser. Lecture Notes in Computer Science, vol. 3788. Springer, 2005, pp. 585–604.

29. B. Schneier, M. Fredrikson, T. Kohno, and T. Ristenpart, “Surreptitiously weakening cryptographic systems,”
Cryptology ePrint Archive, Report 2015/097, 2015, http://eprint.iacr.org/ (Retrieved March 2015).

A Proof of Proposition 2

Proof It is straightforward to verify the first condition of Definition 5. We next verify that the second condition
of Definition 5 holds. Let E denote a PPT adversary against protocol π := CNX. We show that the probability

of event Multiple-Match
W (CR-eCKw)
π,E (k) is bounded above by a negligible function in the security parameter k,

where Multiple-Match
W (CR-eCKw)
π,E (k) denotes the event that, in the security experiment, there exist a session s

with sstatus = accepted and at least two distinct sessions s′ and s′′ that are matching session s. Note that, if both
sessions s′ and s′′ are matching session s, then it must hold that s′′actor = s′actor and s′′role = s′role). In addition, the
counter value in two different sessions of the same user are distinct. For some fixed session s that has accepted, let
Ev denote the event that there exist two distinct sessions s′ and s′′ such that s and s′ are matching as well as s and
s′′. We have:

P (Ev) ≤ P (
⋃
s′,s′′

s′ 6=s′′
{H1(s′′rand , skP̂ , i) = H1(s′rand , skP̂ , j)})

≤
∑

s′,s′′

s′ 6=s′′
P ({H1(s′′rand , skP̂ , i) = H1(s′rand , skP̂ , j)})

≤ q2s
1
p
,

where P̂ = s′′actor = s′actor , i 6= j and qs denotes the number of created sessions (either via the create or the cr-create

query) by the adversary. Therefore, P (Multiple-Match
W (CR-eCKw)
π,E (k)) ≤ q3s 1

p
.

The third condition of Definition 5 is implied by an adaptation of the security proof of NAXOS in the eCKw

model from [19]. Let s∗ denote the test session. Consider first the event Kc where the adversary M wins the

security experiment against π with non-negligible advantage and does not query H2 with (σ1, σ2, σ3, Â, B̂), where
σ1 = CDH(Y,A), σ2 = CDH(B,X) and σ3 = CDH(X,Y).

Event Kc

If event Kc occurs, then the adversary M must have issued a session-key query to some session s such that Ks = Ks∗
(where Ks and Ks∗ denote the session keys computed in sessions s and s∗, respectively) and s does not match s∗.
We consider the following four events:

1. A1 : there exist two distinct sessions s′, s′′ created via a create query such that s′rand = s′′rand .
2. A2 : there exists a session s 6= s∗ such that H1(srand , sksactor , i) =

H1(s∗rand , sks∗actor , j).

3. A3 : there exists a session s′ 6= s∗ such that H2(inputs′) = H2(inputs∗) with inputs′ 6= inputs∗ .
4. A4 : there exists an adversarial query inputM to the oracle H2 such that H2(inputM) = H2(inputs∗) with

inputM 6= inputs∗ .

In contrast to the NAXOS protocol with respect to model CR-eCKw, the adversary cannot force two sessions of
protocol π of the same user with the same role to compute the same session key via a chosen-randomness replay
attack, as the H1 values in both sessions will be different with overwhelming probability due to different counter
values. The latter event is included in event A2.

http://eprint.iacr.org/
http://eprint.iacr.org/

20 Michèle Feltz, Cas Cremers

Analysis of event Kc

We denote by qs the number of created sessions (either via the create or the cr-create query) by the adversary and
by qro2 the number of queries to the random oracle H2. We have that

P (Kc) ≤ P (A1 ∨A2 ∨A3 ∨A4) ≤ P (A1) + P (A2) + P (A3) + P (A4)

≤
q2s
2

1

2k
+
qs

p
+
qs + qro2

2k
,

which is a negligible function of the security parameter k.
In the subsequent events (and their analyses) we assume that no collisions in the queries to the oracle H1 occur

and that none of the events A1, ..., A4 occurs. As in the proof of [19, Proposition 7], we next consider the following
three events:

1. DL ∧K,
2. TO ∧DLc ∧K, and
3. (TO)c ∧DLc ∧K, where

TO denotes the event that there exists an origin-session for the test session, DL denotes the event where there
exists a user Ĉ ∈ P such that the adversary M , during its execution, queries H1 with (∗, c, ∗) before issuing a

corrupt(Ĉ) query and K denotes the event that M wins the security experiment against NAXOS by querying H2

with (σ1, σ2, σ3, Â, B̂), where σ1 = CDH(Y,A), σ2 = CDH(B,X) and σ3 = CDH(X,Y).

Event DL ∧K
Let the input to the GAP-DLog challenge be C. Suppose that event DL ∧K occurs with non-negligible probability.
In this case, the simulator S chooses one user Ĉ ∈ P at random and sets its long-term public key to C. S chooses
long-term secret/public key pairs for the remaining honest parties and stores the associated long-term secret keys.
Additionally S chooses a random value m ∈R {1, 2, ..., qs}. We denote the m’th activated session by adversary M by

s∗. Suppose further that s∗actor = Â, s∗peer = B̂ and s∗role = I, w.l.o.g. We now define S’s responses to M ’s queries for
the pre-specified peer setting; the post-specified peer case proceeds similarly. Algorithm S maintains tables Q, J, T
and L, all of which are initially empty. S also maintains a variable ω initialized with 1 and a table CV maintaining
for each user the current counter value. Initially, table CV contains an entry (P̂ , 0) for each user P̂ ∈ P.

1. create
(
P̂ , r, Q̂

)
to create session s: S checks whether P̂ ∈ P, Q̂ ∈ P, and r ∈ {I,R}. If one of the checks fails,

then S returns ⊥. Else, S initializes the session variables according to the protocol specification, and stores an

entry of the form (s, srand , sksactor , ls, κ) ∈ (P × N)× {0, 1}k × (Zp ∪ {∗})× N× Zp in table Q as follows:

– S retrieves the counter value c for the user with identifier P̂ from table CV , increments c by 1, and updates
the counter value for P̂ stored in table CV with c+ 1,

– S chooses srand ∈R {0, 1}k (i. e. the randomness of session s),
– S chooses κ ∈R Zp,

– if sactor 6= Ĉ, then S stores the entry (s, srand , sksactor , c+ 1, κ) inQ, else S stores the entry (s, srand , ∗, c+ 1, κ)
in Q,5 and

– if r = I, then S returns the Diffie-Hellman exponential gκ to M , else S returns ?.

2. cr-create
(
P̂ , r, str, Q̂

)
to create session s: S checks whether P̂ ∈ P, Q̂ ∈ P, and r ∈ {I,R}. If one of the checks

fails, then S returns ⊥. Else, S initializes the session variables according to the protocol specification, and stores

an entry of the form (s, srand , sksactor , ls, κ) ∈ (P × N)× {0, 1}k × (Zp ∪ {∗})× N× Zp in table Q as follows:

– S retrieves the counter value c for the user with identifier P̂ from table CV , increments c by 1, and updates
the counter value for P̂ stored in table CV with c+ 1,

– if there is an entry (ri, hi, li, κi) in table J such that ri = str, hi = skP̂ , and li = c+ 1, then S sets ω ← κi,

else S chooses κ ∈R Zp, and sets ω ← κ.6

– if sactor 6= Ĉ, then S stores the entry (s, srand , sksactor , c+ 1, x5) inQ, else S stores the entry (s, srand , ∗, c+ 1, x5)
in Q, where x5 denotes the value of variable ω,

– if r = I, then S returns the Diffie-Hellman exponential gκ to M , else S returns ?.

3. S stores entries of the form (r, h, l, κ) ∈ {0, 1}k × Zp × N× Zp in table J . When M makes a query of the form
(r, h, l) to the random oracle for H1, answer it as follows:
– If C = gh, then S aborts M and is successful by outputting DLogg(C) = h.
– Else if (r, h, l, κ) ∈ J for some κ ∈ Zp, then S returns κ to M .

5 We do not need to keep consistency with H1 queries via lookup in table J since the probability that the adversary
guesses the randomness of a session created via a query create is negligible.

6 Here we need to keep consistency with H1 queries via lookup in table J to be able to consistently answer all
possible combinations of queries. Consider, e. g., the following scenario. The adversary first issues a query (x, skP̂ , i)

to H1 and then issues the query cr-create(P̂ , r, x, Q̂), which increments the current counter value i− 1 by 1 so that

the counter value used in session s = (P̂ , i) is i. So, in contrast to the NAXOS proof with respect to model eCKw,
we need to additionally keep consistency between cr-create queries and queries to the random oracle for H1.

Strengthening the Security of AKE against Bad Randomness 21

– Else if there exists an entry (s, srand , sksactor , ls, κ) in Q, for some s ∈ P × N, srand ∈ {0, 1}k , sksactor ∈ Zp,
ls ∈ N and κ ∈ Zp, such that srand = r, sksactor = h and ls = l, then S returns κ to M and stores the entry
(r, h, l, κ) in table J .

– Else, S chooses κ ∈R Zp, returns it to M and stores the entry (r, h, l, κ) in table J .

4. send(P̂ , i, V) to send message V to session s = (P̂ , i): If sstatus 6= active, then S returns ⊥. Else if srole = I,
then S does the following. If V /∈ G, then the status of session s is set to rejected. Else, the status of session s
is set to accepted, the variable recv is updated to srecv ← (srecv , V) and
– If there exists an entry (speer , sactor ,R, srecv , ssent , λ) in table T , then S stores the entry (sactor , speer , I, ssent , srecv , λ)

in table T .
– Else if there exists an entry (σ1, σ2, σ3, sactor , speer , λ) in table L, for some λ ∈ {0, 1}k, such that

DDH(srecv , ssent , σ3) = 1, DDH(ssent , pkspeer , σ2) = 1 and DDH(srecv , pksactor , σ1) = 1, then S stores

(sactor , speer , I, ssent , srecv , λ) in table T .

– Else, S chooses µ ∈R {0, 1}k and stores the entry (sactor , speer , I, ssent , srecv ,
µ) in T .

Else if srole = R, then S does the following. If V /∈ G, then the status of session s is set to rejected. Else, S
sets the status of session s to accepted, and the variable recv to (srecv , V). S returns gκ to M , where κ denotes
the last element of the entry (s, r, sksactor , l, κ) in table Q, and proceeds in a similar way as in the previous case.

5. When M makes a query of the form
(
σ1, σ2, σ3, P̂i, P̂j

)
to the random oracle for H2, answer it as follows:

– If
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to M .

– Else if there exist entries
(
P̂i, P̂j , I, U, V, λ

)
or
(
P̂j , P̂i,R, V, U, λ

)
in table T , for some λ ∈ {0, 1}k and

U, V ∈ G, such that DDH(V, U, σ3) = 1, DDH(V, pkP̂i
, σ1) = 1 and DDH(U, pkP̂j

, σ2) = 1, then S returns λ

to M and stores the entry
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
in table L.

– Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry
(
σ1, σ2, σ3, P̂i, P̂j , µ

)
in L.

6. randomness(s): If sstatus = ⊥, then S returns ⊥. Otherwise, S returns srand (via lookup in table Q).
7. session-key(s): If sstatus 6= accepted, then S returns ⊥. Otherwise, S answers this query by lookup in table T .
8. test-session(s): If s 6= s∗, then S aborts; otherwise S answers the query in the appropriate way.

9. corrupt(P̂): If P̂ /∈ P, then S returns ⊥. Else if P̂ = Ĉ, then S aborts. Else S returns skP̂ .
10. M outputs a guess: S aborts.

Analysis of event DL ∧K
Similar to the analysis of the related event DL ∧K in the proof of [19, Proposition 7].

Event TO ∧DLc ∧K
Let s∗ and s′ denote the test session and the origin-session for the test session, respectively. We split event
Evt := TO ∧DLc ∧K into the following events B1, ..., B3 so that Evt = B1 ∨B2 ∨B3:

1. B1 : Evt occurs and s∗peer = s′actor .

2. B2 : Evt occurs and s∗peer 6= s′actor and M does issue neither a randomness(s′) query nor a cr-create(s′,×) query

to the origin-session s′ of s∗, but may issue a corrupt(s∗peer) query.

3. B3 : Evt occurs and s∗peer 6= s′actor and M does not issue a corrupt(s∗peer) query, but may issue either a

randomness(s′) query or a cr-create(s′,×) query to the origin-session s′ of s∗.

Event B1

Let the input to the GDH challenge be (X0, Y0). Suppose that event B1 occurs with non-negligible probability. In
this case S chooses long-term secret/public key pairs for all the honest parties and stores the associated long-term
secret keys. Additionally S chooses two random values m,n ∈R {1, 2, ..., qs}. The m’th activated session by adversary

M will be called s∗ and the n’th activated session will be called s′. Suppose further that s∗actor = Â, s∗peer = B̂ and

s∗role = I, w.l.o.g.. The simulation of M ′s environment proceeds as follows:

1. create(Â, I, B̂) or cr-create(Â, I, str, B̂) to create session s∗: If create is issued, then S chooses s∗rand ∈R {0, 1}
k.

Else, S sets s∗rand ← str. Then, S (a) returns the message X0, where (X0, Y0) is the GDH challenge, (b)

increments by 1 the counter value c for the user with identifier Â (stored in table CV), and (c) stores the

updated counter value c+ 1 for Â in table CV .7

2. create(B̂, r, Q̂) or cr-create(B̂, r, str, Q̂) to create session s′: If create is issued, then S chooses s′rand ∈R {0, 1}
k.

Else, S sets s′rand ← str. S then increments by 1 the counter value c for the user with identifier B̂ (stored in

table CV), and stores the updated counter value c+ 1 for B̂ in table CV .If r = I, then S returns message Y0 to
M , where (X0, Y0) is the GDH challenge. Else, ? is returned.

3. send(B̂, i, Z) with (B̂, i) = s′: If s′status 6= active, then S returns ⊥. Else if s′role = R and Z ∈ G, then S returns
message Y0 to M , where (X0, Y0) is the GDH challenge, sets the status of session s′ to accepted, and proceeds
as in the previous simulation for completing the session. Else, S proceeds as in the previous simulation.

7 Note that s∗rand is not used in the calculation.

22 Michèle Feltz, Cas Cremers

4. send(Â, i, Y0) with (Â, i) = s∗: S proceeds as in the previous simulation for completing the session.
5. Other create, cr-create and send queries are answered as in the previous simulation.
6. randomness(s): If sstatus = ⊥, then S returns ⊥. Else, S returns srand .
7. session-key(s): If sstatus 6= accepted, then S returns ⊥. Otherwise, S answers this query by lookup in table T .
8. test-session(s): If s 6= s∗ or if s′ is not the origin-session for session s∗, then S aborts; otherwise S answers the

query in the appropriate way.
9. H1(r, h, ∗): If h = a and r = s∗rand or if h = b and r = s′rand , then S aborts. Otherwise S simulates a random

oracle as in the previous simulation.
10. corrupt(P̂): If P̂ /∈ P, then S returns ⊥. Else, S returns skP̂ .

11. When M makes a query of the form
(
σ1, σ2, σ3, P̂i, P̂j

)
to the random oracle for H2, answer it as follows:

– If
{
P̂i, P̂j

}
=
{
Â, B̂

}
, σ1 = Y a0 , σ2 = Xb

0 and DDH(X0, Y0, σ3) = 1, then S aborts M and is successful by

outputting CDH(X0, Y0) = σ3.

– Else if
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to M .

– Else if there exist entries
(
P̂i, P̂j , I, U, V, λ

)
or
(
P̂j , P̂i,R, V, U, λ

)
in table T , for some λ ∈ {0, 1}k and

U, V ∈ G, such that DDH(V, U, σ3) = 1, DDH(V, pkP̂i
, σ1) = 1 and DDH(U, pkP̂j

, σ2) = 1, then S returns λ

to M and stores the entry
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
in table L.

– Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry
(
σ1, σ2, σ3, P̂i, P̂j , µ

)
in L.

12. M outputs a guess: S aborts.

Analysis of event B1

Similar to the analysis of the related event B1 in the proof of [19, Proposition 7].

Event B2

Let the input to the GDH challenge be (X0, Y0). Suppose that event B2 occurs with non-negligible probability. The
simulation of S proceeds in the same way as for event B1 with the following changes:

– create(B̂, r, Q̂) or cr-create(B̂, r, str, Q̂) to create session s′: If cr-create is issued, then S aborts. Else, S proceeds
as described before.

– randomness(s): If sstatus = ⊥, then S returns ⊥. Else if s = s′, then S aborts. Else, S returns srand .
– H1(r, h, ∗): If h = a and r = s∗rand , then S aborts. Otherwise S simulates a random oracle as in the previous

simulation.

Analysis of event B2

Similar to the analysis of the related event B2 in the proof of [19, Proposition 7].

Event B3

Let the input to the GDH challenge be (X0, B). Suppose that event B3 occurs with non-negligible probability. In

this case, S chooses one user B̂ ∈ P at random from the set P and sets its long-term public key to B. S chooses
long-term secret/public key pairs for the remaining parties in P and stores the associated long-term secret keys.
Additionally S chooses two random values m,n ∈R {1, 2, ..., qs}. We denote the m’th activated session by adversary

M by s∗ and the n’th activated session by s′. Suppose further that s∗actor = Â, s∗peer = B̂ and s∗role = I, w.l.o.g..
Algorithm S maintains tables Q, J, T and L, all of which are initially empty. S also maintains a variable ω initialized
with 1 and a table CV maintaining for each user the current counter value. Initially, table CV contains an entry
(P̂ , 0) for each user P̂ ∈ P. The simulation of M ′s environment proceeds as follows:

1. create(Â, I, B̂) or cr-create(Â, I, str, B̂) to create session s∗: If create is issued, then S chooses s∗rand ∈R {0, 1}
k.

Else, S sets s∗rand ← str. Then, S (a) returns the message X0, (b) increments by 1 the counter value c for the

user with identifier Â (stored in table CV), and (c) stores the updated counter value c+ 1 for Â in table CV .

2. create
(
P̂ , r, Q̂

)
to create session s: S checks whether P̂ ∈ P, Q̂ ∈ P, and r ∈ {I,R}. If one of the checks fails,

then S returns ⊥. Else, S initializes the session variables according to the protocol specification, and stores an

entry of the form (s, srand , sksactor , ls, κ) ∈ (P × N)× {0, 1}k × (Zp ∪ {∗})× N× Zp in table Q as follows:

– S retrieves the counter value c for the user with identifier P̂ from table CV , increments c by 1, and updates
the counter value for P̂ stored in table CV with c+ 1,

– S chooses srand ∈R {0, 1}k (i. e. the randomness of session s),
– S chooses κ ∈R Zp,

– if sactor 6= B̂, then S stores the entry (s, srand , sksactor , c+ 1, κ) inQ, else S stores the entry (s, srand , ∗, c+ 1, κ)
in Q, and

– if r = I, then S returns the Diffie-Hellman exponential gκ to M , else S returns ?.

3. cr-create
(
P̂ , r, str, Q̂

)
to create session s: S checks whether P̂ ∈ P, Q̂ ∈ P, and r ∈ {I,R}. If one of the checks

fails, then S returns ⊥. Else, S initializes the session variables according to the protocol specification, and stores

an entry of the form (s, srand , sksactor , ls, κ) ∈ (P × N)× {0, 1}k × (Zp ∪ {∗})× N× Zp in table Q as follows:

Strengthening the Security of AKE against Bad Randomness 23

– S retrieves the counter value c for the user with identifier P̂ from table CV , increments c by 1, and updates
the counter value for P̂ stored in table CV with c+ 1,

– if there is an entry (ri, hi, li, κi) in table J such that ri = str, hi = skP̂ , and li = c+ 1, then S sets ω ← κi,
else S chooses κ ∈R Zp, and sets ω ← κ.

– if sactor 6= B̂, then S stores the entry (s, srand , sksactor , c+ 1, x5) inQ, else S stores the entry (s, srand , ∗, c+ 1, x5)
in Q, where x5 denotes the value of variable ω,

– if r = I, then S returns the Diffie-Hellman exponential gκ to M , else S returns ?.

4. S stores entries of the form (r, h, l, κ) ∈ {0, 1}k × Zp × N× Zp in table J . When M makes a query of the form
(r, h, l) to the random oracle for H1, answer it as follows:
– If r = s∗rand and h = a, then S aborts,
– Else if (r, h, l, κ) ∈ J for some κ ∈ Zp, then S returns κ to M .

– Else if there exists an entry (s, srand , sksactor , ls, κ) in Q, for some s ∈ P × N, srand ∈ {0, 1}k , sksactor ∈ Zp,
ls ∈ N and κ ∈ Zp, such that srand = r, sksactor = h and ls = l, then S returns κ to M and stores the entry
(r, h, l, κ) in table J .

– Else, S chooses κ ∈R Zp, returns it to M and stores the entry (r, h, l, κ) in table J .

5. send(P̂ , i, V) to send message V to session s = (P̂ , i): If sstatus 6= active, then S returns ⊥. Else if srole = I,
then S does the following. If V /∈ G, then the status of session s is set to rejected. Else, the status of session s
is set to accepted, the variable recv is updated to srecv ← (srecv , V) and
– If there exists an entry (speer , sactor ,R, srecv , ssent , λ) in table T , then S stores the entry (sactor , speer , I, ssent , srecv , λ)

in table T .
– Else if there exists an entry (σ1, σ2, σ3, sactor , speer , λ) in table L, for some λ ∈ {0, 1}k, such that

DDH(srecv , ssent , σ3) = 1, DDH(ssent , pkspeer , σ2) = 1 and DDH(srecv , pksactor , σ1) = 1, then S stores

(sactor , speer , I, ssent , srecv , λ) in table T .

– Else, S chooses µ ∈R {0, 1}k and stores the entry (sactor , speer , I, ssent , srecv ,
µ) in T .

Else if srole = R, then S does the following. If V /∈ G, then the status of session s is set to rejected. Else, S
sets the status of session s to accepted, and the variable recv to (srecv , V). S returns gκ to M , where κ denotes
the last element of the entry (s, r, sksactor , l, κ) in table Q, and proceeds in a similar way as in the previous case.

6. When M makes a query of the form
(
σ1, σ2, σ3, P̂i, P̂j

)
to the random oracle for H2, answer it as follows:

– If s′status 6= ⊥,
{
P̂i, P̂j

}
=
{
Â, B̂

}
, σ1 = Aκ, DDH(X0, B, σ2) = 1, and σ3 = Xκ

0 , where κ denotes the last

element of the entry (s′, s′rand , sks′actor
, l, κ) in table Q8, then S aborts M and is successful by outputting

CDH(X0, B) = σ2.

– Else if
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to M .

– Else if there exist entries
(
P̂i, P̂j , I, U, V, λ

)
or
(
P̂j , P̂i,R, V, U, λ

)
in table T , for some λ ∈ {0, 1}k and

U, V ∈ G, such that DDH(V, U, σ3) = 1, DDH(V, pkP̂i
, σ1) = 1 and DDH(U, pkP̂j

, σ2) = 1, then S returns λ

to M and stores the entry
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
in table L.

– Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry
(
σ1, σ2, σ3, P̂i, P̂j , µ

)
in L.

7. randomness(s): If sstatus = ⊥, then S returns ⊥. Else, S returns srand .
8. session-key(s): If sstatus 6= accepted, then S returns ⊥. Otherwise, S answers this query by lookup in table T .
9. test-session(s): If s 6= s∗ or if s′ is not the origin-session for session s∗, then S aborts; otherwise S answers the

query in the appropriate way.
10. corrupt(P̂): If P̂ /∈ P, then S returns ⊥. Else if P̂ = B̂, then S aborts. Else, S returns skP̂ .
11. M outputs a guess: S aborts.

Analysis of event B3

Similar to the analysis of the related event B3 in the proof of [19, Proposition 7].

Event (TO)c ∧DLc ∧K
The simulation and analysis are very similar to the simulation and analysis related to event B3.

B Proof of Proposition 7

Proof It is straightforward to verify the first condition of Definition 5. We next verify that the second condition
of Definition 5 holds. Let E denote a PPT adversary against protocol π := NXPR. We show that the probability

of event Multiple-Match
W (ΩΛ)
π,E (k) is bounded above by a negligible function in the security parameter k, where

Multiple-Match
W (ΩΛ)
π,E (k) denotes the event that, in the security experiment, there exist a session s with sstatus =

accepted and at least two distinct sessions s′ and s′′ that are matching session s. Note that, if both sessions s′ and

8 This entry exists in table Q since the status of the session is different to ⊥.

24 Michèle Feltz, Cas Cremers

s′′ are matching session s, then it must hold that s′′actor = s′actor and s′′role = s′role . In addition, it is easy to see that
the value of the variable data in two different sessions of the same user are distinct (since of different length). For
some fixed session s that has accepted, let Ev denote the event that there exist two distinct sessions s′ and s′′ such
that s and s′ are matching as well as s and s′′. We have:

P (Ev) ≤ P (
⋃
s′,s′′

s′ 6=s′′
{H1(s′′rand , s

′′
data , skP̂) = H1(s′rand , s

′
data , skP̂)})

≤
∑

s′,s′′

s′ 6=s′′
P ({H1(s′′rand , s

′′
data , skP̂) = H1(s′rand , s

′
data , skP̂)})

≤ q2s
p
,

where P̂ = s′′actor = s′actor and qs denotes the number of created sessions (either via the create or the cr-create query)
by the adversary.

In the above computation, we distinguished between the following two events:

1. D1 := {s′′rand 6= s′rand ∧ s
′′
data 6= s′data}; the probability that the two hash values are identical given D1 is the

probability of a collision in the hash function, and
2. D2 := {s′′rand = s′rand ∧ s

′′
data 6= s′data}; the probability that the two hash values are identical given D2 is the

probability of a collision in the hash function.

The events D3 := {s′′rand = s′rand ∧ s
′′
data = s′data} and D4 := {s′′rand 6= s′rand ∧ s

′′
data = s′data} both occur with

probability zero.
Even though the value of the variable rand can be the same for two different session of the same user due to the

queries cr-create and randomness, the value of the variable data of two different sessions s′ and s′′ of the same user
is always different since the bit strings s′data and s′′data differ in length. Given a created session s, the length of the
bit string sdata depends on the number of sessions of user sactor that have already been created either via create or
cr-create.

Finally, P (Multiple-Match
W (ΩΛ)
π,E (k)) ≤ q3s 1

p
.

The third condition of Definition 5 is implied by an adaptation of the security proof of protocol CNX in the
Ω−INDP-DH model (see Appendix A). Let s∗ denote the test session. Consider first the event Kc where the adversary M

wins the security experiment against π with non-negligible advantage and does not query H2 with (σ1, σ2, σ3, Â, B̂),
where σ1 = CDH(Y,A), σ2 = CDH(B,X) and σ3 = CDH(X,Y).

Event Kc

If event Kc occurs, then the adversary M must have issued a session-key query to some session s such that Ks = Ks∗
(where Ks and Ks∗ denote the session keys computed in sessions s and s∗, respectively) and s does not match s∗.
We consider the following four events:

1. A1 : there exist two distinct sessions s′, s′′ created via a create query such that s′rand = s′′rand .9

2. A2 : there exists a session s 6= s∗ such that H1(srand , sdata) = H1(s∗rand , s
∗
data).

3. A3 : there exists a session s′ 6= s∗ such that H2(inputs′) = H2(inputs∗) with inputs′ 6= inputs∗ .
4. A4 : there exists an adversarial query inputM to the oracle H2 such that H2(inputM) = H2(inputs∗) with

inputM 6= inputs∗ .

Analysis of event Kc

We denote by qs the number of created sessions (either via the query create or the query cr-create) by the adversary
and by qro2 the number of queries to the random oracle H2. We have that

P (Kc) ≤ P (A1 ∨A2 ∨A3 ∨A4) ≤ P (A1) + P (A2) + P (A3) + P (A4)

≤
q2s
2

1

2k
+
qs

p
+
qs + qro2

2k
,

which is a negligible function of the security parameter k.
In contrast to the NAXOS protocol analyzed with respect to model ΩINDP-DH, the adversary cannot force two

sessions of protocol π of the same user with the same role to compute the same session key via a chosen-randomness
replay attack since the H1 values in both sessions will be different with overwhelming probability. The latter event
is included in event A2.

In the subsequent events (and their analyses) we assume that no collisions in the queries to the oracle H1 occur
and that none of the events A1, ..., A4 occurs. As in the proof of [19, Proposition 7], we next consider the following
three events:

1. DL ∧K,
2. TO ∧DLc ∧K, and
3. (TO)c ∧DLc ∧K, where

9 Under event A1 the query randomness (e. g., for two sessions of different users) together with other queries might
enable the adversary to learn all the information necessary to compute the session key of the target session without
violating the freshness condition.

Strengthening the Security of AKE against Bad Randomness 25

TO denotes the event that there exists an origin-session for the test session, DL denotes the event where there exists a
user Ĉ ∈ P such that the adversary M , during its execution, queries H1 with (∗, c) before issuing a corrupt(Ĉ) query

and K denotes the event that M wins the security experiment against NXPR by querying H2 with (σ1, σ2, σ3, Â, B̂),
where σ1 = CDH(Y,A), σ2 = CDH(B,X) and σ3 = CDH(X,Y).

Event DL ∧K
Let the input to the GAP-DLog challenge be C. Suppose that event DL ∧K occurs with non-negligible probability.
In this case, the simulator S chooses one user Ĉ ∈ P at random and sets its long-term public key to C. S chooses
long-term secret/public key pairs for the remaining honest parties and stores the associated long-term secret keys.
Additionally S chooses a random value m ∈R {1, 2, ..., qs}. We denote the m’th activated session by adversary M by

s∗. Suppose further that s∗actor = Â, s∗peer = B̂ and s∗role = I, w.l.o.g. We now define S’s responses to M ’s queries for
the pre-specified peer setting; the post-specified peer case proceeds similarly. Algorithm S maintains tables Q, J, T
and L, all of which are initially empty. S also maintains a variable ω initialized with 1.

1. create
(
P̂ , r, Q̂

)
to create session s: S checks whether P̂ ∈ P, Q̂ ∈ P, and r ∈ {I,R}. If one of the checks fails,

then S returns ⊥. Else, S initializes the session variables according to the protocol specification, and stores an

entry of the form (s, srand , ls, sksactor , κ) ∈ (P × N)× {0, 1}k × {0, 1}∗ × (Zp ∪ {∗})× Zp in table Q as follows:

– S chooses srand ∈R {0, 1}k (i. e. the randomness of session s),
– S chooses κ ∈R Zp,

– if there is no entry (s, srand , ls, sksactor , κ) in table Q such that sactor = P̂ , then S sets the value of ls to
srand , else S sets the value of ls to (srand , ls′), where s′ is the previous session with s′actor = sactor for which
an entry in table Q has been made.10

– if sactor 6= Ĉ, then S stores the entry (s, srand , sdata , sksactor , κ) inQ, else S stores the entry (s, srand , sdata , ∗, κ)
in Q, and

– if r = I, then S returns the Diffie-Hellman exponential gκ to M , else S returns ?.

2. cr-create
(
P̂ , r, str, Q̂

)
to create session s: S checks whether P̂ ∈ P, Q̂ ∈ P, and r ∈ {I,R}. If one of the checks

fails, then S returns ⊥. Else, S initializes the session variables according to the protocol specification, and stores

an entry of the form (s, srand , ls, sksactor , κ) ∈ (P ×N)×{0, 1}k ×{0, 1}∗× (Zp ∪{∗})×Zp in table Q as follows:
– if there is an entry (ri, hi, κi) in table J such that ri = (str, ls′), and hi = skP̂ , where s′ is the previous

session with s′actor = sactor for which an entry in table Q has been made, then S sets ω ← κi, else S chooses
κ ∈R Zp and sets ω ← κ.

– if sactor 6= Ĉ, then S stores the entry (s, srand , ri, sksactor , ω) in Q, else S stores the entry (s, srand , ls, ∗, ω)
in Q with ls = (str, ls′),

– if r = I, then S returns the Diffie-Hellman exponential gκ to M , else S returns ?.
3. S stores entries of the form (r, h, κ) ∈ {0, 1}∗ × Zp × Zp in table J . When M makes a query of the form (r, h)

to the random oracle for H1, answer it as follows:
– If C = gh, then S aborts M and is successful by outputting DLogg(C) = h.
– Else if (r, h, κ) ∈ J for some κ ∈ Zp, then S returns κ to M .
– Else if there exists an entry (s, srand , ls, sksactor , κ) in table Q with ls = r and sksactor = h, then S returns κ

to M and stores the entry (r, h, κ) in table J .
– Else, S chooses κ ∈R Zp, returns it to M and stores the entry (r, h, κ) in table J .

4. send(P̂ , i, V) to send message V to session s = (P̂ , i): If sstatus 6= active, then S returns ⊥. Else if srole = I,
then S does the following. If V /∈ G, then the status of session s is set to rejected. Else, the status of session s
is set to accepted, and
– If there exists an entry (speer , sactor ,R, srecv , ssent , λ) in table T , then S stores the entry (sactor , speer , I, ssent , srecv , λ)

in table T .
– Else if there exists an entry (σ1, σ2, σ3, sactor , speer , λ) in table L, for some λ ∈ {0, 1}k, such that

DDH(srecv , ssent , σ3) = 1, DDH(ssent , pkspeer , σ2) = 1 and DDH(srecv , pksactor , σ1) = 1, then S stores

(sactor , speer , I, ssent , srecv , λ) in table T .

– Else, S chooses µ ∈R {0, 1}k and stores the entry (sactor , speer , I, ssent , srecv ,
µ) in T .

Else if srole = R, then S does the following. If V /∈ G, then the status of session s is set to rejected. Else,
S sets the status of session s to accepted, returns gκ to M , where κ denotes the last element of the entry
(s, srand , ls, sksactor , κ) in table Q, and proceeds in a similar way as in the previous case.

5. When M makes a query of the form
(
σ1, σ2, σ3, P̂i, P̂j

)
to the random oracle for H2, answer it as follows:

– If
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to M .

– Else if there exist entries
(
P̂i, P̂j , I, U, V, λ

)
or
(
P̂j , P̂i,R, V, U, λ

)
in table T , for some λ ∈ {0, 1}k and

U, V ∈ G, such that DDH(V, U, σ3) = 1, DDH(V, pkP̂i
, σ1) = 1 and DDH(U, pkP̂j

, σ2) = 1, then S returns λ

to M and stores the entry
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
in table L.

– Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry
(
σ1, σ2, σ3, P̂i, P̂j , µ

)
in L.

10 The value of ls′ is the concatenation of the randomness of the current and the previous sessions of the same user.

26 Michèle Feltz, Cas Cremers

6. randomness(s): If sstatus = ⊥, then S returns ⊥. Otherwise, S returns srand .
7. session-key(s): If sstatus 6= accepted, then S returns ⊥. Otherwise, S answers this query by lookup in table T .
8. test-session(s): If s 6= s∗, then S aborts; otherwise S answers the query in the appropriate way.

9. corrupt(P̂): If P̂ /∈ P, then S returns ⊥. Else if P̂ = Ĉ, then S aborts. Else, S returns skP̂ .
10. M outputs a guess: S aborts.

Analysis of event DL ∧K
Similar to the analysis of the related event DL ∧K in the proof of [19, Proposition 7].

Event TO ∧DLc ∧K
Let s∗ and s′ denote the test session and the origin-session for the test session, respectively. We split event
Evt := TO ∧DLc ∧K into the following events B1, ..., B3 so that Evt = B1 ∨B2 ∨B3:

1. B1 : Evt occurs and s∗peer = s′actor .

2. B2 : Evt occurs and s∗peer 6= s′actor and M does not issue the queries randomness or cr-create to all sessions of

s′actor that were created prior to creation of the origin-session s′ of s∗, including the origin-session itself, but
may issue a corrupt(s∗peer) query.

3. B3 : Evt occurs and s∗peer 6= s′actor and M does not issue a corrupt(s∗peer) query, but may issue the queries
randomness or cr-create to all session created prior to creation of the origin-session, including the origin-session
s′ itself.

Event B1

Let the input to the GDH challenge be (X0, Y0). Suppose that event B1 occurs with non-negligible probability. In
this case S chooses long-term secret/public key pairs for all the honest parties and stores the associated long-term
secret keys. Additionally S chooses two random values m,n ∈R {1, 2, ..., qs}. The m’th activated session by adversary

M will be called s∗ and the n’th activated session will be called s′. Suppose further that s∗actor = Â, s∗peer = B̂ and
s∗role = I, w.l.o.g.. We now define S’s responses to M ’s queries. S maintains tables Q, J, T and L, all of which are
initially empty, as well as a variable ω initialized with 1.

1. create(Â, I, B̂) or cr-create(Â, I, str, B̂) to create session s∗: If create is issued, S chooses s∗rand ∈R {0, 1}
k. Else,

S sets s∗rand ← str. S (a) returns the message X0, where (X0, Y0) is the GDH challenge, and (b) stores the
entry (s∗, s∗rand , ls∗ , skÂ, ∗) in table Q, where ls∗ = (s∗rand , ls) if there exists a previously created session s of

user sactor = Â with an entry in table Q, and ls∗ = s∗rand if there no such session exists.

2. create(B̂, r, Q̂) or cr-create(B̂, r, str, Q̂) with r ∈ {I,R} to create session s′: If create is issued, S chooses s′rand ∈R
{0, 1}k. Else, S sets s′rand ← str. S stores the entry (s′, s′rand , ls′ , skB̂ , ∗) in table Q, where ls′ = (s′rand , ls) if

there exists a previously created session s of user sactor = Â with an entry in table Q, and ls′ = s′rand if there
no such session exists. If r = I, then S returns message Y0 to M , where (X0, Y0) is the GDH challenge. Else, ?
is returned.

3. send(B̂, i, Z) with (B̂, i) = s′: If s′status 6= active, then S returns ⊥. Else if s′role = R and Z ∈ G, then S returns
message Y0 to M , where (X0, Y0) is the GDH challenge, sets the status of session s′ to accepted, and proceeds
as in the previous simulation for completing the session. Else, S proceeds as in the previous simulation.

4. send(Â, i, Y0) with (Â, i) = s∗: S proceeds as in the previous simulation for completing the session.
5. Other create, cr-create and send queries are answered as in the simulation relative to event DL ∧K.

6. When M makes a query of the form
(
σ1, σ2, σ3, P̂i, P̂j

)
to the random oracle for H2, answer it as follows:

– If
{
P̂i, P̂j

}
=
{
Â, B̂

}
, σ1 = Y a0 , σ2 = Xb

0 and DDH(X0, Y0, σ3) = 1, then S aborts M and is successful by

outputting CDH(X0, Y0) = σ3.

– Else if
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to M .

– Else if there exist entries
(
P̂i, P̂j , I, U, V, λ

)
or
(
P̂j , P̂i,R, V, U, λ

)
in table T , for some λ ∈ {0, 1}k and

U, V ∈ G, such that DDH(V, U, σ3) = 1, DDH(V, pkP̂i
, σ1) = 1 and DDH(U, pkP̂j

, σ2) = 1, then S returns λ

to M and stores the entry
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
in table L.

– Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry
(
σ1, σ2, σ3, P̂i, P̂j , µ

)
in L.

7. randomness(s): If sstatus = ⊥, then S returns ⊥. Otherwise, S returns srand .
8. session-key(s): If sstatus 6= accepted, then S returns ⊥. Otherwise, S answers this query by lookup in table T .
9. test-session(s): If s 6= s∗ or if s′ is not the origin-session for session s∗, then S aborts; otherwise S answers the

query in the appropriate way.
10. H1(r, h): If r = ls∗ and h = skÂ or if r = ls′ and h = skB̂ , then S aborts. Otherwise S simulates a random

oracle as in the simulation relative to event DL ∧K.
11. corrupt(P̂): If P̂ /∈ P, then S returns ⊥. Else, S returns skP̂ .
12. M outputs a guess: S aborts.

Analysis of event B1

S’s simulation of M ’s environment is perfect except with negligible probability. The probability that M selects s∗ as
the test-session and s′ as the origin-session for the test-session is 1

(qs)2
. Assuming that this is indeed the case, S

Strengthening the Security of AKE against Bad Randomness 27

does not abort in Step 9. Under event DLc, the adversary first issues a corrupt(P̂) query to party P̂ before making

an H1 query that involves the long-term secret key of party P̂ . Freshness of the test session guarantees that the
adversary can reveal/determine either ls∗ or skÂ, but not both. Similar for ls′ and skB̂ . Hence S does not abort in
Step 10. Under event K, except with negligible probability of guessing CDH(X0, Y0), S is successful as described in
the first case of Step 6 and does not abort as in Step 12. Hence, if event B1 occurs, then the success probability of S
is given by P (S) ≥ 1

(qs)2
P (B1).

Event B2

Let the input to the GDH challenge be (X0, Y0). Suppose that event B2 occurs with non-negligible probability. The
simulation of S proceeds in the same way as for event B1 with the following changes. S additionally keeps a history
H of M ’s queries.

– randomness(s): If sstatus = ⊥, then S returns ⊥. Else if s = s′ and there were queries (randomness or cr-create)
to all previous sessions of the same user s′actor , then S aborts. Else, S returns srand .

– H1(r, h): If r = ls∗ and h = skÂ, then S aborts. Otherwise S simulates a random oracle as in the previous
simulation.

Analysis of event B2

Similar to the analyses of the related event B2 in the proof of [19, Proposition 7] and event B1.

Event B3

Let the input to the GDH challenge be (X0, B). Suppose that event B3 occurs with non-negligible probability. In

this case, S chooses one user B̂ ∈ P at random from the set P and sets its long-term public key to B. S chooses
long-term secret/public key pairs for the remaining parties in P and stores the associated long-term secret keys.
Additionally S chooses two random values m,n ∈R {1, 2, ..., qs}. We denote the m’th activated session by adversary

M by s∗ and the n’th activated session by s′. Suppose further that s∗actor = Â, s∗peer = B̂ and s∗role = I, w.l.o.g..
Algorithm S maintains tables Q, J, T and L, all of which are initially empty. S also maintains a variable ω initialized
with 1.

1. create(Â, I, B̂) or cr-create(Â, I, str, B̂) to create session s∗: If create is issued, S chooses s∗rand ∈R {0, 1}
k. Else,

S sets s∗rand ← str. S (a) returns the message X0, where (X0, B) is the GDH challenge, and (b) stores the entry
(s∗, s∗rand , ls∗ , skÂ, ∗) in table Q, where ls∗ = (s∗rand , ls) if there exists a previously created session s of user

sactor = Â with an entry in table Q, and ls∗ = s∗rand if there no such session exists.

2. create
(
P̂ , r, Q̂

)
to create session s: S checks whether P̂ ∈ P, Q̂ ∈ P, and r ∈ {I,R}. If one of the checks fails,

then S returns ⊥. Else, S initializes the session variables according to the protocol specification, and stores an

entry of the form (s, srand , ls, sksactor , κ) ∈ (P × N)× {0, 1}k × {0, 1}∗ × (Zp ∪ {∗})× Zp in table Q as follows:

– S chooses srand ∈R {0, 1}k (i. e. the randomness of session s),
– S chooses κ ∈R Zp,

– if there is no entry (s, srand , ls, sksactor , κ) in table Q such that sactor = P̂ , then S sets the value of ls to
srand , else S sets the value of ls to (srand , ls′), where s′ is the previous session with s′actor = sactor for which
an entry in table Q has been made.

– if sactor 6= B̂, then S stores the entry (s, srand , sdata , sksactor , κ) inQ, else S stores the entry (s, srand , sdata , ∗, κ)
in Q, and

– if r = I, then S returns the Diffie-Hellman exponential gκ to M , else S returns ?.

3. cr-create
(
P̂ , r, str, Q̂

)
to create session s: S checks whether P̂ ∈ P, Q̂ ∈ P, and r ∈ {I,R}. If one of the checks

fails, then S returns ⊥. Else, S initializes the session variables according to the protocol specification, and stores

an entry of the form (s, srand , ls, sksactor , κ) ∈ (P ×N)×{0, 1}k ×{0, 1}∗× (Zp ∪{∗})×Zp in table Q as follows:
– if there is an entry (ri, hi, κi) in table J such that ri = (str, ls′), and hi = skP̂ , where s′ is the previous

session with s′actor = sactor for which an entry in table Q has been made, then S sets ω ← κi, else S chooses
κ ∈R Zp and sets ω ← κ.

– if sactor 6= B̂, then S stores the entry (s, srand , ri, sksactor , ω) in Q, else S stores the entry (s, srand , ls, ∗, ω)
in Q with ls = (str, ls′),

– if r = I, then S returns the Diffie-Hellman exponential gκ to M , else S returns ?.
4. S stores entries of the form (r, h, κ) ∈ {0, 1}∗ × Zp × Zp in table J . When M makes a query of the form (r, h)

to the random oracle for H1, answer it as follows:
– If r = ls∗ and h = skÂ, then S aborts.
– Else if (r, h, κ) ∈ J for some κ ∈ Zp, then S returns κ to M .
– Else if there exists an entry (s, srand , ls, sksactor , κ) in table Q with ls = r and sksactor = h, then S returns κ

to M and stores the entry (r, h, κ) in table J .
– Else, S chooses κ ∈R Zp, returns it to M and stores the entry (r, h, κ) in table J .

5. send(P̂ , i, V) to send message V to session s = (P̂ , i): If sstatus 6= active, then S returns ⊥. Else if srole = I,
then S does the following. If V /∈ G, then the status of session s is set to rejected. Else, the status of session s
is set to accepted, and
– If there exists an entry (speer , sactor ,R, srecv , ssent , λ) in table T , then S stores the entry (sactor , speer , I, ssent , srecv , λ)

in table T .

28 Michèle Feltz, Cas Cremers

– Else if there exists an entry (σ1, σ2, σ3, sactor , speer , λ) in table L, for some λ ∈ {0, 1}k, such that
DDH(srecv , ssent , σ3) = 1, DDH(ssent , pkspeer , σ2) = 1 and DDH(srecv , pksactor , σ1) = 1, then S stores

(sactor , speer , I, ssent , srecv , λ) in table T .

– Else, S chooses µ ∈R {0, 1}k and stores the entry (sactor , speer , I, ssent , srecv ,
µ) in T .

Else if srole = R, then S does the following. If V /∈ G, then the status of session s is set to rejected. Else,
S sets the status of session s to accepted, returns gκ to M , where κ denotes the last element of the entry
(s, srand , ls, sksactor , κ) in table Q, and proceeds in a similar way as in the previous case.

6. When M makes a query of the form
(
σ1, σ2, σ3, P̂i, P̂j

)
to the random oracle for H2, answer it as follows:

– If
{
P̂i, P̂j

}
=
{
Â, B̂

}
, σ1 = Aκ, DDH(X0, B, σ2) = 1, and σ3 = Xκ

0 , where κ denotes the last element of the

entry (s′, s′rand , ls′ , sks′actor
, κ) in table Q, then S aborts M and is successful by outputting CDH(X0, B) = σ2.

– Else if
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to M .

– If
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to M .

– Else if there exist entries
(
P̂i, P̂j , I, U, V, λ

)
or
(
P̂j , P̂i,R, V, U, λ

)
in table T , for some λ ∈ {0, 1}k and

U, V ∈ G, such that DDH(V, U, σ3) = 1, DDH(V, pkP̂i
, σ1) = 1 and DDH(U, pkP̂j

, σ2) = 1, then S returns λ

to M and stores the entry
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
in table L.

– Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry
(
σ1, σ2, σ3, P̂i, P̂j , µ

)
in L.

7. randomness(s): If sstatus = ⊥, then S returns ⊥. Otherwise, S returns srand .
8. session-key(s): If sstatus 6= accepted, then S returns ⊥. Otherwise, S answers this query by lookup in table T .
9. test-session(s): If s 6= s∗ or if s′ is not the origin-session for session s∗, then S aborts; otherwise S answers the

query in the appropriate way.
10. corrupt(P̂): If P̂ /∈ P, then S returns ⊥. Else if P̂ = B̂, then S aborts. Else, S returns skP̂ .
11. M outputs a guess: S aborts.

Analysis of event B3

Similar to the analysis of the related event B3 in the proof of [19, Proposition 7].

Event (TO)c ∧DLc ∧K
The simulation and analysis are very similar to the simulation and analysis related to event B3.

	Introduction
	Authenticated key exchange framework
	Chosen randomness and stateless protocols
	CNX: Preventing key repetition
	Impossibility result for chosen randomness
	Stronger security against chosen randomness
	Conclusions
	Proof of Proposition 2
	Proof of Proposition 7

