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Abstract

We embed an untyped security protocol model in the interactive the-
orem prover Isabelle/HOL and derive a theory for constructing proofs
of secrecy and authentication properties. Our theory is based on two
key ingredients. The first is an inference rule for enumerating the possi-
ble origins of messages known to the intruder. The second is a class of
protocol-specific invariants that formalize type assertions about variables in
protocol specifications. The resulting theory is well-suited for interactively
constructing human-readable, protocol security proofs. We additionally
give an algorithm that automatically generates Isabelle/HOL proof scripts
based on this theory. We provide case studies showing that both interactive
and automatic proof construction are efficient. The resulting proofs provide
strong correctness guarantees since all proofs, including those deriving our
theory from the security protocol model, are machine-checked.

1 Introduction

Problem Context. Security protocols are standard components of systems
that communicate over untrusted networks such as the Internet. Their relatively
small size, combined with their critical role, makes them a suitable target for
formal analysis. During the last twenty years, many successful symbolic methods
have been developed for analyzing small to medium-sized protocols.

Ideally, when no attacks exist on a protocol, we would like to have a proof
of the protocol’s correctness. Such a proof provides an explanation of why
the protocol is correct and makes the result verifiable for others. Given the
complexity of the symbolic models used and the history of mistakes made in
pen-and-paper proofs, it seems prudent to require machine-checked proofs.

In his seminal work [36], Paulson proposed the first approach for constructing
machine-checked proofs of protocol correctness, using the interactive theorem
prover Isabelle/HOL [35]. The protocols verified include the TLS handshake [37],
Kerberos IV [8], and SET [7]. As reported in [36], the time required for an

1



expert in interactive theorem proving to model and verify a protocol using this
approach ranges from several days for small academic protocols to six weeks for
a protocol like the TLS handshake [37].

An alternative approach to security protocol verification is to use automatic
tools such as ProVerif [11] or Scyther [15]. Such tools have two substantial
advantages over interactive approaches: they require less user expertise and
produce results orders of magnitude faster. However none of these tools produces
machine-checked proofs.

We combine the benefits of these two approaches to security protocol veri-
fication. We develop a tool-supported framework for the efficient construction
of machine-checked protocol security proofs using automatic proof generation,
where possible, and interactive proof construction, where required.

Approach Taken. Our approach is based on the model-checking algorithm
underlying the Scyther tool. We formalize soundness theorems for all steps that
this algorithm employs. The resulting set of theorems constitutes a verification
theory for security protocols. As we will later see, this theory enables us to
construct succinct security proofs by composing these soundness theorems. Based
on this theory, we develop a proof-generating security protocol verification algo-
rithm. Namely, we instrument an extended version of Scyther’s model-checking
algorithm so that it justifies each step it takes by logging the corresponding
soundness theorem instance.

We state and prove security properties with respect to a symbolic security
protocol model with a Dolev-Yao style, active intruder. Our protocol execution
model is untyped, i.e., protocol variables may be instantiated with arbitrary
messages. Hence, our security proofs also imply the absence of type-flaw attacks.
We formalize our security protocol model as an operational semantics similar to
the one proposed by Cremers and Mauw [16]. With respect to this operational
semantics, we state and prove in Isabelle/HOL the soundness theorems consti-
tuting our security protocol verification theory. In our theory, security proofs
are constructed from two key elements: the Chain rule and a class of invariants
that formalize protocol-specific type assertions about the variables occurring in
protocol specifications.

The Chain rule formalizes a finite and complete enumeration of the possible
origins of messages known to the intruder. It is based on the observation that it
suffices to check every possible chain of decryptions starting from a message sent
by the protocol to determine if the intruder can learn a message by decryption.
In such a chain, the input of each decryption, except the first one, is provided
by the output of the preceding decryption.

We use the Chain rule to prove security properties as follows. We start
by assuming that there exists an attack on the security property to be proven.
Hence, the intruder must know certain messages. We make a case distinction on
how the intruder learned these messages using the Chain rule. In each case, we
gain additional assumptions about the structure of a possible attack. If these
assumptions lead to a contradiction, then no attack exists. Otherwise, we again
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apply the Chain rule to iteratively refine the structure of possible attacks. Once
we have shown that every case is contradictory, we have proven that the security
property holds.

The second element of our theory is a class of invariants that formalize
protocol-specific type assertions about the variables occurring in protocol specifi-
cations. They are required to make our proof strategy, based on the Chain rule,
work in an untyped model. Our type assertions generalize the types naturally
occurring in protocol specifications so that they also account for the cases where
the intruder inserts his own messages. For example, suppose that a protocol
specifies that a variable v is of type nonce. We then assert that v is always
instantiated with either (1) a nonce or (2) some message that the intruder knew
before v was instantiated. The first case accounts for receiving a message sent
by another honest protocol participant. The second case accounts for receiving
a message from the intruder, who need not follow any typing discipline. We
use such type assertions together with the Chain rule to reason about what
the intruder can learn from a variable’s content. Note that we do not assume
a-priori that a protocol satisfies its type assertions; this must be proven. We
construct these proofs using a specialized induction scheme that we derive from
our operational semantics.

Contributions. First, we develop a theory for constructing succinct proofs
of secrecy and strong authentication properties in an untyped security protocol
model without any bound on the number of parallel protocol executions. We
demonstrate the wide applicability of our theory by constructing proofs for a
number of case studies taken from literature.

Second, we formalize our theory in Isabelle/HOL and automate it such that
it supports the efficient interactive construction of machine-checked protocol
security proofs. Constructing proofs using our approach is almost two orders
of magnitude faster than when using Paulson’s Inductive Approach, i.e., hours
instead of weeks for typical protocols.

Third, we develop an algorithm for automatically generating protocol security
proofs that can be efficiently machine-checked by Isabelle. We implement this
algorithm in a tool called scyther-proof [32]. This tool can be seen as a
re-implementation of the Scyther tool [15], extending it with support for proof-
generation and verification in an untyped protocol model. Compared to the
other two existing approaches for the automatic generation of machine-checked
protocol security proofs [13, 23], our approach is orders of magnitude faster
than [13] and as fast as [23], but more expressive with respect to the security
properties supported. Moreover, the Isabelle/HOL formalization of our theory
and the proof-generation algorithm constitute the first framework that combines
the benefits of manual, machine-checkable, proof construction with the efficiency
of automatic protocol verification.

Finally, for both interactive and automated proofs, we have strong correct-
ness guarantees. All theorems constituting our security protocol verification
theory are formally derived from our operational semantics of security protocols
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in Isabelle/HOL. Hence, we have machine-checked proofs of their soundness.
Furthermore, the protocol proofs themselves are machine-checked, both those
interactively constructed and those automatically generated. Producing machine-
checkable proofs is especially important when using complex (semi-)decision
procedures whose correctness (both algorithmically and of the implementation)
is non-trivial. For example, proof checking in Isabelle gives us a guarantee
independent of any possible implementation errors in the scyther-proof tool.

Organization. In Section 2, we explain necessary background. In Section 3, we
define the operational semantics underlying our verification theory. In Section 4,
we derive and explain our verification theory. In Section 5, we automate proof
construction in our theory. We also report on case studies in both interactive
and automatic proof construction. We discuss related work in Section 6 and
draw conclusions in Section 7.

2 Background

After some notational preliminaries, we explain the general approach we use to
formalize our work in Isabelle/HOL.

2.1 Notational Preliminaries

For a set A, we denote its power set by P(A). We use standard notation for pairs
and define the projections πi(x1, x2) = xi for i ∈ {1, 2}. For a binary relation R,
we denote its reflexive transitive closure by R∗.

Let f be a function. We write dom(f) and ran(f) to denote f ’s domain and
range, respectively. We write f [a 7→ b] to denote the update of f at a, defined
as the function f ′ where f ′(x) = b when x = a and f ′(x) = f(x) otherwise.
We write f : X 9 Y to denote a partial function mapping all elements in
dom(f) ⊆ X to elements from Y . We model partial functions in a logic of total
functions by mapping all elements in X \ dom(f) to the undefined value ⊥,
different from all other values.

For a set S, we write S∗ to denote the set of finite sequences of elements from
S. We write 〈s1, . . . , sn〉 to denote the sequence of elements s1 through sn. For
a sequence s of length |s| and 1 ≤ i ≤ |s|, we write si to denote the i-th element
of s. We write s ˆ s′ for the concatenation of sequences s and s′. Abusing set
notation, we write x ∈ s if and only if ∃i. si = x. We write x <s y to denote
that x precedes y in the sequence s, i.e., ∃a b. s = a ˆ b∧x ∈ a∧ y ∈ b. Note that
<s is a strict total order on the elements in s if and only if s is duplicate-free.

To enhance readability, we identify sentences of the form

∀x1, . . . , xn. (A1 ∧ . . . ∧Am)⇒ B

with inference rules, written as

A1 · · · Am

B
,
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where the free variables x1, . . . , xn are implicitly universally quantified.

2.2 Formalization in Isabelle/HOL

Isabelle is a generic, tactic-based theorem prover. We use Isabelle’s implementa-
tion of higher-order logic, Isabelle/HOL [35], for our developments.

We formalize our protocol semantics as a conservative definitional extension
of higher-order logic (HOL). This guarantees the consistency of our formalization,
provided that HOL itself is consistent. Based on our semantics, we formalize
several domain-specific predicates that serve as the basic building blocks for
expressing security properties as HOL formulas. Such a formalization is some-
times called a shallow embedding [22] in the verification community, as we do
not introduce a separate concrete syntax for formalizing security properties, but
work directly with the formulas formalizing their semantics. The benefit of a
shallow embedding is that we can reuse the existing reasoning infrastructure for
HOL and only need to extend it to reason about our domain-specific predicates.
We extend the existing infrastructure by deriving inference rules (HOL theorems)
from our semantics that directly encode reasoning principles for constructing
protocol security proofs.

Note that all definitions, rules, and theorems in this paper are justified by cor-
responding definitions and machine-checked (soundness) proofs in Isabelle/HOL.
The corresponding proof scripts are distributed together with the scyther-proof
tool [32].

3 Security Protocol Model

In this section, we define our security protocol model. It consists of three parts:
(1) a protocol specification language based on role scripts (sequences of send
and receive steps) and pattern matching, (2) an operational semantics defining
protocol execution in the presence of an active intruder, and (3) a collection of
predicates for formalizing security properties like secrecy and authentication.

3.1 Protocol Specification

We model security protocols as sets of roles where each role is given by a
role script specified by a sequence of role steps. A role step sends or receives
messages matching given message patterns. We first describe the elements of
our specification language and then provide an example.

Let Const be a set of constants, Fresh be a set of messages to be freshly
generated (nonces, coin flips, etc.), and Var be a set of variables. We assume
that Const, Fresh, and Var are pairwise-disjoint. We further assume that the
set of variables Var is partitioned into two sets, AVar and MVar, denoting
agent variables and message variables. Agent variables are placeholders for
agent names, which are chosen when creating a new role instance, and message
variables are placeholders for messages (which may also be agent names) received
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during the execution of a role instance. We define the set Pat of message patterns
as

Pat ::= Const | Fresh | Var | h(Pat) | (Pat,Pat)

| {|Pat|}Pat | Pat−1 | k(Pat,Pat) | pk(Pat) | sk(Pat) .

We define vars(pt) as the set of all variables in the pattern pt. The constructor h(·)
denotes hashing and (·, ·) denotes pairing. We use the pattern constructor {|·|}· to
model the use of algorithms for public-key and symmetric encryption, private-key
and symmetric decryption, signing, and signature verification. The semantics of
this constructor is given in Section 3.2.3 by the inst function, which instantiates
message patterns to their corresponding messages.

Informally, {|p|}k denotes public-key encryption of p when k = pk(pt), signing
p when k = sk(pt), and symmetric encryption of p otherwise. Note that this
allows for a composed message such as the hash of some keying material to
be used as a symmetric key. For a, b ∈ AVar, the pattern k(a, b) denotes the
long-term symmetric key shared between a and b, pk(a) denotes a’s long-term
public key, and sk(a) denotes a’s long-term private key. We allow for freshly
generated asymmetric keypairs by letting n ∈ Fresh be the random seed, and
using pk(n) and sk(n) to denote the corresponding freshly generated public and
private keys. The pattern pt−1 denotes the inverse of the key denoted by the
pattern pt.

Let Label be a set of labels. We define the set RoleStep of role steps as

RoleStep ::= SendLabel(Pat) | RecvLabel(Pat) .

A send role-step Sendl(pt) denotes sending the message corresponding to the
instantiated pattern pt. A receive role-step Recvl(pt) denotes receiving a message
matching the pattern pt. The labels have no operational meaning: they serve
just to distinguish different send (or receive) steps that contain the same message
pattern. A role is a duplicate-free, finite sequence R of role steps such that

∀ Sendl(pt) ∈ R. ∀v ∈ vars(pt) ∩MVar.

∃l′, pt′. Recvl′(pt′) <R Sendl(pt) ∧ v ∈ vars(pt′) .

This states that every message variable in a role must be instantiated in a receive
step before its contents can be used in a send step. Note the we only restrict the
use of message variables. Agent variables and freshly generated messages can be
used freely in send steps. We denote the set of all roles by Role.

A protocol is a set of roles. We denote the set of all protocols by Protocol.
We illustrate protocol specifications with a simple challenge-response protocol.

Example 1 (CR Protocol). Let s ∈ AVar, k ∈ Fresh, and v ∈ MVar. We define

CR
def
= {C,S}, where

C
def
= 〈 Send1({|k|}pk(s)), Recv2(h(k)) 〉

S
def
= 〈 Recv1({|v|}pk(s)), Send2(h(v)) 〉 .

6



In this protocol, a client, modeled by the C role, chooses a fresh session key
k and sends it encrypted with the public key pk(s) of the server with whom
he wants to share k. The server, modeled by the S role, confirms the receipt
of k by returning its hash. We use this protocol as a running example. Hence,
in subsequent examples, the expressions s, k, v, C, S, and CR refer to those
introduced here.

3.2 Protocol Execution

During the execution of a protocol P , agents may execute any number of instances
of P ’s roles in parallel. We call each role instance a thread. Threads may generate
fresh messages, send messages to the network, and receive messages from the
network as specified by the role script they execute. We assume that the network
is completely controlled by an active Dolev-Yao style intruder. In particular, the
intruder learns every message sent and can block and insert messages. Moreover,
the intruder can access the long-term keys of arbitrarily many compromised
agents.

We provide an operational semantics for protocol execution in the presence of
the intruder, expressed as a state transition system, along the lines of [16]. The
ingredients of the operational semantics are messages, the system state, agent
threads, the intruder knowledge, and the transition system. We discuss each of
these in turn.

3.2.1 Messages

We assume an infinite set TID of thread identifiers. We use the thread identifiers
to distinguish between fresh messages generated by different threads. For a
thread identifier i and a message n ∈ Fresh to be freshly generated, we write n]i
to denote the fresh message generated by the thread i for n. We overload notation
and for A a set, we write A]TID to denote the set {a]i | a ∈ A, i ∈ TID}.

We assume given a set Agent of agent names disjoint from Const. We define
the set Msg of messages

Msg ::= Const | Fresh]TID | Agent | h(Msg) | (Msg,Msg)

| {|Msg|}Msg | k(Msg,Msg) | pk(Msg) | sk(Msg) .

We assume the existence of an inverse function on messages, where k−1 denotes
the inverse key of k. We have pk(x)−1 = sk(x) and sk(x)−1 = pk(x) for every
message x, and m−1 = m for all other messages m. Thus, depending on the key
k, the message {|m|}k denotes the result of signing, public-key encryption, or
symmetric encryption.

3.2.2 System State

The system state of our operational semantics is a triple (tr, th, σ). It consists
of (1) a trace tr recording the history of the executed role steps and the events
when messages are learned (i.e., become known for the first time) by the intruder,
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(2) a thread pool th that stores for every thread the role it executes and the
role steps still to be executed, and (3) a variable store σ recording the variable
contents of all threads. We define these parts below.

The set of all trace events is defined as

TraceEvent ::= St(TID,RoleStep) | Ln(P(Msg)) .

A step trace event St(i, s) denotes that the thread i executed the role step s.
A learn trace event Ln(M) denotes that the intruder learned the set of mes-
sages M . We use learn trace events to explicitly record the intruder message
deduction steps in the trace. We will see why we use sets of messages rather
than single messages later in the definition of our operational semantics. The
trace tr is a sequence of trace events. The thread pool th is a partial function

th : TID 9 (Role× RoleStep∗) ,

where dom(th) denotes the identifiers of all threads in the system. Where
unambiguous, we identify threads with their corresponding thread identifiers.
For i ∈ dom(th) and th(i) = (R, todo), R is the role executed by thread i and
todo is a suffix of R denoting the role steps still to be executed by thread i. The
variable store σ is a function

σ : Var× TID→ Msg

that stores for each variable v and thread identifier i the contents σ(v, i) assigned
to v by thread i. We define Trace as the set of all traces, ThreadPool as the set
of all thread pools, and Store as the set of all variable stores. Hence, a system
state is a triple

(tr, th, σ) ∈ Trace× ThreadPool× Store .

Note that we explicitly record the history of the protocol execution and the
intruder message deduction in the trace. As we will see later, this is crucial for
formulating our invariants. It allows us, for example, to formulate the statement
that if the intruder learns a message m by decrypting an encryption {|m|}k, then
he must have learned the inverse key k−1 before m.

3.2.3 Agent Threads

Let (tr, th, σ) be a system state and i ∈ dom(th) be a thread in the system.

The role of thread i is defined as roleth(i)
def
= π1(th(i)). Moreover, the thread i

instantiates a message pattern pt occurring in its role to the message instσ,i(pt)
as defined in Figure 1. During instantiation fresh message patterns are replaced
with the actual fresh messages and all variables are replaced with the content
assigned to them in thread i. Moreover, the key-inverse constructor on patterns
is replaced with applications of the key-inverse function on messages. This is
well-defined because messages are ground by definition.
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instσ,i(pt)
def
=



pt if pt ∈ Const

pt]i if pt ∈ Fresh

σ(pt, i) if pt ∈ Var

h(instσ,i(x)) if pt = h(x)

(instσ,i(x), instσ,i(y)) if pt = (x, y)

{|instσ,i(x)|}(instσ,i(k)) if pt = {|x|}k
(instσ,i(x))−1 if pt = x−1

k(instσ,i(a) , instσ,i(b)) if pt = k(a, b)

pk(instσ,i(a)) if pt = pk(a)

sk(instσ,i(a)) if pt = sk(a)

Figure 1: Definition of the message pattern instantiation function instσ,i(·).

3.2.4 Intruder Knowledge

We assume that the set of all agents Agent is partitioned into a set Compr of
compromised agents whose long-term keys are known to the intruder and a
set of uncompromised agents. Thus, the intruder can impersonate any agent
c ∈ Compr and act as a legitimate protocol participant. The initial intruder
knowledge IK0 is therefore defined as

IK0
def
= Const ∪Agent ∪

⋃
a∈Agent,c∈Compr

{pk(a), sk(c), k(a, c), k(c, a)} .

Note that we will define our operational semantics such that every trace starts
with the learn trace event Ln(IK0); i.e., the intruder always learns his com-
plete initial knowledge before any other event happens. Our semantics also
forces the intruder to explicitly perform all message deduction steps. Hence, a
trace tr records all messages learned by the intruder. The intruder knowledge
corresponding to tr is therefore

knows(tr)
def
=
⋃

Ln(M)∈tr
M .

Our operational semantics also ensures that whenever the intruder learns a pair
of messages (m1,m2), then he also learns its projections m1 and m2, provided
he does not know them already. Therefore, the intruder knowledge is closed
under the projection of pairs. This simplifies the reasoning in our security proofs
as it allows keeping the construction and projection of pairs implicit. We use
the function split : Msg→ P(Msg) to formalize this closure.

split(m)
def
=

{
{m} ∪ split(x) ∪ split(y) if m = (x, y)

{m} otherwise
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We define the set of all messages learned by the intruder from a message m in
the context of a trace tr as

learnstr(m)
def
= split(m) \ knows(tr) .

This states that the intruder learns all messages in split(m) that he did not
already know.

Example 2 (System state of the CR protocol). Assume that some agent a ∈
Agent executes the C role in thread i ∈ TID and has sent his first message
{|k]i|}pk(b) to establish the fresh session key k]i with an agent b ∈ Agent. Also,
assume that agent b executed the Recv1({|v|}pk(s)) step of the S role in the thread
j ∈ TID and received the first message that thread i sent. If i and j are the only
threads running, then the system state is of the form (tr, th, σ), for

th
def
= {i 7→ (C, 〈C2〉), j 7→ (S, 〈S2〉)}

σ
def
= σ′[(s, i) 7→ b, (s, j) 7→ b, (v, j) 7→ k]i]

tr
def
= 〈Ln(IK0), St(i,C1), Ln({{|k]i|}pk(b)}), St(j,S1)〉

and some σ′ ∈ Store.

3.2.5 Transition System

For a protocol P , the state transition relation −→ is defined by the transition
rules in Figure 2. We explain each rule in turn.

A Send transition is enabled whenever the next step of a thread i is Sendl(pt)
for some label l and message pattern pt. The trace tr is extended with two trace
events. The trace event St(i, Sendl(pt)) records that the send step has happened.
The trace event Ln(learnstr(instσ,i(pt))) records the set of messages learned by
the intruder from the sent message instσ,i(pt). We see here the benefit of being
able to record that the intruder learns a set of messages at once. Namely, we
can close the intruder knowledge under projection of pairs without explicitly
ordering the events denoting the learning of the pairs’ components. Note that
Ln(learnstr(instσ,i(pt))) is equal to Ln(∅) if and only if the intruder has already
learned the sent message instσ,i(pt) before this Send transition.

A Recv transition is enabled whenever the next step of a thread i is Recvl(pt),
for some label l and some message pattern pt, and the intruder knows a message
matching pt under the variable store σ. The trace tr is extended with the trace
event St(i,Recvl(pt)), recording that this receive step has happened.

A Pair, Hash, or Encr transition models the intruder learning respectively
a pair, a hash, or an encryption by constructing it by himself. He can do this
provided he does not yet know the constructed message. Because the intruder
knowledge is closed under split, no projection transition is needed.

A Decr transition models the decryption of an encrypted message with the
decryption key and learning all new messages accessible from the encrypted
message using projection of pairs.
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th(i) = (R, 〈Sendl(pt)〉 ˆ todo)

(tr, th, σ) −→ (tr ˆ 〈 St(i,Sendl(pt)), Ln(learnstr(instσ,i(pt))) 〉,
th[i 7→ (R, todo)], σ)

Send

th(i) = (R, 〈Recvl(pt)〉 ˆ todo) instσ,i(pt) ∈ knows(tr)

(tr, th, σ) −→ (tr ˆ 〈 St(i,Recvl(pt)) 〉, th[i 7→ (R, todo)], σ)
Recv

x, y ∈ knows(tr) (x, y) /∈ knows(tr)

(tr, th, σ) −→ (tr ˆ 〈 Ln({(x, y)}) 〉, th, σ)
Pair

m ∈ knows(tr) h(m) /∈ knows(tr)

(tr, th, σ) −→ (tr ˆ 〈 Ln({h(m)}) 〉, th, σ)
Hash

m, k ∈ knows(tr) {|m|}k /∈ knows(tr)

(tr, th, σ) −→ (tr ˆ 〈 Ln({{|m|}k}) 〉, th, σ)
Encr

{|m|}k ∈ knows(tr) k−1 ∈ knows(tr)

(tr, th, σ) −→ (tr ˆ 〈 Ln(learnstr(m)) 〉, th, σ)
Decr

Figure 2: Transition rules of the execution model.

There is no explicit transition rule for creating new threads. Instead, for
each thread pool that can occur in an execution, we construct a separate initial
state. Thus all possible thread pools with threads executing roles of the protocol
are represented in the set of initial states Q0(P ) of our system.

Q0(P )
def
= { (〈Ln(IK0)〉, th, σ) | (∀v ∈ AVar, i ∈ TID. σ(v, i) ∈ Agent) ∧

(∀i ∈ dom(th). ∃R ∈ P. th(i) = (R,R)) }

For each initial state (tr, th, σ) ∈ Q0(P ), the variable store σ is defined such
that every agent variable is instantiated with an agent name and each message
variable is instantiated with an arbitrary message. Thus, we model the set of
possible executions by instantiating all variables non-deterministically at the
beginning of a thread. The thread pool th is defined such that every thread
i ∈ dom(th) instantiates a role of P and has not executed any step yet.

For a protocol P , we define the set of reachable states as

reachable(P )
def
= {q | ∃q0 ∈ Q0(P ). q0 −→∗ q} .

3.3 Security Properties

We focus on security properties that are state properties. We say that a security
protocol P satisfies a security property φ if and only if φ holds for every reachable
state of P . Because we include the execution trace in the system state, many
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security properties from literature can be expressed as state properties, for
example, all the authentication properties from [17,30] and secrecy as in [16].

Note that when reasoning about security protocols and their properties,
we are interested in when individual messages were learned and not in what
messages were learned at the same time. Therefore, we introduce the set of
(proper) events.

Event ::= ST(TID× RoleStep) | LN(Msg)

Analogous to step trace events, a step event ST(i, s) denotes that thread i has
executed the role step s. In contrast to learn trace events, a learn event LN(m)
denotes that the intruder learned the single message m.

In the remainder of this paper, we simplify our notation and definitions by
identifying every tuple (i, s) ∈ TID× RoleStep with the step event ST(i, s) and
every message m ∈ Msg with the learn event LN(m). The previously defined
function knows : Trace→ P(Msg) can therefore be used to project a trace tr to
the set of all learn events occurring in tr.

The projection of a trace tr to the set of all step events occurring in tr is

steps(tr)
def
= {(i, s) | St(i, s) ∈ tr} .

The event order relation (≺tr) ⊆ Event × Event denotes the order of events
induced by the trace events in tr.

x ≺tr y
def
= ∃tr1 tr2. tr = tr1 ˆ tr2 ∧ (x ∈ knows(tr1) ∨ x ∈ steps(tr1))

∧ (y ∈ knows(tr2) ∨ y ∈ steps(tr2))

Note that ≺tr is a strict partial order on Event for every trace tr of a reachable
state (tr, th, σ) ∈ reachable(P ). We define �tr as the reflexive closure of ≺tr.

The event order allows us, for example, to formalize the statement “both the
encryption {|m|}k and the inverse key k−1 must have been learned before the
intruder learned m” as the proposition

{|m|}k ≺tr m ∧ k−1 ≺tr m .

Note that the event order also relates learn events with protocol step events. We
exploit this, for example, when stating and verifying temporal secrecy properties,
i.e., properties stating that a message is secret as long as a certain protocol step,
which leaks this message, has not been executed.

Security properties are formalized as logical formulas built using the previously
defined functions and relations. We illustrate this in the following example.

Example 3 (Security properties of the CR protocol). For a client who completes
its role with an uncompromised server, the CR protocol guarantees (1) the secrecy
of the session key k and (2) non-injective synchronization [17] (a strengthened
variant of non-injective agreement [30]) with the server. We formalize property (1)
by the formula φsec.

φsec(tr, th, σ)
def
= ∀i ∈ TID.

roleth(i) = C ∧ σ(s, i) /∈ Compr⇒ k]i /∈ knows(tr)
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Recall that C, s, and k, as well as S and v, were defined in Example 1.
Intuitively, property (2) states that whenever a client thread i communicates

with an uncompromised server and receives its last message, then there exists
a server thread that received the first message from client i and whose second
message was received by client i. We formalize this by the formula φauth.

φauth(tr, th, σ)
def
= ∀i ∈ TID.

roleth(i) = C ∧ σ(s, i) /∈ Compr ∧ (i,C2) ∈ steps(tr)

⇒ (∃j ∈ TID. roleth(j) = S ∧ σ(s, i) = σ(s, j) ∧ k]i = σ(v, j) ∧
(i,C1) ≺tr (j,S1) ∧ (j,S2) ≺tr (i,C2))

Recall that a role is a sequence of role-steps. Hence, C2 denotes the second step
of the C role.

4 Security Proofs Based on Decryption Chains

We now present our theory for proving security properties with respect to the
semantics described in Section 3. As we already stated in the introduction, our
theory consists of two key elements: the Chain rule and invariants constructed
from protocol-specific type assertions.

We present the Chain rule together with the rest of the core inference rules
in Section 4.1. We explain the intuition behind the Chain rule in Section 4.2 by
describing our strategy for proving secrecy and authentication properties and by
illustrating this strategy on the security properties of the CR protocol given in
Example 3. Note that the CR protocol is one of the few protocols where our
proof strategy works without auxiliary type assertions. The reasons for this will
become clear when we explain our use of type assertions in Section 4.3. We
conclude with a discussion of our proof construction method in Section 4.4.

4.1 Core Inference Rules

Our core inference rules are given in Figure 3. We have formally derived
all of these rules from our operational semantics under the assumption that
(tr, th, σ) ∈ reachable(P ).

The rules Kn1 and Kn2 state that if the intruder knows a pair of messages
(m1,m2), then he also knows m1 and m2. Similarly, the rules Ord1 and Ord2

state that if a pair of messages (m1,m2) was learned before the event e happened,
then both m1 and m2 were also learned before e happened. These four rules
allow us to reduce statements about the knowledge of pairs to the knowledge of
the contained nonces, hashes, and encryptions. These rules are sound because
the intruder knowledge is closed under the projection of pairs.

The rules Known and Exec follow trivially from the definitions of ≺tr, knows,
and steps. They formalize the intuition that, if an event e happened before some
other event, then e has happened.
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(m1,m2) ∈ knows(tr)

m1 ∈ knows(tr)
Kn1

(m1,m2) ∈ knows(tr)

m2 ∈ knows(tr)
Kn2

(m1,m2) ≺tr e

m1 ≺tr e
Ord1

(m1,m2) ≺tr e

m2 ≺tr e
Ord2

m ≺tr e

m ∈ knows(tr)
Known

(i, s) ≺tr e

(i, s) ∈ steps(tr)
Exec

e ≺tr e

false
Irr

e1 ≺tr e2 e2 ≺tr e3

e1 ≺tr e3

Trans

roleth(i) = R s′ <R s (i, s) ∈ steps(tr)

(i, s′) ≺tr (i, s)
Role

(i,Recvl(pt)) ∈ steps(tr)

instσ,i(pt) ≺tr (i,Recvl(pt))
Input

m ∈ knows(tr)

(m ∈ IK0) ∨
(∃x. m = h(x) ∧ x ≺tr h(x) ) ∨
(∃x k. m = {|x|}k ∧ x ≺tr {|x|}k ∧ k ≺tr {|x|}k ) ∨
(∃x y. m = (x, y) ∧ x ≺tr (x, y) ∧ y ≺tr (x, y) ) ∨
(∃R ∈ P. ∃ Sendl(pt) ∈ R. ∃i. roleth(i) = R ∧

chaintr({(i,Sendl(pt))}, instσ,i(pt), m) )

Chain

Figure 3: Core inference rules for decryption-chain reasoning, which hold under
the assumption that (tr, th, σ) ∈ reachable(P ).

chaintr(E, m′, m)
def
=

( m′ = m ∧ (∀e ∈ E. e ≺tr m ) ) ∨

(∃x k. m′ = {|x|}k ∧ (∀e ∈ E. e ≺tr {|x|}k) ∧ chaintr({{|x|}k, k−1}, x, m) ) ∨
(∃x y. m′ = (x, y) ∧ (chaintr(E, x, m) ∨ chaintr(E, y, m)))

Figure 4: Definition of the chain predicate using recursion over the message m′.
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The rules Irr and Trans formalize that ≺tr is a strict partial order. These
rules are sound because roles are duplicate-free and our execution model therefore
guarantees that all executed steps are unique and the intruder never learns the
same message twice.

The rule Role states that if a thread i that is an instance of role R has
executed role step s, then all the role steps s′ <R s have been executed before
s by the thread i. This rule is sound because both the Send and the Recv

transitions execute role steps in the order specified by the roles.
The rule Input states that if a thread i has executed a receive step Recvl(pt),

then the instantiated pattern pt was learned before Recvl(pt) was executed by
the thread i. This rule is sound because the Recv transition ensures that the
intruder knows the received message.

The rule Chain states that there are precisely five ways that an intruder can
learn a message m.

1. He knew m from the start.

2. m is a hash h(x) of the known message x and the intruder built h(x) himself
using the Hash transition.

3. m is an encryption {|x|}k of a known message x with a known key k and
the intruder built {|x|}k himself using the Encr transition.

4. m is a pair (x, y) of two known messages x and y and the intruder built
(x, y) himself using the Pair transition.

5. There was some step Sendl(pt) executed by some thread i such that the
intruder learned the sent message instσ,i(pt) and from this message he
learned m using zero or more decryptions and projections.

We prove the soundness of this case distinction by induction over the reachable
states (tr, th, σ) ∈ reachable(P ). The key idea behind Case (5), called the
decryption-chain case, is that the intruder can only learn a message by decrypting
an encryption that he did not build himself. Analogously, the intruder can only
learn a message by projecting a pair that he did not build himself. Thus,
whenever the intruder learns a message m by decrypting an encryption {|x|}k,
then he must have learned {|x|}k from a send step or by decrypting an encryption
or projecting a pair containing {|x|}k. As every message is of finite size, any such
chain of repeated decryptions and projections is of finite length.

We formalize the notion of decryption chains using the chain predicate defined
in Figure 4. For a set E ⊆ Event, the expression chaintr(E, m′, m) formalizes
that the intruder learned the message m using zero or more decryptions and
projections after he learned some message in split(m′), which he learned after
the events in E happened. The definition of chain distinguishes between three
cases.

1. m′ is the message m and the intruder learned m′ after the events in E, or

2. m′ is an encryption {|x|}k and the intruder learned m after he used the
inverse key k−1 to decrypt m′ = {|x|}k, which he learned after the events
in E, or
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3. m′ is a tuple (x, y) and the intruder learned m from a chain starting from
x or from a chain starting from y. The set E is unchanged in this case
because, in our protocol semantics, the messages x and y are learned at
the same time or before the tuple (x, y).

4.2 Proof Strategy

Suppose we want to prove that a protocol P satisfies a security property φ. Our
strategy for proving this consists of two main steps. First, we simplify the use of
the Chain rule by instantiating it for the protocol P . This entails specializing
the Chain rule for different outermost message constructors in its premise,
enumerating P ’s roles and their send steps in the conclusion, and completely
unfolding all occurrences of the chain predicate. Second, we prove that φ holds
for every reachable state of the protocol P by repeatedly applying the simplified
Chain rule to the messages that the intruder is supposed to know (e.g., received
messages). Combined with straightforward logical reasoning formalized in HOL,
this suffices to complete the proof in many cases.

The first step is completely mechanical. It allows us to share work between
different security proofs of the same protocol. Moreover, it yields a compact
description of the intruder’s message derivation capabilities in the context of a
given security protocol. We illustrate this first step on the CR protocol.

Example 4. Figure 5 shows the simplified instances of the Chain rule for the
CR protocol. These rules capture the intruder’s message derivation capabilities
in the context of the CR protocol. For example, the CR protocol does not send
private keys and long-term symmetric keys in an accessible position. Intuitively,
the intruder can therefore learn such keys only from his initial knowledge. The
rules SKChainCR and KChainCR, which were derived mechanically from the
Chain rule, justify this intuition. Analogously, the rule NChainCR shows that
there is exactly one way for the intruder to learn a nonce n]i. This nonce must
be the freshly generated key k]i that the client thread i sent encrypted in its
first step.

In the second step of our proof strategy, the Chain rule is used to prove the
security property of interest, φ. In general, there will be multiple premises of
the form m ∈ knows(tr) to which the Chain rule can be applied. Hence, a choice
must be made. A rule application cannot render a previously provable security
property unprovable. However, unnecessary applications of the Chain rule would
needlessly increase the size of the resulting proof. To find short, direct proofs, we
use the following strategy to prove both secrecy and authentication properties.

To prove secrecy properties, we use the Chain rule both for the message m to
be proven secret as well as for the keys that must be kept secret if m is not to
be decrypted. If the secrecy of some message depends on its authenticity (e.g.,
a key that is received), we use the proof strategy for authentication properties
outlined below.

To prove authentication properties, we use the Chain rule on the received
message m to justify why its receipt implies the existence of a partner thread
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sk(a) ∈ knows(tr)

sk(a) ∈ IK0

SKChainCR

k(a, b) ∈ knows(tr)

k(a, b) ∈ IK0

KChainCR

n]i ∈ knows(tr)

roleth(i) = C ∧ (i,C1) ≺tr {|k]i|}pk(σ(s,i)) ≺tr k]i

∧ sk(σ(s, i)) ≺tr k]i ∧ k = n

NChainCR

h(x) ∈ knows(tr)

(x ≺tr h(x)) ∨
(∃j. roleth(j) = S ∧ (j,S2) ≺tr h(σ(v, j)) = h(x))

HChainCR

{|m|}x ∈ knows(tr)

(m ≺tr {|m|}x ∧ x ≺tr {|m|}x) ∨
(∃j. roleth(j) = C ∧ (j,C1) ≺tr {|k]j|}pk(σ(s,j)) = {|m|}x)

EChainCR

Figure 5: Simplified instances of the Chain rule for the CR protocol.

that sent m. If the authenticity of a message depends on the secrecy of another
message (e.g., the key used for a MAC), then we use the strategy for secrecy
properties outlined above.

We also factor out repeated subproofs, such as proofs about secrecy properties.
We do this by introducing additional lemmas that generalize the properties proven
by the repeated subproofs.

Note that we may switch multiple times between proving secrecy properties
and proving authentication properties. In general, this does not result in cyclic
dependencies between proofs because these proofs concern different messages.
Some cases where decryption-chain reasoning fails could however be interpreted
as a cyclic dependency of a proof on itself. We discuss this later in Section 4.4.

We illustrate the second step of our proof strategy on the two security
properties of the CR protocol described in Example 3. We first prove a secrecy
property. Afterwards, we prove an authentication property and show how we
can use the already proven secrecy property to prove two secrecy subproofs.

Example 5 (Proof of session-key secrecy). We prove ∀q ∈ reachable(CR). φsec(q),
for φsec from Example 3.

Proof. Suppose the secrecy property φsec does not hold for some state (tr, th, σ) ∈
reachable(CR). Then there is a thread i such that roleth(i) = C, σ(s, i) /∈ Compr,
and k]i ∈ knows(tr). Hence, the intruder must have learned k]i.

There is only one premise, k]i ∈ knows(tr), to which we can apply the Chain

rule. Instead of applying the Chain rule directly, we apply the corresponding
simplified instance, NChainCR. From its conclusion, we see that the intruder
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can learn k]i only by decrypting the message {|k]i|}pk(σ(s,i)), which implies that
sk(σ(s, i)) ≺tr k]i.

Using Known, we have that sk(σ(s, i)) ∈ knows(tr) and, from SKChainCR, we
conclude sk(σ(s, i)) ∈ IK0. Given the definition of IK0, we have σ(s, i) ∈ Compr,
which contradicts our assumptions.

We therefore conclude that φsec holds for all reachable states of the CR
protocol.

Example 6 (Proof of non-injective synchronization). We prove that ∀q ∈
reachable(CR). φauth(q), where φauth is defined in Example 3.

Proof. We must show that for every state (tr, th, σ) ∈ reachable(CR) and every
thread i such that roleth(i) = C, σ(s, i) /∈ Compr, and (i,C2) ∈ steps(tr), there
is a thread j such that syncWith(j) holds.

syncWith(j)
def
= roleth(j) = S ∧ σ(s, i) = σ(s, j) ∧ k]i = σ(v, j)

∧ (i,C1) ≺tr (j,S1) ∧ (j,S2) ≺tr (i,C2)

We prove this by applying the Chain rule to the received messages.
From (i,C2) ∈ tr, we have that h(k]i) ≺tr (i,C2) using the Input rule and

h(k]i) ∈ knows(tr) using the Known rule. Applying the HChainCR rule yields
the following conclusion, whose disjuncts we have numbered.

(1) (k]i ≺tr h(k]i))

(2) ∨ (∃j ∈ TID. roleth(j) = S ∧ (j,S2) ≺tr h(σ(v, j)) ∧ h(σ(v, j)) = h(k]i) ) .

Case (1) is where the intruder builds the received message by himself. Using
the Known rule, we have that k]i ∈ knows(tr). This contradicts the secrecy
property we proved in Example 5.

Case (2) implies that there is a server thread j, roleth(j) = S, that sent the
message that the client thread i received. We show that client i synchronizes
with server j.

From h(k]i) = h(σ(v, j)) and the injectivity of h(·), it follows that k]i = σ(v, j).
From (j,S2) ≺tr h(σ(v, j)), h(σ(v, j)) = h(k]i), and h(k]i) ≺tr (i,C2), it follows
that (j,S2) ≺tr (i,C2). To establish syncWith(j), it remains to be shown that
the first message of client i was received in the first step of server j; i.e.,
σ(s, i) = σ(s, j) and (i,C1) ≺tr (j,S1).

From (j,S2) ≺tr (i,C2), we have (j,S1) ≺tr (j,S2) using the rules Exec and
Role. Hence, {|k]i|}pk(σ(s,j)) ≺tr (j,S1) using the rules Exec and Input and the
fact k]i = σ(v, j). From the Known rule, we have {|k]i|}pk(σ(s,j)) ∈ knows(tr).
Applying the EChainCR rule yields

(2.1) ( k]i ≺tr {|k]i|}pk(σ(s,j)) ∧ pk(σ(s, j)) ≺tr {|k]i|}pk(σ(s,j)) )

(2.2) ∨ (∃i′. roleth(i′) = C ∧ (i′,C1) ≺tr {|k]i′|}pk(σ(s,i′)) ∧
{|k]i′|}pk(σ(s,i′)) = {|k]i|}pk(σ(s,j)) ) .
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Case (2.1) states that the intruder fakes the message, which again contradicts
the secrecy property proven in Example 5 due to k]i ≺tr {|k]i|}pk(σ(s,j)) and the
rule Known.

Case (2.2) implies i′ = i since k]i′ = k]i. Hence, we have

(i,C1) ≺tr {|k]i|}pk(σ(s,i)) = {|k]i|}pk(σ(s,j)) ≺tr (j,S1) .

This implies that σ(s, i) = σ(s, j) and (i,C1) ≺tr (j,S1), which concludes the
proof.

4.3 Type Assertions

The proof strategy outlined in the previous subsection relies on our ability
to instantiate the Chain rule and completely unfold its conclusion. This is
straightforward in our CR example because it does not have a send step with a
variable in an accessible position, i.e., a position that is neither below a hash nor
below an encryption-key position.

However, most protocols do have send steps with variables in accessible
positions and this results in expressions of the form chaintr(E, σ(v, i), m) in
the conclusions of the simplified Chain rule instances. In general, σ(v, i) can
be an arbitrary message; hence, there may be a decryption chain starting from
σ(v, i) and resulting in m. However, for a concrete protocol, the assumption
that σ(v, i) is an arbitrary message is too pessimistic because the set of possible
instantiations of protocol variables is restricted by both the protocol specification
and the operational semantics. What we are missing to completely unfold these
chaintr(E, σ(v, i), m) expressions is a formalization of these restrictions. We
capture these using invariants that are constructed from protocol-specific type
assertions.

We explain our use of type assertions in three parts. First, we show how we
formalize type assertions. Then, we show how we use them to completely unfold
the conclusion of Chain rule instances. Finally, we give a theorem for proving
the soundness of type assertions using decryption-chain reasoning.

4.3.1 Syntax and Semantics of Type Assertions

A type is a term constructed according to the following grammar.

Type ::= Const | Ag | Role.Fresh | (Type,Type) | h(Type) | {|Type|}Type

| k(Type,Type) | pk(Type) | sk(Type) | Type ∪ Type | kn(RoleStep)

Intuitively, types denote sets of messages. For every global constant γ ∈ Const,
the type γ denotes the set {γ}. The type Ag denotes the set of all agent names.
The type R.f denotes all fresh messages named f that were generated by some
thread executing role R. The type constructors (·, ·), h(·), {| · |}·, k(·), pk(·), and
sk(·) reflect message constructors to the type level. The type α ∪ β denotes the
sum of the two types α and β. We use type-sums to type variables that are
instantiated with messages of different types.
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The denotation of a type kn(s) is context-dependent. It depends on the
system state and the thread i whose variables’ instantiation we are specifying.
The denotation of kn(s) is the set of all messages known to the intruder before
the role step s was executed by the thread i. We use kn(s) types to account for
the interaction with the active intruder, as we illustrate in the following example.

Example 7 (Type assertion). The variable v of the server role S of the CR
protocol is always instantiated with messages of type C.k ∪ kn(S1).

Note that the type C.k does not cover all possible instantiations of v. It covers
all instantiations that occur when receiving messages sent by client threads. The
type-sum with kn(S1) also covers those instantiations that are the result of
receiving messages constructed by the intruder. For such an instantiation σ, the
variable v of a thread i executing the S role is obviously not guaranteed to be
instantiated with some message k]j that was freshly generated by some thread j
executing the C role. However, it is guaranteed that the intruder knew σ(v, i)
before (i,S1) was executed, as he constructed the received message himself.

In general, we construct the type of a variable v as follows. We use type
constructors other than kn(·) to specify the shape of v’s instantiations which
result from receiving messages sent by other threads that execute protocol roles.
We use the kn(s) type to account for message parts that could be injected by
the intruder, where the role step s is the step where v is instantiated. This
construction works in all our case studies. Moreover, we can even automatically
infer the types of almost all variables in our case studies using a simple heuristic.

Formally, the meaning of a type is given by the type interpretation function
[[·]], which associates to every type γ the set of messages [[γ]]iq denoted by the
type γ in the context of a thread i ∈ TID and a system state q = (tr, th, σ).

[[γ]]iq
def
=



{γ} if γ ∈ Const

Agent if γ = Ag

{n]j | roleth(j) = R} if γ = R.n

{h(x) | x ∈ [[α]]iq} if γ = h(α)

{(x, y) | x ∈ [[α]]iq ∧ y ∈ [[β]]iq} if γ = (α, β)

{{|x|}k | x ∈ [[α]]iq ∧ k ∈ [[β]]iq} if γ = {|α|}β
{k(x, y) | x ∈ [[α]]iq ∧ y ∈ [[β]]iq} if γ = k(α, β)

{pk(x) | x ∈ [[α]]iq} if γ = pk(α)

{sk(x) | x ∈ [[α]]iq} if γ = sk(α)

[[α]]iq ∪ [[β]]iq if γ = α ∪ β
{m | m ≺tr (i, s)} if γ = kn(s)

We specify all type assertions for a single protocol together as a typing, which
is a partial function ty : (Role×Var) 9 Type. A state is well-typed with respect
to a typing ty if and only if every variable is instantiated with a message denoted
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h(x) ∈ knows(tr)

(x ≺tr h(x) )

∨ (∃j. roleth(i) = C ′ ∧ (j,C ′1) ≺tr {|σ(c, j), k]j|}pk(σ(s,j))
∧ chaintr({{|σ(c, j), k]j|}pk(σ(s,j)), sk(σ(s, j))}, σ(c, j), h(x)) )

∨ (∃j. roleth(i) = S ′ ∧ (j,S ′2) ≺tr {|σ(v, j)|}pk(σ(c,j))
∧ chaintr({{|σ(v, j)|}pk(σ(c,j)), sk(σ(c, j))}, σ(v, j), h(x)) )

HChainCR′

Figure 6: Incomplete unfolding of the HChainCR′ rule.

by its type; that is

well-typedty(tr, th, σ)
def
= ∀(i, s) ∈ steps(tr). ∀v ∈ vars(s).

σ(v, i) ∈ [[ty(roleth(i), v)]]i(tr,th,σ) .

We assume that vars is extended to role steps such that vars(s) denotes the
variables of the message pattern of the role step s.

A protocol P is well-typed with respect to a typing ty if and only if all its
reachable states are well-typed with respect to ty; that is

well-typedty(P )
def
= ∀q ∈ reachable(P ). well-typedty(q) .

Conversely, we say that a typing ty is sound with respect to a protocol P if and
only if P is well-typed with respect to ty.

We illustrate the use of type assertions on the CR′ protocol, which is identical
to the CR protocol from Example 1 except that in the first message the client
identity is also sent and the server uses public key encryption to return the
session key.

Example 8 (CR′ Protocol). We define CR′
def
= {C ′,S ′}, where C ′ and S ′ are

defined as follows for c, s ∈ AVar, k ∈ Fresh, and v ∈ MVar.

C ′
def
= 〈 Send1({|c, k|}pk(s)), Recv1({|k|}pk(c)) 〉

S ′
def
= 〈 Recv1({|c, v|}pk(s)), Send2({|v|}pk(c)) 〉

The CR′ protocol is well-typed with respect to the typing

CR′ty
def
= { (C ′, c) 7→ Ag, (C ′, s) 7→ Ag,

(S ′, c) 7→ Ag, (S ′, s) 7→ Ag, (S ′, v) 7→ (C ′.k ∪ kn(S ′1)) } .

We provide a formal proof of this claim in Example 10 after we have shown how
to exploit type assertions and how to prove their soundness.
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4.3.2 Exploiting Type Assertions

The following example illustrates the problem that we will solve using type
assertions.

Example 9. As the CR′ protocol does not send any hashes, one may expect its
Chain rule for hashes to be

h(x) ∈ knows(tr)

x ≺tr h(x)
HChainCR′

.

However, as we can see in Figure 6, there are also two decryption-chain cases,
subsequently named (a) and (b), that arise when instantiating and unfolding
the Chain rule. Case (a) states that it may be possible to learn h(x) from the
content σ(c, j) of the agent variable c that the client sends in its first message.
Case (b) states that it may be possible to learn h(x) from the content σ(v, j) of
the variable v that the server sends in its second message.

We can remove both of these cases, as they are always false. This is obvious
for Case (a), as agent variables contain agent names and agent names are never
equal to hashes. For Case (b), the intuition is that the intruder must have faked
the message received in step (j,S ′1) for the variable σ(v, j) to contain the hash
h(x). Hence, the intruder must have known h(x) already before (j,S ′1) was
executed. This contradicts the statement in Case (b) that the intruder did not
know h(x) before step (j,S ′2).

Formally, the above arguments exploit the fact that the CR′ protocol is
well-typed with respect to the type assertion CR′ty. From this and (tr, th, σ) ∈
reachable(CR′), we have well-typedCR′

ty
(tr, th, σ), which we use as follows to show

that the cases (a) and (b) are contradictory.
In Case (a), we use well-typedCR′

ty
(tr, th, σ) to derive

σ(c, j) ∈ [[CR′ty(C ′, c)]]j(tr,th,σ) ,

which is equivalent to σ(c, j) ∈ [[Ag]]j(tr,th,σ) and hence also to σ(c, j) ∈ Agent.

Therefore, only the first case of the chain predicate applies, which implies
σ(c, j) = h(x) and hence h(x) ∈ Agent, which is false. Thus we can remove the
first decryption-chain case in Figure 6.

In Case (b), we use well-typedCR′
ty

(tr, th, σ) to show that

σ(v, j) ∈ [[C ′.k ∪ kn(S ′1)]]j(tr,th,σ), which is equivalent to

(1) (∃i. roleth(i) = C ′ ∧ σ(v, j) = k]i) ∨
(2) (σ(v, j) ≺tr (j,S ′1)) .

For subcase (1), we can proceed as for the agent variable above. We unfold the
chain predicate and conclude k]i = h(x), which is a contradiction. For subcase
(2), we conclude

σ(v, j) ≺tr (j,S ′1) ≺tr (j,S ′2) ≺tr {|σ(v, j)|}pk(σ(c,j)) ∧
chaintr({{|σ(v, j)|}pk(σ(c,j)), sk(σ(c, j))}, σ(v, j), h(x))

22



m ∈ knows(tr) well-typedty(tr, th, σ)

(m ∈ IK0) ∨
(∃x. m = h(x) ∧ x ≺tr h(x) ) ∨
(∃x k. m = {|x|}k ∧ x ≺tr {|x|}k ∧ k ≺tr {|x|}k ) ∨
(∃x y. m = (x, y) ∧ x ≺tr (x, y) ∧ y ≺tr (x, y) ) ∨
(∃R ∈ P. ∃ Sendl(pt) ∈ R. ∃j. roleth(j) = R ∧

(∀v ∈ vars(pt). σ(v, j) ∈ [[ty(R, v)]]j(tr,th,σ)) ∧

chaintr({(j,Sendl(pt))}, instσ,j(pt), m) )

TypChain

Figure 7: The TypChain rule, a typed version of the Chain rule.

m ≺tr e e ∈ E chaintr(E, m, x)

false
ChainIrr

Figure 8: The ChainIrr rule, which holds for (tr, th, σ) ∈ reachable(P ).

by combining all facts and additionally using the rules Exec and Role to
derive (j,S ′1) ≺tr (j,S ′2). Note that chaintr(E, m, m

′) implies that there exists
an x ∈ split(m) such that e ≺tr x for every e ∈ E. Hence there exists an
x ∈ split(σ(v, j)) such that x ≺tr (j,S ′1) ≺tr {|σ(v, j)|}pk(σ(c,j)) ≺tr x. This
contradicts the irreflexivity of ≺tr and we can also remove the second decryption-
chain case in Figure 6.

In general, we exploit type assertions by instantiating the rule TypChain

given in Figure 7 instead of the Chain rule in the first step of our proof strategy.
The TypChain rule is a version of the Chain rule that additionally states that
all variables contained in send steps are instantiated according to their type.
Hence, whenever we encounter an expression of the form chaintr(E, σ(v, j), m)
in a decryption-chain case, we can proceed by instantiating σ(v, j) with an
arbitrary message m corresponding to v’s type and simplifying the resulting
cases as follows.

The type constructors corresponding to the message constructors constrain
the structure of m sufficiently that we can unfold the chain predicate. A union-
type α ∪ β results in an additional case split. For a kn(s) type, we can reduce
the case to false, provided that s is the role step where v is instantiated. We
ensure this side condition by constructing our type assertions accordingly. To
justify the reduction to false, we use ChainIrr rule given in Figure 8, which
generalizes the argument used in the example above.
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4.3.3 Proving the Soundness of Type Assertions

The core inference rules together with the rules for exploiting type assertions
allows one to prove security properties for a protocol P under the assumption
that P is well-typed for some fixed type assertion ty. Such a proof can be seen
as a proof in a typed model, which ensures by definition that variables are only
instantiated according to their specified type. However, such a proof does not
exclude the existence of type-flaw attacks, which are reachable states that are
not well-typed and violate the security property. To exclude the existence of
type-flaw attacks, we must prove the soundness of the type assertion ty; i.e., we
must prove that

∀q ∈ reachable(P ). well-typedty(q) .

We prove this by induction over the reachable states of the protocol P . The
only non-trivial case of this induction stems from the Recv transition. It is
the only transition where a thread i could add a role step s that instantiates a
variable v ∈ vars(s) to the trace. If v is an agent variable, then it suffices to show
that it is mapped to the Ag type, as agent variables are always instantiated with
agent names. If v is a message variable, then we exploit that the intruder must
know the message m received by the role step s and that, from the induction
hypothesis, the current state is well-typed with respect to the type assertion
ty. Hence, we can use the TypChain rule to establish the possible origins of
the received message m. If the type assertion ty is sound, then we expect the
kn part of v’s type to cover the case where the intruder fakes m and the rest
of v’s type to cover the case where the message is (part of) a message sent by
another thread. The following theorem, proven in Isabelle/HOL, formalizes this
argument.

Theorem 1 (Soundness of Type Assertions). A protocol P is well-typed with
respect to the typing ty provided the following two propositions hold.

1. For every R ∈ P , s ∈ R, and v ∈ vars(s)∩AVar, it holds that ty(R, v) = Ag.

2. For every R ∈ P , s ∈ R, and v ∈ vars(s) ∩MVar, every state (tr, th, σ) ∈
reachable(P ), every thread i ∈ dom(th), and all sequences of role steps
done and rest, the assumptions

• instσ,i(pt) ∈ knows(tr)

• th(i) = (R, 〈Recvl(pt)〉 ˆ rest)

• R = done ˆ 〈Recvl(pt)〉 ˆ rest

• v ∈ (vars(pt) ∩MVar) \
⋃
s∈done vars(s)

• well-typedty(tr, th, σ)

imply
σ(v, i) ∈ [[ty(R, v)]]i(trˆ〈 St(i,Recvl(pt)) 〉, th, σ) .

We illustrate the use of this theorem in the following example.
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{|m|}x ∈ knows(tr) well-typedCR′
ty

(tr, th, σ)

(m ≺tr {|m|}x ∧ x ≺tr {|m|}x) ∨
(∃j. roleth(j) = C ′ ∧ (j,C ′1) ≺tr {|σ(c, j), k]j|}pk(σ(s,j)) = {|m|}x

∧ σ(c, j) ∈ Agent ∧ σ(s, j) ∈ Agent ) ∨
(∃j. roleth(j) = S ′ ∧ (j,S ′2) ≺tr {|σ(v, j)|}pk(σ(c,j)) = {|m|}x

∧ σ(c, j) ∈ Agent ∧ σ(v, j) ∈ [[C ′.k ∪ kn(S ′1)]]i(tr,th,σ) )

EChainCR′

Figure 9: The EChainCR′ rule derived by instantiating the TypChain rule with
an arbitrary encryption, the CR′ protocol, and the CR′ty typing.

Example 10 (Soundness of the CR′ty assertion). Recall the typing

CR′ty
def
= { (C ′, c) 7→ Ag, (C ′, s) 7→ Ag,

(S ′, c) 7→ Ag, (S ′, s) 7→ Ag, (S ′, v) 7→ (C ′.k ∪ kn(S ′1)) } .

We prove that the protocol CR′ is well-typed with respect to this typing.

Proof. Applying Theorem 1 yields five cases. The first four cases deal with the
agent variables of the roles C ′ and S ′ and are trivial. The fifth case deals with
the instantiation of variable v in step (i,S ′1) of some thread i executing the S ′

role.
We use the assumption instσ,i({|c, v|}pk(s)) ∈ knows(tr) provided by Theorem 1

to show that
σ(v, i) ∈ [[C ′.k ∪ kn(S ′1)]]i(trˆ〈 St(i,S ′

1) 〉, th, σ)

holds for every state (tr, th, σ) ∈ reachable(CR′) satisfying well-typedCR′
ty

(tr, th, σ).

After applying the EChainCR′ rule given in Figure 9 to

{|σ(c, i), σ(v, i)|}pk(σ(s,i)) ∈ knows(tr)

and dropping some conjuncts that are not required in the remainder of the proof,
we are left with the following conclusion.

(1) (σ(c, i), σ(v, i)) ≺tr {|σ(c, i), σ(v, i)|}pk(σ(s,i)) ) ∨
(2) (∃j. roleth(j) = C ′ ∧ {|σ(c, j), k]j|}pk(σ(s,j)) = {|σ(c, i), σ(v, i)|}pk(σ(s,i))) ) ∨
(3) (∃j. roleth(j) = S ′ ∧ σ(v, j) ∈ [[C ′.k ∪ kn(S ′1)]]j(tr,th,σ)

∧ {|σ(v, j)|}pk(σ(c,j)) = {|σ(c, i), σ(v, i)|}pk(σ(s,i)) )

Case (1) states the intruder could have faked the received message. This
case is covered by the kn(S ′1) part of v’s type, as we have σ(v, i) ∈ knows(tr)
using rules Ord2 and Known. Hence, σ(v, i) ∈ [[kn(S ′1)]]i(trˆ〈 St(i,S ′

1) 〉, th, σ), as

σ(v, i) ≺trˆ〈 St(i,S ′
1) 〉 (i,S ′1) ⇔ σ(v, i) ∈ knows(tr) .
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Case (2) states that the received message could have been sent by a client
thread j. This case is covered by the C ′.k part of v’s type, as we have

roleth(j) = C ′ ∧ σ(v, i) = k]j

due to the injectivity of {| · |} and pairing.
Case (3) states that a server thread j could have sent the message matching

the received message in his second step. In a typed model, this case would be
impossible, as the types of the sent and received messages do not match. In our
untyped model, a similar argument applies. However, it involves an additional
case, as the types may not match due to the interaction with the intruder.

Formally, we have σ(v, j) = (σ(c, i), σ(v, i)) due to the injectivity of {| · |}.
Given this equality, we have

(σ(c, i), σ(v, i)) ∈ [[C ′.k ∪ kn(S ′1)]]j(tr,th,σ) .

We have (σ(c, i), σ(v, i)) ∈ [[kn(S ′1)]]j(tr,th,σ) because [[C ′.k]]j(tr,th,σ) does not contain

any pairs. Unfolding the definition of [[·]] yields

(σ(c, i), σ(v, i)) ≺tr (j,S ′1) ,

which implies σ(v, i) ∈ knows(tr) due to the rules Ord2 and Known. Hence,
σ(v, i) ∈ [[kn(S ′1)]]i(trˆ〈 St(i,S ′

1) 〉, th, σ), which concludes the proof of Case (3).

Thus, the CR′ protocol is well-typed with respect to the typing CR′ty.

4.4 Discussion of Decryption-Chain Reasoning

We call the proof strategy that we described in the previous two sections
decryption-chain reasoning. Decryption-chain reasoning suffices for verifying
many security protocols; we give examples in our case studies in Section 5.2.4.

In contrast to other security protocol verification methods, decryption-chain
reasoning does not require a typed model. Nevertheless, the notion of types
plays an important role in decryption-chain reasoning. Types yield a uniform
construction of protocol-specific invariants (i.e., well-typedness with respect to
a protocol-specific typing) that are strong enough to reason about messages of
unbounded size. Said differently, decryption-chain reasoning illustrates that we
can shift the notion of types from being an a-priori assumption on the semantics
of security protocol execution to serving as a powerful tool for constructing
security proofs.

Nevertheless, decryption-chain reasoning is not a silver bullet. It may fail
in two ways. (1) A protocol may not be typeable; i.e., there does not exist a
typing with respect to which the protocol is well-typed. (2) The case distinctions
provided by the TypChain rule are too weak to prove the security property of
interest.

Problem (1) is inherent to all approaches based on types. It must be solved
per protocol by extending the set of types such that all reachable states are
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described. Afterwards, our approach of using the kn(·) type constructor to
describe the intruder interaction can be applied again.

Problem (2) exists as, even for typeable protocols, decryption-chain reasoning
is necessarily incomplete. If it were complete, we could then decide the secrecy
problem for typeable protocols because we could enumerate both proofs as well
as attacks. This would contradict the undecidability of the secrecy problem
with unbounded sessions and nonces [20], as the proof also applies to typeable
protocols.

The following example illustrates the incompleteness of decryption-chain
reasoning for a typeable protocol.

Example 11 (Case distinctions without progress). Consider the (artificial)

protocol P
def
= {I,R}, where

I
def
= 〈Send1({|n, n|}k(a,b))〉

R
def
= 〈Recv1({|v, w|}k(a,b)),Send2({|v, n′|}k(a,b))〉

and n, n′ ∈ Fresh, v ∈ MVar, and a, b ∈ AVar. We can show that a and b have
type Ag, v has type I.n∪ kn(R1), and w has type I.n∪R.n′ ∪ kn(R1). Moreover,
the contents of variable v in role R are obviously secret, provided that both a
and b are uncompromised. However, we cannot prove the above secrecy property
using decryption-chain reasoning.

The problem in this example is that the message sent in step R2 can be
received in step R1. Hence, there can be an unbounded chain of threads executing
the R role where each thread receives the message that the previous thread sent.
This unbounded chain of threads manifests itself during proof construction as
follows. At some point in the proof construction, the only inference step left is to
apply the TypChain rule to determine the possible origin of the message m that
a thread i executing the R role receives in its first step. After this application,
we are left with a case stating that m was sent in the second step of some other
thread j also executing the R role. In this case, our proof makes no progress, as
we know as much about thread j as we already knew about thread i before the
case distinction. Said differently, the proof of the authenticity of the message m
that is sent in the second step of some role R depends on itself, when considering
the limited perspective of decryption-chain reasoning.

Note that we can resort to induction over the reachable states to reason about
protocols like the one above. We can then use decryption-chain reasoning for
the individual induction steps. Moreover, the above problem is of a theoretical
nature. Many practical protocols have an intended message flow that is acyclic
and ensure that this intended message flow is achieved, e.g., using tagging.

Example 12 (Ensuring an acyclic message flow). We can ensure an acyclic

message flow for protocol P from Example 11 by redefining P
def
= {I,R} as

I
def
= 〈Send1({|1, n, n|}k(a,b))〉

R
def
= 〈Recv1({|1, v, w|}k(a,b)),Send2({|2, v, n′|}k(a,b))〉
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for 1, 2 ∈ Const. After inserting these tags, decryption-chain reasoning works
without resorting to induction over the reachable states.

5 Machine-Checked Security Proofs

In this section, we present two approaches for constructing machine-checked
security proofs. The first approach uses Isabelle/HOL to interactively construct
the corresponding proof script using our verification theory. The second approach
uses an algorithm to automatically generate the corresponding Isabelle/HOL
proof script. We discuss both approaches below.

5.1 Interactive Proof Construction

To simplify the interactive construction of security proofs, we extended Isabelle’s
proof language [44] with commands to define roles, protocols, and type assertions
as well as a tactic that automates the application of the TypChain rule.

The commands to define roles and protocols introduce corresponding con-
stants and set up Isabelle’s automation infrastructure to simplify reasoning about
the steps and roles of the protocol. The command to define a type assertion
automatically derives the simplified instances of the TypChain rule under the
assumption that this type assertion is sound for the given protocol.1 Provided
that this soundness assumption holds, it can be discharged in an interactive proof
by applying Theorem 1 and using decryption-chain reasoning for the resulting
proof obligations, i.e., the theorem’s premises.

Case distinctions on the possible origins of a message m ∈ knows(tr) are
automated using the tactic “sources”. A call “sources m” selects the simplified
TypChain rule instance corresponding to the outermost constructor of the
message m and uses it to enumerate the possible origins of m. The resulting
cases are discharged automatically using Isabelle’s built-in tools, if possible.
Otherwise, they are named and presented to the user for further processing.

The following example and the proofs in our case studies [32], show that
our mechanization of decryption-chain reasoning allows for succinct, machine-
checkable security proofs.

Example 13. The session-key secrecy proof given in Example 5 corresponds
to the proof script given in Figure 10, which is checked by Isabelle in under a
second. Note that we have taken minor liberties in pretty-printing to improve
readability.

Line 1 begins the lemma, named “client-k-secrecy”. The statement “(in
CR-state)” expresses that this lemma is proven under the assumption that
(tr, th, σ) is a reachable state of the CR protocol. Lines 2–6 state the secrecy
property. The expression NO( ′′k ′′, i) denotes the freshly generated message k]i.
The expression AV( ′′s ′′) denotes the agent variable s.

1The type assertion soundness assumptions and the simplified TypChain rule instances
are managed using Isabelle’s locale infrastructure [2].
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1: lemma (in CR-state) client-k-secrecy:
2: assumes
3: “roleth(i) = C”
4: “σ(AV( ′′s ′′), i) /∈ Compr”
5: “NO( ′′k ′′, i) ∈ knows(tr)”
6: shows “False”
7: proof(sources “NO( ′′k ′′, i)”)
8: case C1-k thus “False”
9: proof(sources “SK (σ(AV( ′′s ′′), i))”)

10: case ik0 thus “False” by auto
11: qed
12: qed

Figure 10: Proof script of session-key secrecy for the CR protocol.

Lines 7–12 give the proof, which has the same structure as the pen-and-paper
proof from Example 5. Isabelle supports its interactive construction as follows.
After parsing the lemma’s statement, Isabelle prints all assumptions and the
goal that we must prove. There is only one assumption to which we can apply
the TypChain rule2, which we do in Line 7. Isabelle computes the resulting
non-trivial cases and prints them together with their additional assumptions
(i.e., what agents are compromised, equalities between messages, what events
happened, the order between events, and the roles of the involved threads).
Only one non-trivial case, C1-k, results from this application of the TypChain

rule. We select it in Line 8 and state that it is contradictory; i.e., we can
prove “False” from its assumptions. We prove “False” by applying the TypChain

rule to “SK (σ(AV( ′′s ′′), i))”, the private key of the server that thread i is
communicating with. The only non-trivial case is “ik0”, which states that the
server “σ(AV( ′′s ′′), i)” was compromised. This case contradicts the assumption
in Line 4. We use Isabelle’s built-in tactic “auto” to prove this.

In Appendix A, we also provide Isabelle formalizations of the authentication
proof from Example 6 and the type assertion soundness proof from Example 10.
In both cases, our extension of Isabelle’s proof language allows for succinct
formalizations highlighting the main argument underlying these proofs. This
succinctness is one of the key properties of decryption-chain reasoning. Other
examples of this are the security proofs [32] that we interactively constructed
for the Yahalom [38], the Kerberos V [6], and the TLS handshake [37] protocols
based on the models developed using the Inductive Approach [36]. Modeling
each protocol took under an hour. Proving the security properties took 1.5 hours
for Yahalom, 2 hours for Kerberos V, and 2.5 hours for the TLS handshake
protocol. These times represent roughly a two orders of magnitude improvement
over the Inductive Approach, as we will see in Section 6.

2 We can use the TypChain rule because we prove after the definition of the CR protocol
that it is well-typed with respect to the typing {(C, s) 7→ Ag, (S, s) 7→ Ag, (S, v) 7→ C.k∪kn(S1)}.
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5.2 Automatic Proof Generation

We now describe an algorithm for automatically generating Isabelle/HOL proof
scripts for secrecy and authentication properties of security protocols. The input
of the algorithm is a protocol P ∈ Protocol, a set of type assertions ty, and a
security property φ. If the algorithm succeeds in proving the soundness of the
type assertions ty and the validity of φ, then it outputs an Isabelle proof script.
The script contains the specification of the protocol P , the type assertions ty
and its soundness proof, and a lemma stating φ and its proof.

Our algorithm uses symbolic messages and variables for thread identifiers
as part of its proof state representation. Symbolic messages are built from
the message constructors given in Section 3.2.1, the uninterpreted function
σ : Var×TID→ Msg denoting a variable store, and the function −1 : Msg→ Msg
denoting symbolic key inversion. In the following sections, we use i and j (possibly
primed) to denote thread identifier variables, a to denote symbolic agent variables,
m to denote symbolic messages, s to denote role-steps, R to denote roles, and e
to denote events built from symbolic messages. Our algorithm handles security
properties that can be represented as closed formulas of the form

∀(tr, th, σ) ∈ reachable(P ). ∀i1 . . . il. (
∧

A∈Γ
A)⇒ ∃il+1 . . . in. (

∧
B∈∆

B)

where 0 ≤ l ≤ n and Γ, ∆ are sets of atoms of the following form.

i = i′ m = m′ roleth(i) = R σ(a, i) ∈ Compr false

e ≺tr e
′ (i, s) ∈ steps(tr) m ∈ knows(tr) σ(a, i) /∈ Compr

We abbreviate such a security property as a judgment Γ `P ∆, where implicitly
all thread identifier variables in Γ are universally quantified and all thread
identifier variables in ∆ that do not occur in Γ are existentially quantified.

Example 14. The secrecy property φsec from Example 3 is represented as

roleth(i) = C, σ(s, i) /∈ Compr, k]i ∈ knows(tr) `CR false.

The authentication property φauth from the same example is represented as

roleth(i) = C ,

σ(s, i) /∈ Compr ,

(i,C2) ∈ steps(tr)

`CR

roleth(j) = S, σ(s, i) = σ(s, j), k]i = σ(v, j),

(i,C1) ≺tr (j,S1), (j,S2) ≺tr (i,C2).

Note that the above class of formulas covers typical secrecy and non-injective
authentication properties of multi-party protocols [17,30]. It does not include
injective authentication properties, as they require an additional quantifier
alternation. Showing injectiveness is however easy once one has shown non-
injective agreement over the fresh data of all involved parties. Our algorithm
does not do this automatically, but a user can derive injectiveness with minor
effort in Isabelle/HOL from the non-injective authentication properties proven
in the automatically generated proof script.
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1: procedure CorePrfGen(Γ `P ∆, ty)
2: solve all equality premises of Γ `P ∆
3: saturate Γ under all rules except TypChain

4: if Γ `P ∆ is trivially valid then
5: print “by auto”
6: else
7: if there is no new (m ∈ knows(tr)) ∈ Γ then
8: fail (possible attack found: Γ `P ∆)
9: else

10: select new (m ∈ knows(tr)) ∈ Γ
11: print “proof(sources m)”
12: J ← apply TypChain to m ∈ knows(tr) and well-typedty(tr, th, σ)
13: for each J ∈ J do
14: print “case nameOf(J)”
15: CorePrfGen(J , ty)
16: end for
17: print “qed”
18: end if
19: end if
20: end procedure

Figure 11: The core proof generation algorithm CorePrfGen.

We present our algorithm in three steps. First, we describe the core proof
generation algorithm, which mechanizes the use of the TypChain rule assuming
the soundness of the given type assertions. Second, we describe an algorithm for
proving the soundness of type assertions based on Theorem 1 and the core proof
generation algorithm. We then show how to combine these two algorithms in our
proof generation algorithm. Third, we describe two extensions that increase the
scope and efficiency of our proof generation algorithm as well as the readability
of the generated proofs. Afterwards, we present results from case studies.

5.2.1 Core Algorithm

The core proof-generation algorithm CorePrfGen is given in Figure 11. Given
a judgment Γ `P ∆ and a set of type assertions ty, this algorithm tries to prove
the validity of Γ `P ∆ under the assumption that the type assertions ty are
sound with respect to the protocol P as follows.

First, the equalities between symbolic messages, thread identifiers, and roles in
Γ are solved using unification in the equational theory that respects the definition
of key inversion given in Section 3.2.1 and that regards σ : Var×TID→ Msg as
an uninterpreted function and ] : Fresh× TID→ Msg as a free constructor for
symbolic messages.

For example, the symbolic equation x−1 = h(y) is solved with the substitution
{x 7→ h(y)}, the equation ((x−1)−1)−1 = sk(a) is solved with {x 7→ pk(a)},

31



the equation x]i = x′]i′ is solved with {x 7→ x′, i 7→ i′}, and the equation
x]i = σ(x′, i′) is solved with the substitution {σ(x′, i′) 7→ x]i}. Note that we
require such non-standard substitutions because we regard σ as an uninterpreted
function, whose function values are therefore regarded as unknowns during
unification. Note also that our non-standard construction of symbolic messages
stems from our decision to formalize them in Isabelle/HOL using a shallow
embedding; i.e., we define −1, ], and σ over ground messages only and use
HOL terms and variables to represent symbolic messages. This simplifies the
formalization of symbolic messages, but complicates the corresponding meta-
theoretic results. See our work on extending decryption-chain reasoning to
Diffie-Hellman exponentiation [39] for a pen-and-paper formalization of symbolic
messages using standard notions from equational term rewriting.

If unification fails, then Γ `P ∆ is trivially valid because there are contradict-
ing equalities in Γ. This case is handled by the trivial validity check in Line 4. If
unification succeeds, the resulting substitution of thread identifiers and messages
is applied to Γ `P ∆. Second, the premises Γ are saturated by extending them
with all atoms derivable using inference rules other than the TypChain rule.
Third, the resulting judgment Γ `P ∆ is checked for trivial validity ; namely,
whether one of the following holds:

1. false ∈ Γ,

2. e ≺tr e ∈ Γ,

3. (x ∈ Compr) ∈ Γ and (x /∈ Compr) ∈ Γ, or

4. there exists a substitution τ of the existentially quantified thread identifiers
in ∆ such that τ(∆) \ Γ consists of reflexive equalities only.

If the judgment Γ `P ∆ is trivially valid, then Isabelle can prove the validity
of Γ `P ∆ using its built-in tactic “auto”. Otherwise, the algorithm checks
whether there exists an atom (m ∈ knows(tr)) ∈ Γ that has not yet been selected.
If no such atom exists, proof-generation fails and the corresponding proof state
indicates a possible attack, as we explain in the next paragraph. Otherwise, we
pick the next atom and apply the TypChain rule to it. In our case studies, we
use a simple heuristic that first picks atoms with messages containing long-term
keys, then atoms with messages containing nonces supposedly known to the
intruder, and finally atoms that have been in the proof state for the longest
time. The application of the TypChain rule to the selected atom m ∈ knows(tr)
results in a case distinction on how the intruder learned m. Each case is
represented again as a judgment J of the form Γ ∪Σ `P ∆, where Σ are the new
assumptions introduced by the case that J represents. For each case, we output
the information necessary for Isabelle to know which case is being proven and
generate the corresponding proof script by recursively calling CorePrfGen.

Despite the undecidability of protocol security, the CorePrfGen algorithm
terminates for many practical protocols, including all the case studies from
Table 1. Moreover, analogous to the algorithm underlying Scyther [15], the
failure to generate a proof often indicates an attack. In particular, for secrecy
properties written as a judgment Γ `P false that only mentions roles, role-steps,
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1: procedure TypePrfGen(P , ty)
2: J ← proof obligations of Theorem 1 showing that
3: the type assertion ty is sound for P
4: for each J ∈ J do
5: CorePrfGen(J , ty)
6: end for
7: end procedure

Figure 12: The TypePrfGen algorithm for generating type assertion soundness
proofs.

1: procedure PrfGen(Γ `P ∆, ty)
2: TypePrfGen(P , ty)
3: CorePrfGen(Γ `P ∆, ty)
4: end procedure

Figure 13: The proof generation algorithm PrfGen.

nonces, and variables of the protocol P , a failure to generate a proof always
indicates an attack. An attack on such a property is a reachable state that
satisfies the premises Γ. The only non-trivial constraints on such a state stem
from the m ∈ knows(tr) premises in Γ. Each case of an application of the
TypChain rule provides an explanation of how the intruder learned m. Once we
reach a non-contradictory set of premises Γ′ without any remaining unsolved
m ∈ knows(tr) premises, we therefore know how to construct a reachable state
satisfying Γ′; i.e., we construct such a state by choosing some instantiation of all
variables in Γ′ and executing the protocol steps and message deductions in Γ′

according to their dependencies in Γ′. Analogously, we can construct attacks
from failed proofs of authentication properties, provided they can be written as
a judgment Γ `P ∆ that only mentions roles, role-steps, nonces, and variables
of the protocol P .

5.2.2 Generating Type Assertion Soundness Proofs

The TypePrfGen algorithm given in Figure 12 generates soundness proofs for
type assertions. It uses an extended version of the CorePrfGen algorithm
that also allows judgments of the form

Γ `P σ(v, i) ∈ [[α]]i(trˆ〈 St(i,Recvl(pt)) 〉, th, σ) ,

where α ∈ Type and Γ is a set of atoms as before. These judgments are sufficient
to represent the proof obligations stemming from applications of Theorem 1.
The [[α]]i(...) expressions are handled by unfolding the definition of [[·]] for the
given type α and the trivial validity of judgments is redefined accordingly. Note
that Theorem 1 provides well-typedty(tr, th, σ) as an induction hypothesis. This
justifies our use of CorePrfGen in Line 5, which assumes well-typedty(tr, th, σ).
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The PrfGen algorithm given in Figure 13 combines the previous two al-
gorithms. Analogous to CorePrfGen, a failure of the PrfGen algorithm
provides useful information about the protocol under investigation. If the type
assertion soundness proof fails, then there are other variable instantiations possi-
ble than the ones specified by the type assertions. These instantiations might
be exploited in a type-flaw attack. If proving the judgment Γ `P ∆ fails, then
there is a possible attack on the security property being verified, as explained in
the previous section.

5.2.3 Extensions

In this section, we describe two extensions of our proof generation algorithm:
lemma instantiation and minimal proof generation. The aim of both extensions is
to reduce the size of the generated proofs, which in turn improves proof checking
time as well as human readability. Moreover, lemma instantiation also extends
the scope of our algorithm, as we explain below.

Lemma instantiation shortens proofs by referring to already proven security
properties. The idea is to instantiate the universally quantified thread variables
of a security property modeled as a judgment such that the judgment’s premises
are satisfied in the current proof state and its conclusions can therefore be added
to the proof state. Lemma instantiation is crucial for sharing subproofs between
different cases of a proof. We can see this in the authentication proof from
Example 6, where we instantiate the previously proven secrecy property twice.
Without lemma instantiation, we are forced to prove the secrecy of the exchanged
session key twice. Indeed it is not difficult to construct protocols where lemma
instantiation even results in exponentially smaller proofs.

For some security protocols, we also use lemma instantiation to model
additional assumptions (axioms) about a protocol’s execution. A typical example
is the assumption that a certificate authority’s long-term private key is never
compromised. We model such an assumption by assuming the corresponding
security property instead of proving it. We can then exploit this property in
subsequent proofs using lemma instantiation. This construction extends the
scope of our algorithm. It allows us to verify properties of the form(∧

1≤i≤n
(Γi `P ∆i)

)
⇒ (Γ `P ∆)

where the judgments Γi `P ∆i model n additional assumptions about the
execution of the security protocol P .

We implement lemma instantiation in the CorePrfGen algorithm using
resolution of judgments. Assume given a lemma Γ1 `P ∆ with no existentially
quantified thread identifiers in ∆. When proving a judgment of the form
Γ1 ∪ Γ2 `P Π, we can exploit this lemma using the following resolution rule.

Γ1 `P ∆ ∆ ∪ Γ1 ∪ Γ2 `P Π

Γ1 ∪ Γ2 `P Π

The thread identifier variables in Γ1 `P ∆ may need to be renamed for this
rule to apply, which can be done as these variables are all universally quantified.
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Protocol generation checking

1 Amended Needham Schroeder Symmetric Key 0.36 45
2 Lowe’s fixed Needham-Schroeder Public Key 0.20 25
3 Paulson’s strengthened version of Yahalom 0.15 35
4 Lowe’s modified Denning-Sacco Shared Key 0.15 37
5 BAN modified version of CCITT X.509 (3) 0.80 19
6 Lowe’s modified BAN Concrete Andrew Secure RPC 0.01 10
7 Woo and Lam Pi 3 0.02 13
8 Kerberos V 2.40 202
9 Kerberos IV 12.87 308

10 TLS Handshake 0.84 48

Table 1: Timings in seconds for generating and checking minimal proofs.

Note that lemma instantiation is especially useful when ∆ = false; e.g., secrecy
properties have this form. In this case, the second premise of the resolution rule
becomes trivial, as false ∪ Γ1 ∪ Γ2 `P Π always holds.

We also implement the generation of minimal proofs, which are proofs with
a minimal number of TypChain rule applications. In a minimal proof every case
distinction is required. This makes minimal proofs especially well-suited for
human understanding, as every case distinction conveys information about how
the protocol achieves the security property. We generate minimal proofs using a
branch-and-bound strategy to minimize the number of case distinctions in the
generated proofs. Moreover, we instantiate lemmas eagerly to ensure that their
consequences are available before making a further case distinction. We remove
superfluous lemma instantiations after a minimal proof is found, thereby further
improving its readability. See Appendix A for two examples of minimal proofs
generated using our algorithm.

5.2.4 Case Studies

Table 1 shows the case studies we performed using our scyther-proof tool,
which implements the PrfGen algorithm and its extensions. The protocol
models are distributed together with the source code of the tool [32]. Protocols 1-
8 are modeled based on to their description in the SPORE [42] security protocol
library. Protocols 9 and 10 are based on the corresponding models that were
verified by Bella and Paulson using the Inductive Approach [8,37]. The times
for proof generation and checking were measured using Isabelle2009-1 on an
Intel Core 2 Duo 2.20GHz laptop with 2GB RAM. For all protocols, we prove
non-injective agreement [30] of all shared data for all roles of the protocol
where possible and secrecy for the freshly generated keys and payloads, if
they are present. For protocols 8 and 10, we additionally prove non-injective
synchronization [17], which is a strengthened variant of non-injective agreement.

The case studies demonstrate that our implementation of decryption-chain
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reasoning efficiently constructs machine-checked security proofs for complex
protocols like Kerberos or the TLS handshake. On average 2.5 applications of
the TypChain rule are required to prove a security property in our case studies.
The comparatively high generation time for Kerberos IV is due to generating
minimal proofs. It suggests that our minimization-strategy can be improved.
The comparatively high checking times for the Kerberos protocols are due to
the number of authentication proofs (one for each of the four roles) and the
complexity of these proofs (each proof needs several nested case distinctions
to determine the ordering of the individual steps). However, these times are
definitely fast enough for machine-checking the security proofs once a protocol
design is finished.

Most variables of the protocols in our case studies have a simple type: either
Ag, kn(s), or kn(s) ∪ R.n, for the receive role-step s where the variable is
instantiated and the nonce n that is sent in the corresponding send role-step in
role R. We use a simple heuristic to infer such types by matching the receive
role-steps with their corresponding send role-steps. Our heuristic suffices to
infer the types of 115 out of the 118 variables of the protocols from Table 1. It
fails only for the three variables inside an encryption that are instantiated with
composed terms in Protocol 1 (Amended NS) and Protocol 9 (Kerberos IV). We
specified their type by hand. For example, the client of the Kerberos IV protocol
receives the authentication ticket sent by the Authentication server inside an
encryption. The type of the corresponding variable is

kn(C2) ∪ {|kn(C2), Ag, A.AuthKey, A.Ta|}k(Ag,Ag) ,

where C2 is the second step of the client role, which receives the authentication
ticket, A is the Authentication server role, AuthKey is the freshly generated
authentication key, and Ta is a nonce that we use to model the timestamp of
the authentication ticket. The innermost kn(C2) type stems from a variable
containing the client’s name, which is received by the Authentication server as
plaintext and could therefore be any message known to the intruder.

Note that our security protocol model has no built-in support for timestamps.
In our models, we verify non-injective agreement on timestamps, which must
therefore be distinct for a successful attack to be possible. We guarantee this
by modeling timestamps as nonces. We model the fact that timestamps are
guessable by leaking them to the adversary before their first use. The only thing
not modeled are the validity checks on the timestamps.

6 Related Work

We discuss related work from five areas: interactive theorem proving, automatic
proof methods, related proof methods where proofs are not machine-checked,
types in security protocol verification, and related algorithms.

Interactive Methods for Machine-Checked Proofs. The Inductive Ap-
proach is one of the most successful approaches for interactively constructing
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machine-checked symbolic security proofs. It was initially developed by Paul-
son [36] and later extended by Bella [6] and Blanqui [12]. A protocol is defined
indirectly as an inductively-defined set of traces, which denotes the protocol’s
executions in the context of an active adversary. Security properties are verified
by formulating corresponding (possibly strengthened) protocol-specific invari-
ants and proving them by induction. Formulating and proving these invariants
constitutes the main effort when using this approach. In contrast, our protocol-
independent invariants suffice for verifying protocols in all our case studies: we
never needed to prove additional protocol-specific invariants using induction.
This is the main reason for the reduction in proof construction time of almost
two orders of magnitude in our case studies. Paulson reports that several days
were needed for each of the three protocols analyzed in [36] and the analysis
of the TLS handshake protocol took six weeks [37]. Note that these six weeks
also include building the formal model. However, even if we assume the actual
verification took only half this time, then our approach still reduces verification
time by almost two orders of magnitude.

Two other approaches for the interactive proof construction of symbolic
security proofs were developed using the PVS theorem prover. The first approach
was developed by Evans and Schneider [21] based on a formalization of rank-
functions [40]. Our improvement in proof construction time also applies to
their work, as they state that their approach requires more interaction than
Paulson’s inductive approach. The second approach was developed by Jacobs
and Hasuo [28]. It is based on a formalization of a variant of strand spaces [43]
and authentication tests [24]. They do not provide proof construction times.

It is well known that symbolic security definitions such as those used in
this paper, may miss attacks with respect to their corresponding computational
security definitions. One would therefore ultimately like to construct machine-
checked, computational security proofs. CertiCrypt [4] and EasyCrypt [3] provide
a first step towards this goal. CertiCrypt formalizes the theory required for
machine-checking computational security proofs of cryptographic primitives (e.g.,
ElGamal encryption) in the interactive theorem prover Coq. EasyCrypt leverages
on SMT solvers to (partially) automate the construction of such proofs. Note
that automatically constructing machine-checked, computational security proofs
of complete protocols is an active research area. One interesting approach would
be to formalize the theory underlying the CryptoVerif tool [10] in CertiCrypt and
make it proof generating analogous to what we have done in this paper for the
Scyther tool.

Automatic Generation of Machine-Checked Proofs. There are two ex-
isting approaches for automatically generating machine-checked protocol security
proofs. The first approach is by Goubault-Larrecq [23]. He models a protocol
and its properties as a set S of Horn-clauses whose consistency implies that
the protocol satisfies its properties. A finite model finder is then used to find a
certificate (i.e., a model) for S’s consistency. This certificate is machine-checked
using a model checker embedded in Coq.
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The secrecy properties of protocols 1-5 from Table 1 were also analyzed
by Goubault-Larrecq in [23]. Note that what is referred to in [23] as the
Kerberos protocol is in fact the simpler Denning-Sacco shared key protocol
(Protocol 4 in Table 1). The times reported in [23] are in the same range
as ours. The approach can be used directly with equational theories, but
currently cannot handle the strong authentication properties considered in
our work. Moreover, the approach in [23] requires trusting the soundness
of the (non-trivial) abstractions required to model security protocols using
Horn-clauses. In contrast, our method uses a straightforward protocol model,
from which we formally derive all verification rules.

Brucker and Mödersheim describe an approach for the automatic generation
of machine-checkable proofs in [13]. They use the OFMC model checker [34] to
compute a fixpoint of an abstraction of the transition relation of the protocol
P of interest. This fixpoint overapproximates the set of reachable states of the
protocol P . It is then translated to an Isabelle proof script certifying both that
this fixpoint (and hence the protocol P ) does not contain an attack and that
the abstraction is sound with respect to an automatically generated trace-based
execution model of P formalized in the style of the Inductive Approach. This
execution model is typed and uses a non-standard intruder who can only send
messages matching patterns occurring in the protocol.

In our previous work on decryption-chain reasoning [33], we provided a
detailed timing comparison to their approach. We found that proof generation
times are similar, but our proof checking times are orders of magnitude faster,
ranging from a factor 10 to a factor 1700. These results also apply here, as our
new implementation is as fast as the one used in [33].

Related Proof Methods. Similar to our approach, the TAPS security proto-
col verifier developed by Cohen [14] is based on a protocol-independent invariant
construction. Given a protocol specification, TAPS heuristically derives a proto-
col specific secrecy invariant and tries to prove its soundness by delegating the
corresponding proof obligations to a first-order theorem prover. If the theorem
prover succeeds, the proven secrecy invariant is strong enough to prove typical
secrecy and authentication properties using ordinary first-order reasoning.

The input for TAPS’ secrecy invariant construction is a protocol specification
together with hints that are often heuristically computed and, in some cases,
manually provided. These hints state some form of type assertions and Floyd-
Hoare style loop invariants, which are used to handle recursive protocols. In our
approach, this construction can be seen as instantiating the TypChain rule for a
specific protocol and a type assertion. The proof obligations generated by TAPS
then correspond to the proof obligations that we discharge after an application
of the type soundness theorem.

In contrast to our approach, TAPS does not construct machine-checked
protocol security proofs. Only the proofs of the proof obligations delegated to
the first-order theorem prover are machine-checked, while the crucial proof that
these discharged proof obligations imply the soundness of the constructed secrecy
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invariant and the security of the protocol is not machine-checked.
However, the ideas underlying TAPS’ secrecy invariant construction are

similar to those underlying the TypChain rule. Hence, we expect that TAPS
could be extended to generate fully machine-checked proofs using an approach
similar to ours. The benefit of using TAPS’ secrecy invariant construction is its
support for reasoning about recursive protocols. The drawback of TAPS’ secrecy
invariants is that they do not represent the causal order of events explicitly, which
complicates proving ordering related properties such as strong authentication
properties or temporal secrecy properties (e.g., perfect forward secrecy). Hence,
we believe that a better option to combine TAPS’ advantages with our approach
is to incorporate TAPS’ use of hints in the form of a parametrized invariant with
an associated soundness theorem similar to our support for type assertions.

In [25], Guttman and Thayer provide ways to relate adversary actions to
the structure of the messages. These lead to the introduction of authentication
tests as a means to reason about protocols. Authentication tests can be seen
as an alternative to decryption-chain reasoning that exploits knowledge about
the secrecy of the honest agents’ long-term keys to avoid reasoning about the
intruder’s intermediate constructions. Analogous to our semantics in which
the intruder can learn terms only once, they avoid reasoning about multiple
derivations of the same term by excluding so-called redundant bundles.

Types in Security Protocol Verification. Many security protocol verifi-
cation methods assume a typed execution model where variables are always
instantiated with messages according to the variable’s type. It is well-known
that this assumption is not always sound and might lead to missed type-flaw
attacks. Heather et al. [26] were the first to formally address the question of
when a type assumption is sound. They propose a protocol transformation
that ensures the soundness of type assumptions by reifying the types as tags
in the messages. Li et al. [29] optimize this tagging scheme so that it requires
fewer tags. Arapinis et al. [1] improve these results further. They propose a
syntactic well-formedness condition that ensures the soundness of a type as-
sumption for a more fine-grained type system for security protocols. Similarly,
Delaune et al. [18] propose a syntactic condition for ensuring the well-typedness
of models of cryptographic APIs.

In contrast to [1, 18, 26, 29], we do not rely on a syntactic criterion or a fixed
protocol transformation to prove type assertion soundness. In principle, our use
of type assertions is therefore applicable to more protocols. The price to pay
for this increased scope is that we must prove type assertion soundness for each
protocol individually. Fortunately, proving type assertion soundness turned out
to be simple in all our case studies. The resulting proof obligations were easily
discharged using decryption-chain reasoning.

Bhargavan et al. [9] show how to verify the source code of implementations of
security protocols using a type system based on refinement types and delegating
proof obligations to an SMT solver. They use type assertions as a means to
specify the invariants that the protocol is expected to satisfy. Some of these
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invariants correspond to expected security properties, while the remaining ones
are auxiliary invariants required to discharge the proof obligations that arise
during type-checking. Therefore, their approach requires more type assertions,
which are also of greater complexity, than our approach. Additionally, almost all
type assertions in our case studies can be inferred heuristically from the protocol
specification. However, their type assertions are more expressive than ours, as
they can be used to provide loop invariants for handling recursive protocols,
similar to the hints used in Cohen’s TAPS tool.

Related Algorithms. Our proof-generation algorithm represents a substan-
tial extension of the Scyther algorithm [15], which in turn is a descendant of
the Athena algorithm [41]. Our algorithm extends the Scyther algorithm with
support for a larger range of security properties, automatic generation of type
assertion soundness proofs, lemma instantiation, and proof minimization.

7 Conclusions

We formally derive in Isabelle/HOL a verification theory for security protocols
from a straightforward operational semantics. Security proofs constructed in
this theory therefore provide strong correctness guarantees. We additionally
develop and implement an algorithm for the automatic generation of human-
readable, machine-checked security proofs based on this theory. The correspond-
ing scyther-proof tool and our Isabelle/HOL theories are freely available [32].
We thereby provide tool support for both interactive and automatic construction
of machine-checked proofs of secrecy and strong authentication properties. We
show that this proof construction works efficiently in a number of case studies.

Benefits for practitioners. Intuitively, our verification theory provides pro-
tocol designers with a formal language for expressing correctness arguments
about their protocols. Using the scyther-proof tool, a protocol designer can
also automatically search for a short correctness argument expressed in this
language and inspect the result to understand why the protocol is correct. In
some cases, this may help the protocol designer to simplify his protocols by
detecting and removing messages and assumptions that are not exploited in the
correctness proofs. We further support the inspection of a protocol’s security
proof by implementing scyther-proof such that it can also generate HTML
pages that visualize the proof obligations of each proof step as a partial attack.

Our tool set also simplifies certifying protocols at the highest evaluation levels,
where machine-checked proofs are a formal requirement [31]. This is especially
interesting, as such certification is currently pursued in several countries [23, 31].
As an example, we demonstrate the applicability of our tool set to a real
world standard in [5]. There, we analyze, repair, and certify our repairs of the
ISO/IEC 9798 standard for entity authentication [27]. This standard comprises
17 protocols, which are used as a core building block in numerous other standards.
It takes scyther-proof less than 20 seconds to generate the proof script that
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justifies the correctness of the parallel composition of all our repaired versions of
these 17 protocols. Checking this proof script takes Isabelle/HOL less than three
hours. These times are practical and significantly lower than the time required
to manually construct corresponding proofs.

Extension to equational theories. The approach presented in this paper
uses the free term algebra to represent cryptographic messages. This suffices
for modeling classical cryptographic operators like symmetric encryption and
signing, but not for modeling operators such as Diffie-Hellman exponentiation
and XOR. In a parallel development [39], we show how to adapt decryption-chain
reasoning to a rich protocol execution model based on multiset rewriting and
a non-free term algebra modeling Diffie-Hellman exponentiation and standard
cryptographic operators. In contrast to this work, we have formalized the theory
of [39] on paper only.

Future work. Overall, this work is one step towards making the formal
verification of security protocols a routine engineering task. We see extending [39]
with support for generating machine-checked proofs and exploiting type assertions
as a worthwhile next step. It would also be interesting to integrate decryption-
chain reasoning with additional reasoning methods, such as authentication
tests [19] and abstraction-based overapproximations as used by ProVerif [11]
and OFMC [34].
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Mohamed, C. Muñoz, and S. Tahar, editors, TPHOLs, volume 5170 of Lecture
Notes in Computer Science, pages 33–38. Springer, 2008.

A Additional Examples of Machine-Checked
Security Proofs

In Section 5.1, we explained how we extended Isabelle’s proof language to
construct machine-checked security proofs based on decryption-chain reasoning.
We also showed the formalization of the secrecy proof from Example 5. In
this appendix, we also give the formalizations of the authentication proof from
Example 6 and the type assertion soundness proof from Example 10. Both
of these formalizations were generated automatically using the scyther-proof

tool. We only took minor liberties in pretty printing them to improve their
readability. These examples demonstrate not only that our mechanization of
decryption-chain reasoning allows for succinct machine-checked proofs, but also
that our automatic algorithm generates human-readable proofs.

Example 15. The statement and the proof of the non-injective synchronization
property φauth from Example 6 are formalized in Isabelle/HOL by the proof
script given in Figure 14.

Lines 2–11 are a direct translation of the security property φauth. Note that
Isabelle stores the conclusion stated in lines 7–11 under the name “?thesis” for
later reference. The proof begins in line 12 by applying the TypChain rule to
the message received in the second step of the client role C. This message is the
instantiation in the thread i of the pattern of the role step C2, which is available
under the name “C2-pt”. The “fake” case in Line 13 corresponds to Case (1)
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1: lemma (in CR-state) client-nisynch:
2: assumes
3: “(i, C2) ∈ steps(tr)”
4: “roleth(i) = C”
5: “σ(AV( ′′s ′′), i) /∈ Compr”
6: shows
7: “∃ j. roleth(j) = S ∧
8: σ(AV( ′′s ′′), i) = σ(AV( ′′s ′′), j) ∧
9: NO( ′′k ′′, i) = σ(MV( ′′v ′′), j) ∧

10: St(i, C1) ≺ St(j, S1) ∧
11: St(j, S2) ≺ St(i, C2)”
12: proof(sources “instσ,i(C2-pt)”)
13: case fake thus ?thesis
14: by (auto dest!: client-k-secrecy[OF known])
15: next
16: case (S2-hash j) thus ?thesis
17: proof(sources “instσ,j(S1-pt)”)
18: case fake thus ?thesis
19: by (auto dest!: client-k-secrecy[OF known])
20: next
21: case (C1-enc i) thus ?thesis by auto
22: qed
23: qed

Figure 14: Proof script formalizing the non-injective synchronization proof from
Example 6.

from Example 6. This case is discharged by calling Isabelle’s built-in tactic
“auto” configured to use the previously proven secrecy lemma “client-k-secrecy”
and the Known rule. The “S2-hash” case in Line 16 corresponds to Case (2) and
denotes that some server role j sent the hash that thread i received in step C2.
In Line 17, as in the pen-and-paper proof, the TypChain rule is applied to the
message received by the first message of server j. The necessary applications of
the Input and Role rules are handled automatically. The “fake” case in Line 18
corresponds to Case (2.1) and is dealt with as before. The case “C1-enc” in Line
21 corresponds to Case (2.2) and denotes that some client i sent the encryption
received by the server j. In this case, the premises directly imply the conclusion,
which corresponds to syncWith(j). Hence, calling “auto” solves this case.

Example 16. The Isabelle/HOL proof script given in Figure 15 formalizes the
definition of the type assertion CR′ty for the CR′ protocol together with its corre-
sponding soundness proof from Example 10. The type assertion soundness proof
is more complicated than the previous proofs due to the required bookkeeping
expressed using Isabelle’s locale infrastructure [2].

In Lines 1-3, the “type invariant” command that we implemented is used
to define the constant CR’ typing and to create a locale CR’ typing state that
contains all the pre-instantiated variants of the TypChain rule for the CR’
protocol under the assumption that the CR’ typing assertion is sound. The
definition of CR’ typing only states the type assertion (S ′, v)→ C ′.k∪ kn(S ′1), as
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1: type invariant CR’ typing for CR’
2: where “CR’ typing =
3: [((S’, ′′v ′′), SumT (NonceT C’ ′′k ′′) (KnownT S’1))]”
4:

5: sublocale CR’ state ⊆ CR’ typing state
6: proof -
7: have “(tr,th,σ) ∈ well-typed CR’ typing”
8: proof(type soundness “CR’ typing”)
9: case(S’1-v tr ′ th ′ σ ′ i)

10: note facts = this
11: then interpret state: CR’ typing state tr ′ th ′ σ ′

12: by unfold locales auto
13: show ?case using facts
14: by (sources “instσ ′,i(S’1-pt)”) auto
15: qed
16: thus “CR’ typing state tr th σ”
17: by unfold locales auto
18: qed

Figure 15: Proof script formalizing the definition of the type assertion CR′ty for

the CR′ protocol and its its corresponding soundness proof from Example 10.

our formalization of type assertions always assigns the type Ag to agent variables.
In Line 5, the “sublocale” command is used to claim that every lemma proven

under the assumption that the type assertion CR’ typing is sound is also a valid
lemma without this assumption. This claim depends on the lemma given in
Line 7, which states that every reachable state of the CR’ protocol is well-typed.
The corresponding proof given in Lines 8-15 relies on the tactic “type soundness”
that simplifies applications of Theorem 1. The only non-trivial case is given on
Line 9. It handles the instantiation of the variable v in the first step of some
thread i executing the server role in the context of some arbitrary well-typed
reachable state (tr ′,th ′,σ ′). Lines 10-12 ensure that the “sources” tactic is also
applicable in this state. In Line 13-14, we discharge the proof obligations for this
case by enumerating all sources for the first message received by thread i and
delegating the resulting cases to Isabelle’s built-in tactic “auto”. In Lines 16-17,
we use the lemma from Line 7 to discharge the proof obligation stemming from
the “sublocale” command.
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