Definitional Foundations of Ratcheting and their Impact on Practice

Workshop on Secure Messaging – Eurocrypt 2019

Horst Görtz Institute for IT Security
Chair for Network and Data Security
Ruhr University Bochum
Paul Rösler
Messaging is complex

• (Asynchronous) session initialization
• “Secure” channel
Messaging is complex

- (Asynchronous) session initialization
- “Secure” channel
- Strong security
Messaging is complex

• (Asynchronous) session initialization
• “Secure” channel
• Strong security
Messaging is complex

- (Asynchronous) session initialization
- “Secure” channel
- Strong security
- Concurrent communication
Messaging is complex

- (Asynchronous) session initialization
- “Secure” channel
- Strong security
- Concurrent communication
- Unreliable network
Messaging is complex

- (Asynchronous) session initialization
- “Secure” channel
- Strong security
- Concurrent communication
- Unreliable network
- Explicit reliability
Messaging is complex

- (Asynchronous) session initialization
- “Secure” channel
- Strong security
- Concurrent communication
- Unreliable network
- Explicit reliability
- Group communication
Agenda

• **Messaging is complex**
 ⇒ Comprehensible science helps

• Finding a Syntax

• Understanding Attackers

• Defining Security

• Core Primitive of Ratcheting
 (of strongly secure Messaging)
Messaging is complex

- (Asynchronous) session initialization
- “Secure” channel
- Strong security
- Concurrent communication
- Unreliable network
- Explicit reliability
- Group communication
Messaging is complex

- (Asynchronous) session initialization
- “Secure” channel
- Strong security
- Concurrent communication
- Unreliable network
- Explicit reliability
- Group communication
Messaging is complex

- Complex syntax definition
Messaging is complex

- Complex syntax definition
- Strong attacker
 - Active MitM
 - Exposure of device’s secrets
 - Execution’s random coins might be weak
 - …
Messaging is complex

- Complex syntax definition
- Strong attacker
- Multiple security properties
 - Confidentiality
 - Authenticity
 - Reliable acks
 - Secure group management
Messaging is complex

- Complex syntax definition
- Strong attacker
- Multiple security properties

⇒ Single model to analyze security?
Agenda

- Messaging is complex
- **Finding a Syntax**
- Understanding Attackers
- Defining Security
- Core Primitive of RKE
Syntax – Taming complexity

• Messenger with
 • Two-party channels
 • Delivery notifications
 • Group channels
 • Group management

Paul Rösler, Christian Mainka, Jörg Schwenk
{paul.roesler, christian.mainka, joerg.schwenk}@rub.de
Horst-Görtz Institute for IT Security
Chair for Network and Data Security
Ruhr-University Bochum
• Remove:
 1. Delivery notifications
 2. Group channels
 3. Group management

Two-party channel establishment
(“Multi-stage ACCE”)

Flexible Authenticated and Confidential Channel Establishment (fACCE): Analyzing the Noise Protocol Framework

Benjamin Dowling¹, Paul Rösler², and Jörg Schwenk²

¹ Information Security Group, Royal Holloway, University of London
benjamin.dowling@rhul.ac.uk
² Hoer-Götz Institute for IT Security,
Chair for Network and Data Security, Ruhr University Bochum
{paul.roesler,joerg.schwenk}@rub.de
Syntax – Taming complexity

• Remove:
 1. Delivery notifications
 2. Group channels
 3. Group management
 4. Channel establishment

Ratcheted encryption
Syntax – Taming complexity

• Remove:
 1. Delivery notifications
 2. Group channels
 3. Group management
 4. Channel establishment
 5. Symmetric encryption

Bidirectional ratcheted key exchange (BRKE)
Syntax – Taming complexity

• Remove:
 1. Delivery notifications
 2. Group channels
 3. Group management
 4. Channel establishment
 5. Symmetric encryption
 6. Key establishment B-to-A

Sesquidirectional ratcheted key exchange (SRKE)
Syntax – Taming complexity

• Remove:
 1. Delivery notifications
 2. Group channels
 3. Group management
 4. Channel establishment
 5. Symmetric encryption
 6. Key establishment B-to-A
 7. B-to-A communication

Unidirectional ratcheted key exchange (URKE)

Asynchronous ratcheted key exchange

Bertram Poettering\(^1\) and Paul Rösler\(^2\)

\(^1\) Information Security Group, Royal Holloway, University of London
bertram.poettering@rhul.ac.uk
\(^2\) Horst-Görtz Institute for IT Security,
Chair for Network and Data Security, Ruhr-University Bochum
paul.roesler@rub.de
Syntax – Taming complexity

• Remove:
 1. Delivery notifications
 2. Group channels
 3. Group management
 4. Channel establishment
 5. Symmetric encryption
 6. Key establishment B-to-A

Sesquidirectional ratcheted key exchange (SRKE)

Asynchronous ratcheted key exchange

Bertram Poettering1 and Paul Rösler2

1 Information Security Group, Royal Holloway, University of London, bertram.poettering@rhul.ac.uk
2 Horst-Görtz Institute for IT Security, Chair for Network and Data Security, Ruhr-University Bochum, paul.roesler@rub.de
• Remove:
 1. Delivery notifications
 2. Group channels
 3. Group management
 4. Channel establishment
 5. Symmetric encryption
 6. Key establishment B-to-A
 7. Interaction

Key-updatable public key crypto (kuPKC)
Syntax – Taming complexity

• Valid approach to reduce complexity by using compositions?
 • Less secure, less efficient than ad-hoc solutions
 • Usual approach in cryptography
 • Not an argument
 • Helps to understand components
 • Helps to exclude independent building blocks
• TODO: We need clear & useful interfaces
Agenda

- Messaging is complex
- Finding a Syntax
- **Understanding Attackers**
- Defining Security
- Core Primitive of RKE
Attacker

- Active attacker on network
 - No trust in infrastructure
 - Becoming instance on network (path) is easy
- Manipulation of all traffic
Attacker

- Leakage of stored secrets
 - Mobile devices are easily accessible
 - Sessions take long time
- Exposure of local session state
Attacker

- Attacks against executions’ randomness
 - Entropy low
 - B(a/d/ckdoored) randomness generator
- Reveal of random coins
 - Known (but good) randomness?
- Manipulation of randomness
 - All bad distributions
Attacker

- Many more attacker scenarios…
 - Attacker against key distribution
 - Attackers in attacked group
 - Leakage during computation
 - Attacker in implementation
Agenda

- Messaging is complex
- Finding a Syntax
- Understanding Attackers
- **Defining Security**
- Core Primitive of RKE
Security definition

- Many security properties, depend on:
 - Syntax
 - Correctness (i.e., no inconsistencies)
 - Functionality (i.e., [honest] execution guarantees)
 - Hard for abstract interactive protocols
 - Semantic (ambiguous)

- Multiple levels of properties:
 - Strongest security
 - Intuitive security (ambiguous)
 - Efficiently instantiable security (ambiguous)
(Strongest) Security definition

• Allow attacker full (defined) power
• Define security property as:
 Event that attacker should not trigger
• Forbid ways that directly trigger that event (unpreventable attacks)

• Example: simplified ratcheted key exchange variant
Security of Unidirectional RKE

- Restricted variant of ratcheted key exchange
- Attacker
 - can expose local states
 - should not distinguish real key from random key
 - (exclude randomness for now)
- Which keys are unpreventably known to attacker?
Security of Unidirectional RKE

Unpreventable Attacks

1. Exposure of Alice’s state

2. Use state to forge ciphertext to Bob

⇒ Adversary knows key

• Impersonation

⇒ No future Challenge on Bob’s keys
Unpreventable Attacks

- Impersonation
 ⇒ No future Challenge on Bob’s keys
 1. Expose Bob’s state
 2. Use state to receive ciphertext to Bob
 ⇒ Adversary knows key
- Expose Bob
 ⇒ No future Challenge on Bob’s keys
Security of Unidirectional RKE

Unpreventable Attacks
- Impersonation
- Expose Bob
⇒ No future Challenge on Bob’s keys
- Remaining keys secure

Preventable Attacks
- Symmetric leakage
Unpreventable Attacks
• Impersonation
• Expose Bob
⇒ No future Challenge on Bob’s keys
• Remaining keys secure

Preventable Attacks
• Symmetric leakage
• Active attack \(\not\Rightarrow\) independence of states
• No exposure of Bob’s state, … (more in bidirectional setting)
Unpreventable Attacks

- Impersonation
- Expose Bob

⇒ No future Challenge on Bob’s keys

- Remaining keys secure

Preventable Attacks

- Symmetric leakage
- Active attack ⇒ independence of states
- No exposure of Bob’s state, … (more in bidirectional setting)

Why preventable attacks?

- Analyze existing protocol
- Allow *performant* protocols
- Define when security is required (intuitive ‘positive’ idea)
Unpreventable Attacks
- Impersonation
- Expose Bob
\[\Rightarrow \text{No future Challenge on Bob's keys} \]
- Remaining keys secure

Further properties
- Explicit authentication
 - No self-impersonation (authenticating keys?)
 - TODO: build compilers/extensions (e.g., sign ciphertexts)
Security of Unidirectional RKE

- **Attacker**
 - can expose local states
 - should not distinguish real key from random key
 - can attack randomness

- **Multiple constructions via public key crypto**
 - Sufficient
 - Necessary

- **Checkmark**
 - can expose local states
- **Question mark**
 - should not distinguish real key from random key
- **Set Random**
- **Challenge**
- **Expose**

Diagram Elements:
- `snd`: Send
- `rcv`: Receive
- `k1`, `k2`, `k3`, `k4`, `k5`: Keys
- `init`: Initialization
- `Expose`: Expose attack
- `Set Random`: Set random
- `Challenge`: Challenge attack
Security of Unidirectional RKE

- **Attacker**
 - can expose local states
 - should not distinguish real key from random key
 - can attack randomness
- **Multiple constructions** via public key crypto
 - **Sufficient**
 - Necessary
Agenda

- Messaging is complex
- Finding a Syntax
- Understanding Attackers
- Defining Security
- Core Primitive of RKE
Implications of security definition

- Unpublished work (w/ Serge Vaudenay & Fatih Balli)
 - If randomness is revealed, Unidirectional RKE ⇔ key-updatable PKC
 - Unidirectional RKE is part of Sesquidical RKE, which is part of Bidirectional RKE
- Key-updatable PKC core primitive of strongly secure messaging
Implications of security definition

• Ongoing work (w/ Serge Vaudenay & Fatih Balli)
 • If randomness is revealed, Unidirectional RKE \Leftrightarrow key-updatable PKC
 • Unidirectional RKE is part of Sesquidirectional RKE, which is part of Bidirectional RKE

• Key-updatable PKC core primitive of strongly secure messaging
Implications of security definition

- Most previous ratcheting schemes with PKC
 - Security definitions not via trivial attacks
 - Attacker not able to attack randomness
- ‘Optimal’ ratcheting security only via (expensive) key-updatable PKC
- Idea of key-updatable PKC: update pk and sk independently and forward securely
- Based on (expensive) HIBE
 - Not full HIBE, only path on ‘identity tree’
 - TODO: enhance performance with this restriction
Summary

- Signal is secure enough for most applications
- Research should understand ratcheting
 - Abstractly approach syntax, attackers, security definition
 - Find relations
 - Among notions of ratcheting
 - Towards related primitives
 - Necessary to overcome ambiguities
- TODOs:
 - Define security before designing protocols
 - More efficient key-updatable PKC
 - Compositions up to messaging (avoid ad-hoc solutions)
 - Implement your protocols
 - Marco Smeets implemented (theoretically) strongly secure RKE