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Abstract—Many cryptographic mechanisms depend upon the
availability of securely generated random numbers. In practice,
the sources of random numbers can be unreliable for many
reasons, including bugs, compromise or subversion of standards.
While there exist ways to significantly reduce the impact of
unreliable randomness, these typically do not work well with
practical constraints, such as long-term keys stored in hardware
security modules. In practice, even modern protocols like TLS 1.3
lack such mechanisms and are therefore highly vulnerable to
unreliable randomness.

We propose a wrapper construction that reduces the impact
of untrusted randomness, and which is is compatible with, and
effective in, existing deployments of protocols such as TLS. We
provide a security analysis of the construction and elaborate on
design choices and practical interpretations. Our findings show
that it is possible to effectively harden deployed protocols against
unreliable randomness.

I. INTRODUCTION

Most key exchange protocols (e.g., TLS, SSH, and IKE) de-
pend on the secure generation of random numbers. At the core
of many of these protocols is a Diffie–Hellman key exchange
of the following form: Alice generates a random number x,
computes gx and sends it to Bob. Bob similarly generates
random number y, computes gy and sends it to Alice. Of
course, each particular protocol has essential additional details
such as certificates, signatures, key derivation, comparison of
transcripts and so on, but at the heart of all these protocols
is a session key computed using the random numbers x and
y and further material that is typically public. Therefore, it is
essential that these random numbers are generated as securely
as possible.

In many operating systems, raw entropy comes in the form
of events such as mouse movements or keystrokes. As large
amounts of raw entropy are difficult to accumulate, Alice and
Bob do not generate truly random numbers x and y for their key
exchanges. Instead, they use the primitive of a cryptographically
secure pseudorandom number generator (CSPRNG), which

takes as input a seed, continually harvests more raw entropy and
produces arbitrarily many pseudorandom numbers as required.
Since CSPRNGs are used to provide the essential secrets for
the derived key, their security is critical. However, the current
problem we face is that all CSPRNGs depend on raw entropy in
some form or another. Therefore, if the underlying randomness
is not good, the derived key is not secure.

It may be tempting to think that random number generation
is well-understood by now. Unfortunately, this is not the case.
There are many real-world examples of poor random number
generation. We mention a few examples:

• The Debian OpenSSL random number generator vulner-
ability [2], [30], in which the range of the produced
randomness was effectively much smaller than expected;

• Predictable random numbers in Android’s Java OpenSSL
[26] leading to theft of bitcoins;

• The Dual EC random number generator backdoor [6], by
which observing produced random values could be used to
infer the internal state of the generator for someone who
knew the underlying relations, thereby making further
values predictable. This caused several vulnerabilities
including in TLS [8] and VPN routers [7];

• Random number generators on hardware that degrades
over time;

• Servers with reliable long-term keys in HSMs that are
deployed in settings where good randomness generation
cannot be guaranteed, such as content delivery networks
(CDNs) that deploy servers in remote locations to improve
latency for local users;

• Internet of Things (IoT) devices that are deployed with
potentially good (factory) keys, but have no access to good
randomness generation mechanisms after deployment;

• Side channel attacks on random number generators to
infer future states [9];

• Some AMD processors whose RDRAND stopped working



after suspend resume – reported as early as 2014 [25] but
only addressed in 2019 [1], [24].

Given this situation, one would expect that modern security
protocols provide some protection mechanisms against random-
ness that becomes unreliable over time. However, this is rarely
the case: widely used protocols such as SSH [31], IKE [14],
[16], and even the newest version of TLS (TLS 1.3 [29]) are
highly vulnerable to unreliable randomness.

For example, the most common use case of TLS 1.3 [29] is
based on a Diffie-Hellman exchange, in which the client and
server each generate a fresh random value (e.g., x and y), and
send each other the corresponding public key share (gx, gy)
along with many other elements. The server signs its response,
which includes its share gy, using its long-term signing key;
but both gx and gy are visible to anyone who can observe the
network traffic, such as ISPs, backbone providers, rogue wifi
access points, or routers. Then, a complex key derivation is
used to compute the symmetric session keys that will be used to
encrypt payload messages, but the only secret input to this key
derivation is gxy – all other inputs can be directly inferred from
the network traffic. Hence, if an adversary knows or guesses
either x (as generated by the client) or y (from the server),
it can use the network traffic to compute gxy and compute
the session keys, and therefore to decrypt all subsequent TLS
payloads or modify them.

The situation is similar for SSH [31], IKE [14], [16] (and
therefore also IPSec [17]), and even for post-quantum proposals
such as NewHope [3].

Related work

In the domain of key exchange protocols, at least since
the MTI protocols [27] from 1986, there have been protocols
that include both session-specific randomness and long-term
keys into the computation of the session key. While this
was not the objective of early protocols, an appropriate
combination can strengthen the resilience of the resulting
protocol against unreliable randomness. Such resilience has
been considered, for example, in the extended analysis of the
HMQV protocol [20]. The first time that unreliable randomness
was explicitly considered in a Bellare-Rogaway-style security
model for key exchange protocols, was in 2006 in [23]. In
this work, the authors also proposed a variant of the Diffie-
Hellman protocol called the NAXOS protocol, which is secure
in their model. It relies on a construction sometimes referred
to as the “NAXOS trick”. In the standard Diffie-Hellman
protocol, pseudorandom numbers x and y are computed from
raw entropy and used as private exponents, and then publicly
exchanging the messages gx and gy. Instead, the NAXOS
protocol sends gH(x,skÂ) and gH(y,skB̂) where H is a hash
function, and skÂ and skB̂ are the long-term secret keys of
Alice and Bob respectively. Intuitively we can see that security
of the private exponent in this case should now depend on the
pairs (x, skÂ) and (y, skB̂) being unknown to the adversary,
as opposed to just x and y. Furthermore, a protocol that uses
gH(x,skÂ) can behave in exactly the same way as one that uses

gx. The main difference is that H(x, skÂ) is harder to learn
for the adversary than just x.

However, in the case of implementing cryptographic proto-
cols in a hostile environment, often the long-term term sk is
stored in trusted hardware that does not provide direct access
to compute H(x, sk). For many deployments that use hardware
security modules (HSMs), this prevents the application of the
NAXOS trick. Furthermore, it is generally undesirable to re-use
signing keys as input to a hash function from a cryptographic
design perspective.1

Besides the weaknesses on random number generators
mentioned earlier, there is a rich literature on exploiting
various subtleties of random number generators and their
implementation details. There are many examples of PRGs that
were not properly seeded, including SecureRandom [18] and
other Java PRGs [28], leading to situations such as widespread
weak long-term TLS keys [15]. Along the same lines, hard-
coded seed keys for the ANSI X9.31 RNG lead to state recovery
attacks [10] enabling the decryption of, e.g., FortiOS VPN
traffic.

Contribution

Inspired by the NAXOS trick, we propose a “wrapper”
function around existing pseudorandom number generators,
in contexts that have access to a signing algorithm for the
long-term key of a party. Our construction uses a signature
Sig(sk,tag1) for some fixed string tag1 instead of using a
secret key sk.

In contrast to the NAXOS trick, our design is more generic
and applies outside of the Authenticated Key Exchange
(AKE) domain, and we follow a much more conservative
approach that enables the re-use of existing infrastructure. Our
construction furthermore offers improved graceful degradation
if it turns out that the output of the hash function reveals
partial information about the input. The proposed construction
is currently considered in IETF (CFRG), see [11] for details.

The construction aims to provide the following informal
security properties:

1) If the CSPRNG works as expected, that is, in a certain
security model the CSPRNG output is indistinguishable
from a truly random sequence, then the output of the
proposed construction is also indistinguishable from a
truly random sequence in that security model.

2) If the CSPRNG is broken or controlled by the adversary,
then the output of the proposed construction remains
indistinguishable from random, provided that the private
key remains unknown to the adversary.

3) An adversary with full control of a (potentially broken)
CSPRNG that is also able to observe all outputs of the
proposed construction, has no non-negligible advantage
in leaking the secret key, modulo side channel attacks.

1One could imagine deploying a secondary secret, but this is even less
compatible with existing deployments, as it would require globally distributing
a secondary secret to existing devices.



We define the formal security model regarding these three
properties in terms of a game between a challenger and
an adversary. We provide proofs that the proposed wrapper
construction meets the precisely defined security guarantees
under standard cryptographic assumptions.

Our construction can be transparently used with existing
security protocols such as TLS, IKE, and SSH. Because it only
requires local code changes at the interface between protocol
and randomness source, it does not lead to externally visible
changes. Our construction is therefore backwards compatible
by design, and can be rolled out incrementally. Concretely, this
means that it is possible to update for example some TLS 1.3
servers with our construction and continue operation, without
needing to modify the clients. This would already increase
security guarantees for those servers as well as the unmodified
clients communicating with them.

As we will show later, our construction requires the gen-
eration of one signature at startup time, and negligible cost
during normal protocol operations.

Organization

In Section II we introduce our construction for randomness
improvement. In Section III we define the security properties
we will need for our primitives in our wrapper construction.
In Section IV we define the security model for our wrapper
construction and additionally provide a practical interpretation.
In Section V we give a security theorem and formal game
hopping security proof that our construction fulfils the claimed
security properties. In Section VI we provide experimental
results to assess the efficiency of our construction.

II. THE WRAPPER CONSTRUCTION

Our objective is to reduce the impact of bad randomness on
security protocols. We assume that we are given a function
G, which is intended to be a CSPRNG, but for which we
cannot be sure if it always produces good randomness, or if it
was subverted. One way of reducing the impact, as used by
the NAXOS protocol, is to ensure that (i) a party’s long-term
private key sk must be known in order to produce the final
random values, and (ii) observing a random value cannot be
used to predict the next value, even if the underlying CSPRNG
might be vulnerable to state recovery.

We first present our construction, and then discuss the design
constraints. Let Sig(sk,m) be a deterministic function that
computes a signature of message m given private key sk. Let H
be a cryptographic hash function that produces output of length
M . Let KDF(x, y) be a key derivation function, which accepts
a random key x and a salt y and produces a pseudorandom
key of length L. Let PRF(k, c, n) be a variable-length output
pseudorandom function, that takes as input a pseudorandom
key k of length L, info string c, and output length n, and
produces output of length n.

Let G(n) be an algorithm that generates n random bits,
i.e., the output of a CSPRNG. Instead of using G(n) when

randomness is needed, use an augmented CSPRNG G′(n),
where

G′(n) = PRF(KDF(H(Sig(sk,tag1)), y),tag2, n),

and where y = G(L), tag1 is a fixed, context-dependent
string, and tag2 is a dynamically changing string (e.g., a
counter increased on each invocation) of M bits. We require
that L ≥ n−M .

The wrapper construction is depicted graphically in Figure 1.
In the figure, “next” represents the wrapper instance invocation,
which increases the value of the counter used for tag2.

H( Sig( sk, tag_1 ) )

KDF

PRF

counter

G’

n bits needed

n-bits randomness

L bits needed

next

cached

L-bits key

G

M-bits tag_2

Fig. 1: The wrapper construction.

Design choices

We give a brief overview of the reasons that lead to the
specific design of the construction.

First, our goal is to provide security guarantees for vulnerable
environments that are compatible with existing deployments.
This leads to two requirements: (i) for compatibility and
practical deployment, we would like to re-use existing long-
term keys, and (ii) in vulnerable environments, long-term keys
are likely to reside in trusted hardware. These requirements
are typically incompatible with the NAXOS design, both for
cryptographic separation as well as the limitations of trusted
hardware APIs. We therefore need to be able to use sk in some
trusted hardware, which implies that we need to choose an
operation and some data for this operation. In the vast majority
of real-world systems, private keys are allowed to be used
for digital signatures by the APIs of trusted hardware. Our
wrapper therefore assumes from the context that there exists a
signature key sk that can be used by the wrapper for signing.

Since signature operation is computationally expensive,
we design our wrapper to avoid producing a signature per
randomness request. To prevent collisions of wrapper outputs
it is highly desirable to bind all information connected to the
instance of the CSPRNG together as early as possible, i.e. right



when using the key. For this reason, we sign a specific tag
tag1, which is a constant string bound to a specific device
and protocol, incorporating all available information specific
to the process and having the format that is not supported (or
explicitly forbidden) by other applications using sk. Therefore,
we have a signature over a unique-per-instance data, that can
be used multiple times for all requests to the instance of the
wrapper.

We require Sig to be a deterministic signature function or to
use an independent entropy source, since broken randomness
used in a randomized signature scheme can lead to the total
compromise of the private key. This is explicitly something
we need to avoid (property three). We also hash the signature
output to have additional protection for the signature itself,
and thus the private key sk. Another advantage of hashing
is that there is no guarantee that the signature is uniformly
distributed across the range of Sig. Moreover, after hashing
we can obtain a shorter intermediate value, which is good for
overall performance. Crucially, this value can be cached, since
it remains the same for all requests to one wrapper instance.
This is an important design choice that ensures our construction
is sufficiently efficient.

Now we need to mix the obtained value of H(Sig(sk,tag1))
together with the initial output of the CSPRNG and provide
the first and the second declared security properties: if either
CSPRNG works fine or sk remains secret, then the output of
the wrapper must be good. To achieve this, we first “extract”
an intermediate pseudorandom key (PRK) from the values of
H(Sig(sk,tag1)) and y – the two values that are normally
assumed to be secret – using a KDF function. The output is
then provided as the input to a PRF function, together with
the original (potentially unreliable) randomness and a unique
(non-secret) value tag2, which changes upon each invocation
of the wrapper.

There are many choices for instantiating the KDF and PRF
functions in our construction. One reasonable choice is to rely
on a well-studied construction such as HKDF [19], [21], by
using HKDF-Extract as the KDF function and HKDF-Expand
as the PRF function. HKDF is standardised [19], well studied,
and likely to already be implemented in many of the potential
deployment environments, thereby reducing the amount of
additional code needed.

Implementing tag2 as a counter in the construction has the
additional benefit of producing unique pseudorandom numbers,
even if the source randomness becomes constant (e.g., always
zero). It additionally yields a larger output range even if
the range of the original randomness is too small, e.g., as
happened in the Debian RNG case [30], [2]. This design aspect
is inspired by the observations and constructions from [13],
and in particular by their CNX protocol, which introduced a
counter for the same purpose, but formulated and analysed in
the context of key exchange protocols.

III. BASE SECURITY DEFINITIONS

We define the security properties we need of our primitives
for our construction to be proven secure in our security model.

We address the key derivation, the pseudorandom function, and
the signature scheme in turn below.

A. Key derivation function

A key derivation function is an algorithm KDF that imple-
ments a deterministic function k = KDF(x, y), taking as input
some bit strings x and y, and returning a key k ∈ {0, 1}L. We
require that KDF fulfills the following two security properties.

1) KDF security. Intuitively, this property means compu-
tational indistinguishability of the KDF(x, ·) function for x
chosen uniformly at random from an ideal random function
ρ(·). Namely, it is the standard PRF security property. Let εKDF

denote the probability that any probabilistic polynomial time
adversary is able to distinguish between these distributions.

2) Uniformness preserving. We require the KDF algo-
rithm to fulfill the uniformness preserving of the output
for y←$ {0, 1}L chosen uniformly at random and x chosen
arbitrarily. We define a security game between an adversary A
and a challenger as follows.

1) The adversary makes a query x. The challenger uni-
formly randomly samples a secret value y←$ {0, 1}L.
The challenger computes k0 := KDF(x, y) and samples
k1←$ {0, 1}L uniformly randomly. The challenger then
flips a coin b←$ {0, 1} and responds with kb.

2) The adversary then outputs a guess b′ for b and wins the
game if b = b′ and loses otherwise.

Let εUP denote the probability that any probabilistic poly-
nomial time adversary is able to win the considered above
game. In other words, for any probabilistic polynomial time
algorithm A, ∣∣∣∣Pr(b = b′)− 1

2

∣∣∣∣ ≤ εUP.
The KDF algorithm is said to be UP-secure if εUP is

negligible in the security parameter.
HKDF-extract. In our concrete construction, we instantiate

KDF with HKDF-extract [22], which is literally the HMAC
function.

The KDF property and the uniformness preserving property
follow directly if the KDF function is a PRF is a so-called
dual-PRF: i.e., it is a PRF even when swapping the inputs x
and y). This is a standard assumption for HMAC and HKDF
that was introduced by Bellare [4], in which the security of
HMAC is proven by assuming the dual PRF property of the
compression function. The PRF property of HMAC when
keyed by the first input follows from to the security analysis
(see, e.g. [4], [5]). Moreover, for the wrapper, the length of
the HMAC key x = H(Sig(sk,tag1)) is equal to the hash
output length, thereby satisfying the recommendations from
these analyses. The dual-PRF assumption then ensures that the
PRF property of HMAC also holds when keyed by the second
input and commonly used as a standard assumption (See, e.g.,
in [12]).

B. Variable-length output pseudorandom function

A variable-length output pseudorandom function is an
algorithm PRF that implements a deterministic function z =



PRF(k, c, n), taking as input a key k ∈ {0, 1}L, some bit string
c, an integer n, and returning a string z ∈ {0, 1}n. We assume
that the maximum permitted size n is polynomial.

We define a security game (for multi-user setting) between
an adversary A and a challenger as follows.

1) The challenger uniformly randomly samples q (polyno-
mial) secret keys k1, . . . , kq ∈ {0, 1}L independently from
each other.

2) The adversary is allowed to query the challenger with
adaptively chosen values (i, c, n), i ∈ [1, . . . , q]. The
challenger replies with PRF(ki, c, n).

3) Eventually the adversary queries a special symbol T to
indicate the so-called test query with value (i, c, n) where
(i, c, ·) was not queried before. At this point, the challenger
computes z0 := PRF(ki, c, n) and samples z1 uniformly
randomly from {0, 1}n. The challenger then flips a coin
b←$ {0, 1} and responds with zb.

4) The adversary is allowed to keep making queries. Note
that after the test query the adversary is not allowed to
query (i, c, ·).

5) The adversary then outputs a guess b′ for b and wins the
game if b = b′ and loses otherwise.

Let εmu-PRF denote the probability that any probabilistic
polynomial time adversary is able to win the considered above
game. In other words, for any probabilistic polynomial time
algorithm A, ∣∣∣∣Pr(b = b′)− 1

2

∣∣∣∣ ≤ εmu-PRF.
The PRF algorithm is said to be mu-PRF-secure if εmu-PRF

is negligible in security parameter.

C. Hash function and signature scheme

A signature scheme is a triple (KGen,Sig,Vf). KGen is
a probabilistic algorithm which takes as input the security
parameter 1α and outputs a public signature verification key
pk and secret signing key sk. Sig is a signing algorithm which
generates a signature σ for message m using secret key sk. In
this work we consider only deterministic Sig algorithms. Vf is
a deterministic signature verification algorithm which, given
input (pk, σ,m), outputs 1 if σ is a valid signature of m under
key pk, and 0 otherwise. It is required that for every k, every
(sk, pk) output by KGen(1α), and every message m, it holds
that

Vf(m,Sig(sk,m)) = 1.

In our construction, we will not want to use the long-term
key sk directly. We instead use the hash of a signature of
tag1, signed with sk. For our security proof, we require that
the combined hash function and signature scheme fulfill the
following security property.

Definition 3.1 (Sig,H-secure): Consider the following game
between a challenger and a polynomial time adversary A:

1) The challenger generates a public/private key pair (pk, sk)
using KGen and gives the adversary the public key pk.

2) The adversary is allowed to adaptively query chosen
messages m to the challenger. The challenger responds
to each query with σ = Sig(sk,m).

3) When the adversary decides to, it outputs a so-called test
query m∗ that was not queried before. At this point, the
challenger flips an unbiased coin b←$ {0, 1}. If heads, it
returns with H(Sig(sk,m∗)). If tails, it responds with a
uniformly random string of the same length.

4) The adversary is allowed to keep asking for signatures
with messages m 6= m∗, but eventually it must output a
guess b′ for the coin flip b, at which point the game ends.
The adversary wins if it guesses the coin flip correctly
and loses otherwise.

Let εSig,H denote the probability that any probabilistic
polynomial time adversary is able to win the considered above
game. In other words, for any probabilistic polynomial time
algorithm A, ∣∣∣∣Pr(b = b′)− 1

2

∣∣∣∣ ≤ εSig,H.
The (Sig, H) composition is said to be Sig,H-secure if εSig,H

is negligible in the security parameter.
This security property can be instantiated with routine

cryptographic assumptions such as a hash function (e.g.
BLAKE or SHA-3) modelled as a random oracle and an
existentially unforgeable signature scheme (e.g. deterministic
ECDSA).

Proof sketch: the proof uses the idea that (due to the random
oracle properties) the polynomial time algorithm can only
win the hash-signature game with non-negligible probability
if the algorithm makes the query Sig(sk,m∗) to the random
oracle. Based on this idea, we can construct an adversary in
the standard euf-cma game that simulates the hash-signature
game and makes a forgery as follows.

All routine signing queries are transmitted by the adversary
to its challenger. The random oracle is simulated by sampling
a uniformly random string of the appropriate length for every
new query, and by saving these input/output values locally.
Without loss of generality, we assume that all queries are
pairwise different.

The test query with a message m∗ and the random oracle
queries are processed as follows. For the test query the
adversary checks if there is a valid signature for m∗ among
the queries already made to the random oracle. If there is,
the adversary made a forgery and won its game. Otherwise,
the adversary responds with a uniformly random string of the
appropriate length and save it. Further queries to the random
oracle are also checked for validity for m∗. If one of them
is successfully tested, then the adversary made a forgery and
won the game.

Minor discussion. Using a random oracle is a common
way to ease the cryptographic analysis by making it modular.
However, one should always keep in mind that a random oracle
cannot be instantiated by any real hash function and, therefore,
one should use it very carefully, trying to interpret the obtained
security results. In our case, if the (Sig, H) composition turn



out to be insecure, then, due to the proof sketch, the used
signature scheme is broken or the used hash function does not
sufficiently disrupt the link between the domain and the range.

The crucial point of using a random oracle is probabilistic
independence of its output values from any other values.
Therefore, one should not to use the same hash function as
used, e.g., inside the signature scheme. The common way to
deal with it using one hash function it is to add some unique
constant prefix before hashing.

IV. SECURITY MODEL

In this section we define the security property that we expect
from our wrapper in terms of a game between a challenger and
an adversary. Intuitively, we aim to prove that the wrapper does
not degrade security and offers additional security in cases
where the current randomness is unreliable.

Let T1 denote the set of possible values for tag1, and T2
the set of possible values for the dynamic tag tag2.

We run a Wrapper game between the challenger and
the adversary as follows. At the beginning of the game, the
challenger uniformly randomly chooses a secret key sk and
returns a public key pk to the adversary. After receiving the
public key, the adversary chooses a set T ⊆ T1 consisting
of l pairwise different values t1, . . . , tl and sends it to the
challenger. We assume that the size l of the set T is polynomial.
The adversary is allowed to make the following queries to the
challenger.
• The adversary can make output queries of two types:

– tag1,tag2, n (in this case the challenger chooses the
y←$ {0, 1}L value uniformly randomly by itself);

– tag1,tag2, y, n (in this case the y ∈ {0, 1}L value is
chosen by the adversary).

Note that the adversary is allowed to make queries where
tag1 ∈ T . We also assume that the adversary does not
make trivial output queries containing the same tuple
(tag1,tag2, y).
The challenger produces

PRF(KDF(H(Sig(sk,tag1)), y),tag2, n)

and returns this value as a response to the corresponding
output query.
The challenger indexes queries and locally saves the
corresponding inputs to the wrapper for each query, i.e. the
challenger saves records of the form (i,tagi1,tag

i
2, yi).

We assume that i ≤ q for some q that is also polynomial.
• The adversary can make sign queries for signatures with
sk of messages m. The challenger produces and returns
the value Sig(sk,m).

• The adversary can make a corrupt query for sk at any
time. The challenger responds to this query with sk.

• The adversary is also allowed to make reveal queries
for the yi value used in the ith output query at any
time (the adversary makes the query with the index of
the target output query). The challenger must respond
with the yi value used in generating the response to the
ith output query.

• At some point in time, the adversary must make a so-
called test output query. This is the same as a normal
non-trivial output query except the challenger flips an
unbiased coin and either responds with the genuine output
using the wrapper, or a uniformly randomly chosen string
of the same length.

• The adversary is allowed to query for the y used in the
test if it wants to, as well as to continue making other
queries. The adversary may also query for the sk value
or for the signature of tag1 if it has not already done
so. We impose a restriction on the adversary, which we
encode in a so-called freshness condition specified below.
During the game, we require that the test output query
must remain “fresh” at all times.
Freshness: We say that the ith output query is “fresh”
if one of the values yi or Sig(sk,tagi1) remains secret.
That is, if one of the following conditions is satisfied:
– The adversary has not made the corrupt query or

the sign query for m = tagi1.
– The adversary has not made the reveal query for yi.

• At some point in time after the test query, the adversary
must output a single bit as a guess. The adversary wins the
game if it is able to guess the coin flip with non-negligible
advantage over 1

2 .
The above security model is also presented in pseudocode

in Figure 2.

Motivation for the security model

In this section we provide the arguments why the proposed
security model correctly captures our desired properties, as
stated informally in Section I on page 2.

Consider the second informal security property as stated in
the contributions, considering the adversaries which are able
to break or even to control the CSPRNG output. The proposed
model captures these capabilities by allowing the adversary
to make the second type output queries with the CSPRNG
output chosen by itself and to reveal the CSPRNG outputs
chosen by the challenger uniformly at random.

Note that the model also considers the case when the
CSPRNG works as expected but the private signing key
or signature is compromised (see the first informal security
property). This case is captured by allowing the adversary
to make the first type output queries with strong initial
randomness chosen by the challenger and to corrupt a
private key. The first type output queries implicitly assume
the CSPRNG to be secure and securely used during the queries
processing.

The security model and the security proof depend on the
concept of “freshness”, which intuitively encodes the adversary
not winning the game trivially by making the obvious reveal
or sign/corrupt queries (see definition of fresh queries).
This freshness restriction only prevents the adversary from
knowing both the signature and the output of G at the same
time, in which case it can compute the output of the wrapper by
guessing tag2; all other cases, e.g., where one of these values



ExpWrapper
G′ (A) :

b←$ {0, 1}
(pk, sk)←$KGen(1α)

(T, state)←$A(pk, init)
seq ← 0, tested ← 0

Chosen ← ∅, Signed ← ∅
Y ← [ ]

corrupted ← false

revealed ← false

fresh ← true

. . . . . . . . . . . . . .Setup completed . . . . . . . . . . . . . .

// Running the adversary A

b′ ←$A
Output,Reveal,
Sign,Corrupt (pk, state)

if
(
(tested ∈ Chosen) ∨ revealed = true

)
∧(

(tag1 ∈ Signed) ∨ corrupted = true)

then

fresh← false

. . . . . . . . . . . Finalization completed . . . . . . . . . . .

return b = b′ ∧ fresh = true

Output(tag1, tag2, y = ε, n, test), tag1 ∈ T :

seq ← seq + 1

if y = ε then

y←$ {0, 1}L

else

Chosen ← Chosen ∪ {seq}
k ← KDF(H(Sig(sk, tag1)), y)

out ← PRF(k, tag2, n)

Y [seq ]← y

// One time test query

if test = true then

tested ← seq

if b = 0 then

out ←$ {0, 1}n

return out

Reveal(i), 0 < i 6 seq :

if i = tested then

revealed ← true

return Y [i]

Corrupt() :

corrupted ← true

return sk

Sign(m) :

Signed ← Signed ∪ {m}
return Sig(sk,m)

Fig. 2: Security experiment for adversary A against security of wrapper G′.

is known to the adversary, are considered by the analysis. Thus,
the security proof obtained in this model can be interpreted as
follows. If the adversary learns only one of the signature or the
usual randomness generated on one particular instance, then
under the security assumptions on our primitives, the wrapper
construction should output randomness that is indistinguishable
from a random string. Together, these two cases cover the first
and second informal properties. The third property, regarding
the confidentiality of the private key, follows directly from the
guarantees of the signature scheme.

Our security model also explicitly assumes that
Sig(sk,tag1) never appears externally elsewhere in
the protocol so that the adversary has no hope of seeing it and
using it. If this dedicated signature becomes public, security
degrades to the normal case of generating pseudorandom
numbers. Of course, in practice actually forcing Sig(sk,tag1)
to appear may still be difficult or impossible for an adversary.
Note also that these signatures are agent-specific, which
improves containment. Thus, leaking Sig(sk,tag1) only for a
specific agent, using a unique fixed string tag1, only affects
this agent, and has no consequences for other agents using the
same key sk. The fact that in reality tag2 changes also helps
to prevent the use of repeated random numbers when there is
a poor entropy source.

The tags are assumed to be known and even to be chosen by
the adversary in our security model. In practice they may not
be, which only adds an extra layer of protection in practice.
The only restrictions on the choice is that the tags values along
with the CSPRNG output should be unique in total for the test
query.

Note that the model also restricts the size of the set T
containing the possible values of tag1 for the security proof.
In practice this restriction means that the number of agents
using the same secret key sk must be negligible in the security
parameter, and that the set of tag1, intended to be used
during the long-term key life, should be fixed at the system
initialization stage. Obviously, both can be easily achieved in
reality.

V. PROOF OF SECURITY

Theorem 5.1: Let PRF be a Variable-length output pseudo-
random function, and let KDF be a key derivation function
that is KDF secure and uniformness preserving. Let Sig be
a deterministic signature and H a hash function that together
are Sig,H-secure. Then, any probabilistic polynomial time
adversary has only negligible advantage in winning the security
game described in Section IV.

Proof 5.2: We prove the theorem via a game hopping
proof: Starting from the base challenge game, we apply



small variations that yield negligible advantage (based on our
primitive security assumptions) and ultimately bound to a
probability negligible in the security parameter.

Let Game 0 denote the original security game as defined
in our security model definition. Let Sj denote the event of
the adversary winning Game j. Our goal in this proof is to
bound Pr(S0) to show that it is only at most negligibly above 1

2 .
Although the security argument is very intuitive (“the adversary
must surely need both y and sk to guess the secret”) we will
formally prove it using a game hopping proof.

At some point in time, the adversary must issue a test
query. Let tagi1,tag

i
2, yi denote the values used by the

challenger for this query. We prove this theorem in a case
partition on whether the adversary has revealed Sig(sk,tagi1)
or yi (if the adversary has queried for neither, then it is clearly
in an even worse position to win the game).
We now proceed with our case partition.

Case 1: The adversary has revealed yi or has chosen yi
by itself.: In this case, the adversary is not allowed to query
for sk or for the signature of tagi1, otherwise the test output
query would not be fresh.
Game 1. Let Game 1 be identical to Game 0 except the
challenger guesses in advance an integer j ∈ [1, . . . , l] and
aborts (and the adversary loses) unless tagi1 = tj . This is a
large failure event game hop and it is easy to see that

Pr(S0) ≤ lPr(S1).

Game 2. Define Game 2 to be identical to Game 1 except
H(Sig(sk,tagi1)) is replaced with a value xi sampled uni-
formly at random for each output query with tag1 = tagi1.
Here we claim that

Pr(S1) ≤ Pr(S2) + εH,Sig.

In particular, no probabilistic polynomial time distinguisher
algorithm can distinguish between Game 1 and Game 2, since
this would imply a way to beat the hash-signature game with
better than εH,Sig advantage. Precisely, an adversary in the hash-
signature game could beat it with better than εH,Sig advantage
as follows.

It acts as a challenger in the hybrid game and inserts the
value of pk from the hash-signature game. As an adversary in
the hash-signature game, it inserts the known tag1 value from
the previous game and asks a test query straight away, receiving
either H(Sig(sk,tagi1)) or a uniformly randomly chosen value
xi as per the rules of the hash-signature game. It inserts this
value as the value for H(Sig(sk,tagi1)) in the hybrid game.
Based on Game 1, the adversary knows where to make this
swap in the game. The output queries with tag1 6= tj are
processed by the adversary using queries for signatures to its
challenger. The adversary can now simulate output and test
queries as normal using this value. The adversary does not
have to worry about simulating a corrupt query because
we are in case 1. Finally, it can simulate signature queries
by merely forwarding them along to the hash-signature game.
This perfectly simulates the hybrid game: it is identical to

Game 1 if the test returns H(Sig(sk,tagi1)), and it is identical
to Game 2 if it returns a uniformly randomly chosen value
xi. The adversary follows the coin flip choice in the simulated
hybrid game as its guess for the hash-signature game. By
assumption of the hardness of the hash-signature game, the
adversary can only win with at most advantage εH,Sig. Therefore,
the difference in advantages of adversaries across Game 1 and
Game 2 can also only be separated by at most εH,Sig. This
completes the proof of the above claim.
Game 3. Define Game 3 to be identical to Game 2 except
KDF(xi, ·) is replaced with an ideal random function ρ(·) for
output query with tag1 = tj . We claim that

Pr(S2) ≤ Pr(S3) + εKDF.

Here we present the simulation argument for the KDF game.
Because of Game 1, the adversary knows where to make this
swap in the game precisely for output queries with tag1 =
tj . The KDF adversary makes queries y to compute KDF(xi, y)
for required y for the key xi chosen by the challenger uniformly
at random. If the adversary has made the (tag1,tag2, n)
query (without y), then the KDF adversary chooses y value
uniformly randomly by itself and locally saves it. Note that it
can answer the reveal query in this case. All other queries are
simulated in the normal way. This perfectly simulates the hybrid
game: it is literally Game 2 if the KDF challenger provides
outputs of the KDF function, and it is literally Game 3 if the
challenger provides outputs of the ideal random function ρ.
The adversary follows the coin flip choice in the simulated
hybrid game as its guess for the KDF game. By assumption
of the hardness of the KDF game, all adversaries can only
win with at most advantage εKDF. Therefore, the difference in
advantages of adversaries across Game 2 and Game 3 can also
only be separated by at most εKDF. Thus the claim above is
proven.
Game 4. Define Game 4 to be identical to Game 3 except the
response to the test output query is replaced with a value
chosen uniformly randomly.

Here we claim that

Pr(S3) ≤ Pr(S4) + εmu-PRF.

Here we present the simulation argument for the multi-
user PRF game with at most q keys where q is the number
of output queries. Because of Game 1, the PRF adversary
knows what output queries should be processed with the
usage of its challenger. The output queries with tag1 =
tj and different y are processed with the different keys by
asking the mu-PRF challenger with the suitable indexes in
queries. Since the test query should be non-trivial, yi or tagi2
should be new (we neglect the probability that for the output
query of the type (tag1,tag2, n) the yi value chosen by the
challenger itself collides with the previous values). Therefore,
the mu-PRF adversary can use its test query to swap the
PRF(ρ(yi),tagi2, n) with the value obtained as a response
on the test query in the mu-PRF game. All other queries are
simulated in the normal way. This perfectly simulates the hybrid
game. Therefore, the difference in advantages of adversaries



across Game 2 and Game 3 can also only be separated by at
most εPRF. Thus the claim above is proven.

It is clearly impossible for the adversary to have any
advantage in guessing the secret bit in Game 4 (in either
case, the wrapper generates a uniformly randomly chosen
string). As such, Pr(S4) = 1

2 . Thus in this case Pr(S0) ≤
1
2 + l(ε(H,Sig)+ εKDF+ εmu-PRF) which is negligibly close to 1

2 .
Case 2: The adversary has revealed sk or Sig(sk,tagi1).:

In this case, the adversary is not allowed to reveal yi or to
choose yi by itself, otherwise the test output query would not
be fresh. Thus, yi ∈ {0, 1}L is chosen uniformly randomly by
the challenger and is used only for the test output query.
Game 1. This game is identical to Game 0 except
KDF(H(Sig(sk,tagi1)), yi) for test output query is replaced
with a value k sampled uniformly at random.

We claim that

Pr(S0) ≤ Pr(S1) + εUP.

In the simulation the UP adversary for KDF chooses
private key sk by itself and simulates all queries except
for the test output query in the normal way. To simulate
the test output query (tagi1,tag

i
2, n) the UP adversary

makes a query with H(Sig(sk,tagi1)) to its UP challenger.
The challenger chooses yi←$ {0, 1}L and returns a value
kb. Then the UP adversary computes and returns the value
PRF(kb,tagi2, n). This perfectly simulates the hybrid game.
Therefore, the difference in advantages of adversaries across
Game 0 and Game 1 can also only be separated by at most
εUP. Thus the claim above is proven.
Game 2. Define Game 2 to be identical to Game 1 except the
response to the test output query is replaced with a value
chosen uniformly randomly.

Here we claim that

Pr(S1) ≤ Pr(S2) + εmu-PRF.

The simulation is the same as for Game 4 from the other
case but here is enough to make one test query for one key in
the multi-user PRF game since the key k is used once for the
test output query only.

It is clearly impossible for the adversary to have any
advantage in guessing the secret bit in Game 2 (in either case,
the wrapper generates a uniformly randomly chosen string). As
such, Pr(S2) =

1
2 . Thus in this case Pr(S0) ≤ 1

2+εUP+εmu-PRF
which is negligibly close to 1

2 .

VI. PERFORMANCE

To evaluate the performance of our wrapper construction, we
implemented the randomness wrapper in C using the BoringSSL
library. We implemented the Extract and Expand routines using
HKDF-Extract and HKDF-Expand, as described in [19]. In
particular, we used SHA-256 as the hash algorithm.

The computational cost of our construction comes in two
parts: the first is the one-off cost of computing the hashed sig-
nature, which is the same for all invocations, and therefore can
be cached. This amounts roughly to producing one signature at

initialisation/startup time. For any concrete implementation this
is negligible compared to other initialisation/startup operations.

The second part is the running cost, i.e., the overhead during
subsequent generation of random numbers. Our experiments
show that while the additional cost is significant compared to
plain random number generation, it is ultimately dwarfed by
the computational cost of typical protocols that would employ
our construction, ultimately generating negligible overhead. We
describe our experiments to support these conclusions in turn.

A. Isolated wrapper overhead

With our implementation, we then ran the following baseline
and wrapper experimental algorithms detailed in Algorithm 1
and 2, respectively, with configuration inputs sk, tag1, and
tag2 of 64 bits, and requested output size of n = 256 bits
corresponding to 32 bytes, loop timer T = 1E + 09 (in
nanoseconds, corresponding to 1.0s), and KDF output size of
L = 256 bits. The wrapper experimental algorithm computes
the signature once and reuses it for all subsequent extractions.
Now is a function that returns the current time in nanoseconds.

Algorithm 1 Baseline Experimental Algorithm

1: C ← 0
2: tstart ← Now()
3: tend ← tstart + T
4: while Now() < tend do
5: r ← G(n)
6: C ← C + 1
7: end while
8: return C

Algorithm 2 Wrapper Experimental Algorithm

1: s← cached value for Hash(Sign(sk, tag1))
2: C ← 0
3: tstart ← Now()
4: tend ← tstart + T
5: while Now() < tend do
6: y ← G(L)
7: k ← Extract(s, y)
8: r ← Expand(k, tag2, n)
9: C ← C + 1

10: end while
11: return C

When run on a Macbook Pro laptop with a 3.3 GHz Intel
Core i7 CPU and 16GB of RAM, we obtain the numbers in
Table I. Thus, the wrapper is about four times slower than

Algorithm Loop iterations Throughput

1 Baseline 1053668 16.9 MB/s
2 Wrapper 271000 4.3 MB/s

TABLE I: Throughput based on looping for 1.0s.

directly accessing the raw randomness. This is more caused



by the extreme efficiency of the raw randomness code than by
the speed of Extract/Expand. However, as we show below, this
is dominated by other factors in real-world protocols (or, in
fact, any other cryptographic operation in general).

B. Wrapper overhead in the context of TLS 1.3

To evaluate the cost of the wrapper in a real-world context,
we considered four scenarios: using TLS 1.3 server and client
without wrappers, both with wrappers, and the scenarios
where only one end uses the wrapper. Using the wrapper
implementation in the context of the BoringSSL library, we
started a local server and client and ran 10000 connections for
each scenario. We averaged the times afterwards. In more detail,
the measurements are based on a TLS 1.3 connection, where
the symmetric cipher is TLS_AES_128_GCM_SHA256, the
ECDHE curve is X25519, and the signature algorithm is
ecdsa_secp256r1_sha256. This yields the results in
Table II.

Config Client Server Average Percent
time (ms) difference

Baseline raw raw 0.01459430 0.00
One-sided wrapper raw 0.01470534 0.76
One-sided raw wrapper 0.01473091 0.94
Full wrapper wrapper 0.01476728 1.19

TABLE II: Wrapper overhead in TLS 1.3: no wrapper, one-
sided wrappers, and wrappers on both sides.

The results indicate about 1% overhead in the context of
TLS 1.3 connections for running the wrapper on both the client
and the server.

VII. CONCLUSION

In this work we provided a new wrapper construction for
random number generators that strictly reduces the security
impact of untrusted randomness, which is a feature that is
unfortunately still lacking in many modern security protocols.
Our construction provides a practical solution for this issue.
It depends on the specific use of a long-term signature key,
which makes it compatible with existing HSM deployments,
and allows for the re-use of existing signature keys without
breaking cryptographic separation. Furthermore, because our
construction does not change the observable behaviour of any
code that uses it, it can be deployed incrementally.

In the context of a protocol like TLS 1.3, this means our
construction can be deployed on only some servers or some
clients without disrupting operation, and without generating
new keys, while immediately providing stronger security
guarantees. This makes the construction especially useful
for, e.g., servers with HSMs that get deployed in untrusted
environments, such as for content delivery networks (CDNs).
However, the security provided by our construction has many
more obvious benefits, and would have effectively prevented
the exploitation of weaknesses such as the Dual EC backdoor
and the Debian random number generator vulnerability. In
the former case of the Dual EC backdoor, it would have

prevented reconstructing the internal state from the observable
randomness; and even if it were reconstructed, an attacker
would still need the signature of the targeted party. For the
latter case of the Debian RNG, the pool of generated numbers
was small and shared by all devices. With our wrapper, even
though the space of the generated raw random numbers would
be too small, the signature would have caused each device to
have its own unique pool, meaning that attacks would have
become device specific; and the dynamic second tag would
increase the output space, thereby increasing the pool size
beyond that of the flawed RNG.

We formally defined the security property provided by our
construction in terms of a game between a challenger and an
adversary and provided a security proof. Our analysis shows
that the construction fulfills the claimed security requirements:
if the adversary learns only one of the signature or the usual
randomness generated on one particular instance, then under
the security assumptions on the used primitives, the wrapper
construction should output randomness that is indistinguishable
from a random string.

Our proof-of-concept implementation shows that the wrapper
is feasible and that the computational overhead is negligible
with respect to the other operations of a real-world security
protocol such as TLS 1.3. Thus, we showed that our construc-
tion improves the generation of pseudorandom numbers and
provides concrete security guarantees for a generic class of
protocols at negligible cost to efficiency.
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