Definitional Foundations of Ratcheting and their Impact on Practice

RUB

Workshop on Secure Messaging – Eurocrypt 2019

2019-05-18

Horst Görtz Institute for IT Security Chair for Network and Data Security Ruhr University Bochum

Paul Rösler

• (Asynchronous) session initialization

"Secure" channel

- (Asynchronous) session initialization
- "Secure" channel
- Strong security

- (Asynchronous) session initialization
- "Secure" channel
- Strong security

- (Asynchronous) session initialization
- "Secure" channel
- Strong security
- Concurrent communication

- (Asynchronous) session initialization
- "Secure" channel
- Strong security
- Concurrent communication
- Unreliable network

- (Asynchronous) session initialization
- "Secure" channel
- Strong security
- Concurrent communication
- Unreliable network
- Explicit reliability

- (Asynchronous) session initialization
- "Secure" channel
- Strong security
- Concurrent communication
- Unreliable network
- Explicit reliability
- Group communication

Agenda

- Messaging is complex
 - ⇒ Comprehensible science helps
- Finding a Syntax
- Understanding Attackers
- Defining Security
- Core Primitive of Ratcheting (of strongly secure Messaging)

- (Asynchronous) session initialization
- "Secure" channel
- Strong security
- Concurrent communication
- Unreliable network
- Explicit reliability
- Group communication

- (Asynchronous) session initialization
- "Secure" channel
- Strong security
- Concurrent communication
- Unreliable network
- Explicit reliability
- Group communication

Complex syntax definition

- Complex syntax definition
- Strong attacker
 - Active MitM
 - Exposure of device's secrets
 - Execution's random coins might be weak

RUB

- Complex syntax definition
- Strong attacker
- Multiple security properties
 - Confidentiality
 - Authenticity
 - Reliable acks
 - Secure group management

- Complex syntax definition
- Strong attacker
- Multiple security properties
- ⇒ Single model to analyze security?

Agenda

- Messaging is complex
- Finding a Syntax
- Understanding Attackers
- Defining Security
- Core Primitive of RKE

- Messenger with
 - Two-party channels
 - Delivery notifications
 - Group channels
 - Group management

More is Less: On the End-to-End Security of Group Chats in Signal, WhatsApp, and Threema

Paul Rösler, Christian Mainka, Jörg Schwenk
{paul.roesler, christian.mainka, joerg.schwenk}@rub.de
Horst Görtz Institute for IT Security

Chair for Network and Data Security Ruhr-University Bochum

Messenger

• Remove:

- 1. Delivery notifications
- 2. Group channels
- 3. Group management

Two-party channel establishment ("Multi-stage ACCE")

Flexible Authenticated and Confidential Channel Establishment (fACCE): Analyzing the Noise Protocol Framework Benjamin Dowling¹, Paul Rösler², and Jörg Schwenk² ¹ Information Security Group, Royal Holloway, University of London benjamin.dowling@rhul.ac.uk ² Horst-Görtz Institute for IT Security, Chair for Network and Data Security, Ruhr University Bochum

{paul.roesler, joerg.schwenk}@rub.de

Remove:

- Delivery notifications
- 2. Group channels
- 3. Group management
- 4. Channel establishment

Ratcheted encryption

Remove:

- 1. Delivery notifications
- 2. Group channels
- Group management
- 4. Channel establishment
- 5. Symmetric encryption

Remove:

- 1. Delivery notifications
- 2. Group channels
- 3. Group management
- 4. Channel establishment
- 5. Symmetric encryption
- 6. Key establishment B-to-A

Sesquidirectional ratcheted key exchange (SRKE)

Asynchronous ratcheted key exchange

Bertram Poettering¹ and Paul Rösler²

¹ Information Security Group, Royal Holloway, University of London
bertram.poettering@rhul.ac.uk

² Horst Cörtz Institute for IT Security

 2 Horst-Görtz Institute for IT Security, Chair for Network and Data Security, Ruhr-University Bochum

paul.roesler@rub.de

Remove:

- 1. Delivery notifications
- 2. Group channels
- Group management
- 4. Channel establishment
- 5. Symmetric encryption
- Key establishment B-to-A
- 7. B-to-A communication

Asynchronous ratcheted key exchange Bertram Poettering¹ and Paul Rösler² Information Security Group, Royal Holloway, University of London bertram.poettering@rhul.ac.uk ² Horst-Görtz Institute for IT Security, Chair for Network and Data Security, Ruhr-University Bochum

paul.roesler@rub.de

Remove:

- 1. Delivery notifications
- 2. Group channels
- Group management
- 4. Channel establishment
- 5. Symmetric encryption
- 6. Key establishment B-to-A

Sesquidirectional ratcheted key exchange (SRKE)

Asynchronous ratcheted key exchange

Bertram Poettering¹ and Paul Rösler²

¹ Information Security Group, Royal Holloway, University of London bertram.poettering@rhul.ac.uk

² Horst-Görtz Institute for IT Security, Chair for Network and Data Security, Ruhr-University Bochum

paul.roesler@rub.de

Remove:

- 1. Delivery notifications
- 2. Group channels
- 3. Group management
- 4. Channel establishment
- 5. Symmetric encryption
- Key establishment B-to-A
- 7. Interaction

Bertram Poettering¹ and Paul Rösler²

Information Security Group, Royal Holloway, University of London bertram.poettering@rhul.ac.uk

² Horst-Görtz Institute for IT Security, Chair for Network and Data Security, Ruhr-University Bochum paul.roesler@rub.de

- Valid approach to reduce complexity by using compositions?
 - Less secure, less efficient than ad-hoc solutions
 - Usual approach in cryptography
 - Not an argument
 - Helps to understand components
 - Helps to exclude independent building blocks
- TODO: We need clear & useful interfaces

Agenda

- Messaging is complex
- Finding a Syntax
- Understanding Attackers
- Defining Security
- Core Primitive of RKE

- Active attacker on network
 - No trust in infrastructure
 - Becoming instance on network (path) is easy
- Manipulation of all traffic

- Leakage of stored secrets
 - Mobile devices are easily accessible
 - Sessions take long time
- Exposure of local session state

- Attacks against executions' randomness
 - Entropy low
 - Ba(d/ckdoored) randomness generator
- Reveal of random coins
 - Known (but good) randomness?
- Manipulation of randomness
 - All bad distributions

- Many more attacker scenarios...
 - Attacker against key distribution
 - Attackers in attacked group
 - Leakage during computation
 - Attacker in implementation

Agenda

- Messaging is complex
- Finding a Syntax
- Understanding Attackers
- Defining Security
- Core Primitive of RKE

Security definition

- Many security properties, depend on:
 - Syntax
 - Correctness (i.e., no inconsistencies)
 - Functionality (i.e., [honest] execution guarantees)
 - Hard for abstract interactive protocols
 - Semantic (ambiguous)
- Multiple levels of properties:
 - Strongest security
 - Intuitive security (ambiguous)
 - Efficiently instantiable security (ambiguous)

(Strongest) Security definition

- Allow attacker full (defined) power
- Define security property as:
 Event that attacker should not trigger
- Forbid ways that directly trigger that event (unpreventable attacks)

Example: simplified ratcheted key exchange variant

 Restricted variant of ratcheted key exchange

- Attacker
 - can expose local states
 - should not distinguish real key from random key
 - (exclude randomness for now)
- Which keys are unpreventably known to attacker?

Unpreventable Attacks

- 1. Exposure of Alice's state
- 2. Use state to forge ciphertext to Bob
 - ⇒ Adversary knows key
- Impersonation
 - ⇒ No future Challenge on Bob's keys

Unpreventable Attacks

- Impersonation
 - ⇒ No future Challenge on Bob's keys
- 1. Expose Bob's state
- 2. Use state to receive ciphertext to Bob
 - ⇒ Adversary knows key
- Expose Bob
 - ⇒ No future Challenge on Bob's keys

Unpreventable Attacks

- Impersonation
- Expose Bob
- ⇒ No future Challenge on Bob's keys
- Remaining keys secure

Preventable Attacks

Symmetric leakage

Unpreventable Attacks

- Impersonation
- Expose Bob
- ⇒ No future Challenge on Bob's keys
- Remaining keys secure

Preventable Attacks

- Symmetric leakage
- Active attack ⇒ independence of states
- No exposure of Bob's state, ... (more in bidirectional setting)

Unpreventable Attacks

- Impersonation
- Expose Bob
- ⇒ No future Challenge on Bob's keys
- Remaining keys secure

Preventable Attacks

- Symmetric leakage
- Active attack ⇒ independence of states
- No exposure of Bob's state, ... (more in bidirectional setting)

rcv k,

rcv

Unpreventable Attacks

- Impersonation
- Expose Bob
- ⇒ No future Challenge on Bob's keys
- Remaining keys secure

Further properties

- Explicit authentication
 - No self-impersonation (authenticating keys?)
 - TODO: build compilers/extensions (e.g., sign ciphertexts)

- can expose local states
 - should not distinguish real key from random key
 - can attack randomness
 - Multiple constructions via public key crypto
 - Sufficient
 - Necessary

can expose local states

 should not distinguish real key from random key

can attack randomness

 Multiple constructions via public key crypto

Sufficient

Necessary

Agenda

- Messaging is complex
- Finding a Syntax
- Understanding Attackers
- Defining Security
- Core Primitive of RKE

Implications of security definition

- Unpublished work (w/ Serge Vaudenay & Fatih Balli)
 - If randomness is revealed, Unidirectional RKE ⇔ key-updatable PKC
 - Unidirectional RKE is part of Sesquidectional RKE, which is part of Bidirectional RKE
- Key-updatable PKC core primitive of strongly secure messaging

Implications of security definition

- Ongoing work (w/ Serge Vaudenay & Fatih Balli)
 - If randomness is revealed, Unidirectional RKE ⇔ key-updatable PKC
 - Unidirectional RKE is part of Sesquidectional RKE, which is part of Bidirectional RKE
- Key-updatable PKC core primitive of strongly secure messaging

RUHR UNIVERSITÄT BOCHUM

Implications of security definition

- Most previous ratcheting schemes with PKC
 - Security definitions not via trivial attacks
 - Attacker not able to attack randomness
- 'Optimal' ratcheting security only via (expensive) key-updatable PKC
- Idea of key-updatable PKC: update pk and sk independently and forward securely
- Based on (expensive) HIBE
 - Not full HIBE, only path on 'identity tree'
 - TODO: enhance performance with this restriction

Summary

- Signal is secure enough for most applications
- Research should understand ratcheting
 - · Abstractly approach syntax, attackers, security definition
 - Find relations
 - Among notions of ratcheting
 - Towards related primitives
 - Necessary to overcome ambiguities

TODOs:

- Define security before designing protocols
- More efficient key-updatable PKC
- Compositions up to messaging (avoid ad-hoc solutions)
- Implement your protocols
 - Marco Smeets implemented (theoretically) strongly secure RKE

@roeslpa

github.com/ RUB-NDS/RKE