
AUTOMATICALLY ELIMINATING SPECULATIVE LEAKSWITH BLADE

ANONYMOUS AUTHOR(S)

Abstract WeintroduceBLADE, a newapproach to automat-
ically and efficiently synthesizing provably correct repairs
for transient execution vulnerabilities like Spectre. BLADE is
built on the insight that to stop speculative execution attacks,
it suffices to cut the dataflow from expressions that specu-
latively introduce secrets (sources) to those that leak them
through the cache (sinks), rather than prohibiting speculation
altogether. We formalize this insight in a static type sytem
that (1) types each expression as either transient, i.e., possibly
containing speculative secrets or as being stable, and (2) pro-
hibits speculative leaks by requiring that all sink expressions
are stable. We introduce protect, a new abstract primitive
for fine grained speculation control that can be implemented
via existing architectural mechanisms, and show how our
type system can automatically synthesize aminimal number
of protect calls needed to ensure the program is secure.
We evaluate BLADE by using it to repair several verified, yet
vulnerableWebAssembly implementations of cryptographic
primitives. BLADE can fix existing programs that leak via
speculation automatically, without user intervention, and
efficiently using two orders of magnitude fewer fences than
would be added by existing compilers, thereby and ensuring
security with minimal performance overhead.

1 Introduction

Implementing secure cryptographic algorithms is hard. The
codemustnot onlybe functionally correct andmemory safe, it
must avoid divulging secrets indirectly through side channels
like control-flow, memory-access patterns, or execution time.
Consequently,much recentwork focusesonhowtoensure im-
plementationsdonot leaksecrets e.g.,via typesystems[12,39],
verification[4], and program transformations [6].

Unfortunately, these efforts are foiled by speculative exe-
cution. Even if secrets are closely controlled via guards and
access checks, the processor can simply ignore those checks
when executing speculatively. An attacker can exploit this to
leak secrets in turn.

In principle, memory fences block speculation, and hence,
offer a way to recover the original security guarantees. In
practice, however, fences pose a confounding dilemma. Pro-
grammerscaneither relyonheuristic approaches for inserting
fences [37], but then forgo guarantees about the absence of
side-channels. Alternatively, they can recover security guar-
antees by conservatively inserting fences after every load, but
endure the huge performance costs.

In this paper, we introduce BLADE, a new approach to
automatically, provably and efficiently eliminate speculation-
based leakage. BLADE is based on the key insight that to
prevent leaking data via speculative execution, it is unneces-
sary to stop all speculation as done by traditional memory
fences. Instead, it suffices to cut thedataflowfromexpressions
(sources) that speculatively introducesecrets to those that leak
them through the cache (sinks). We develop this insight into
an automatic enforcement algorithm via four contributions.
1. A Semantics for Speculation.Our first contribution is a
formal operational semantics for a simple While language
that precisely captures how speculation can occur and what
an attacker can observe via speculation (§ 3). To prevent leak-
age, we propose and formalize the semantics of an abstract
primitive calledprotect that does not exist in today’s hard-
ware but captures the essence of several primitives proposed
in recent work [2, 32]. Furthermore, this primitive can be
implemented in software e.g., via speculative load harden-
ing [30]. Crucially, and in contrast to a regular fence which
stops all speculation, protect only stops speculation for
a given variable. For example x :=protect(e) ensures that e’s
value is only assigned to x after e has been assigned its stable,
non-speculative value.
2. A Type System for Speculation.Our second contribution
is an approach to conservatively approximating the dynamic
semantics of speculation via a static type sytem that types each
expression as either transient (T), i.e., expressions that may
contain speculative secrets, or stable (S), i.e., those that cannot
(§ 4.1). Our system prohibits speculative leaks by requiring
that all sink expressions that can influence intrinsic attacker
visible behavior (e.g., cache addresses) are typed as stable.
We connect the static and dynamic semantics by proving
that well-typed programs are indeed secure, i.e., satisfy a cor-
rectness condition called speculative non-interference [17]
which states that the programdoes not leak under speculative
execution more than it would under sequential execution.
3. Automatic Protection. Existing programs that are free
of protect statements are likely insecure under specula-
tion and will be rejected by our type system. Thus, our third
contribution is an algorithm that automatically synthesizes a
minimal number of protect statements to ensure that the
program satisfies speculative non-interference. To this end,
we extend the type checker to construct a def-use graph that
captures the data-flow between program expressions. A cut-
set in the graph is a set of variables whose removal eliminates

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

PLDI’20, June 15–20, 2020, London, UK Anon.

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

1 void SHA2_update_last(int *input_len, ...)

2 {

3 if (! valid(input_len)) { ... }

4 int len = *input_len;

5 int *dst3 = ... + len;

6 _mm_lfence();
7 int *dst3_safe = protect(.. + len);
8 ...

9 *dst3_safe = pad;

10 ...

11 }

Figure 1. Code fragment from the HACL* SHA2 imple-
mentation, containing a potential speculative execution
vulnerability that leaks explicitly through the cache by
writing memory at a secret-tainted address (line 9). A naive
patch is shown is shown in red, the patch computed by
BLADE is shown in green.

all paths from secret-sources to observable-sinks. We show
that inserting aprotect statement for each variable in a cut-
set suffices to yield a program that is well-typed, and hence,
secure with respect to speculation (§5.3). Happily, finding
such cuts is an instance of the classic max-flow/min-cut prob-
lem, so existing polynomial time algorithms let us efficiently
synthesize protect statements that resolve the dilemma of
enforcing security with minimal performance overhead.

4. Evaluation.Our final contribution is an implementation
of our method in a tool called BLADE, and an evaluation
using BLADE to repair verified yet vulnerable (to transient
execution attacks) programs: theWebAssembly implemen-
tations of the signal messaging Protocol and its respective
cryptographic libraries [29], and a number of verified cryp-
tographic algorithms from [38] (§ 6). Our evaluation shows
that BLADE can automatically compute fixes for existing
programs. Compared to an existing fully automatic protec-
tion as implemented in existing compilers (notably Clang),
BLADE inserts two orders of magnitude fewer fences and
thus imposes negligible performance overhead.

2 Overview

In this section,wepresent twopotential speculative execution
vulnerabilities inHACL*— a verified cryptographic library
— that were discovered by BLADE and discuss how BLADE
repairs the vulnerabilities by inserting protect statements.
We then showhowBLADE computes the repairs via ourmini-
mal fence inference algorithm and finally how BLADE proves
that the repairs are indeed correct, via our transient-flow type
system.

2.1 Two Speculation Bugs and Their Fixes

Figure 1 shows a code fragment from a function in the im-
plementation of the SHA2 hash inHACL*. Though BLADE
operates onWebAssembly, we present equivalent simplified
C code for readability. The function takes as input a pointer
input_len, validates the input (line 3), loads frommemory
the public length of the hash (line 4), calculates a target ad-
dress dst3 (line 5), and finally pads the buffer pointed to by
dst3 (line 9).

1. Leaking Through a Memory Write. During normal, se-
quential execution this code is not a problem: the function
validates the input to prevent classic buffer overflows vulner-
abilities. However, an attacker can exploit the function to leak
senstive data during speculation. To do this, the attacker first
has to modify the value that the pointer input_len holds
during speculation. Since input_len is a function parame-
ter, this can be achieved e.g., by calling the function repeatedly
with legitimate addresses, training thebranchpredictor topre-
dict the next input to be valid. After (mis)training the branch
predictor, the attacker manipulates input_len to point to
an address containing secret data (e.g., the secret key used
by the hash function) and calls the function again, this time
with an invalid pointer. As a result of the mistraining, the
branch predictor causes the processor to skip validation and
erroneously load the secret intolen, which in turn, is used to
calculate pointerdst3. The buffer pointed to bydst3 is then
written in line 9, completing the attack. Even though pointer
dst3 is incorrect due to misprediction and the write will
therefore be squashed, its side-effects persist, and therefore
remain visible to the attacker. The attacker can then extract
the target address — and thereby the secret via cache timing
measurements [16].

Preventing the Attack: Memory Fences. Since the attack
exploits the fact that input validation is speculatively skipped,
we can prevent it bymaking sure that the buffer in line 9 is not
written until the input has been validated. To mitigate these
class of attacks, Intel [19] and AMD [5] recommend inserting
a speculationbarrier after critical validation check-points. Fol-
lowing this strategy, wewould place amemory fence on line 6.
This fencestopsall speculativeexecutionpast the fence, i.e.,no
statements after the fence are executed until all previous state-
ments (including input validation) have been resolved. While
the effects of the fence prevent the attack, they are more re-
strictive than necessary and incur high performance cost [33].

Preventing the Attack Efficiently.We propose an alterna-
tive way to stop speculation from reaching the write in line 9
through a new primitive called protect. Rather than elimi-
nate all speculation,protectonly stops speculation along a
particular data-path. We use protect to patch the program
in line 7. Instead of assigning pointer dst3 directly as in
line 5, the expression that computes the address is guarded by
a protect statement. This ensures that the value assigned

2

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Automatically Eliminating Speculative Leaks with BLADE PLDI’20, June 15–20, 2020, London, UK

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

1 void SHA2_update_last(int *input_len,...)

2 {

3 if (! valid(input_len)) { ... }

4 int len = *(input_len);

5 ...

6 int len_safe = protect(*input_len)
7 for (i = 0; i < len_safe + ...)

8 dst2[i] = 0;

9 ...

10 }

Figure 2. SHA2 code fragment containing a potential
speculative execution vulnerability that leaks implicitly
through a control-flow dependency.

to dst3_safe is always guaranteed to use len’s final, non-
speculative value. Therefore,writing todst3_safe in line 9
prevents any invalid secret-tainted address fromspeculatively
reaching the store, where it could be leaked to the attacker.

Theprotectprimitiveoffers anabstract interface forfine
grained control of speculation. There are a number of possible
implementations for this interface. For example, protect
could be implemented in hardware. While unfortunately,
today’s hardware does not offer an equivalent instruction
to protect, similar functionalities have been proposed in
recent work [2, 32]. Alternatively, protect can be imple-
mented in software (a similar proposal has beenmade in [30]).
In general, protect can be implemented through a fence
instruction.However, better solutions exist for reading arrays.
For example, Speculative Load Hardening (SLH), a mitigation
deployed in the code generated by Clang [10], stalls individ-
ual array reads until the corresponding bounds-check con-
dition gets resolved. We model software implementations of
protect through a restricted primitive calledsafe_read,
which can only be applied to array reads. We then formalize
an implementation of safe_read via SLH in the supple-
mentary material, and evaluate the number of protect and
safe_read needed to patchHACL* and their overhead in
Section 6.
2. Leaking Through aControl-FlowDependency. Figure 2
shows a code fragment taken from the same function as in
Figure 1. The code contains a second potential vulnerabil-
ity, but in contrast to Figure 1 the vulnerability leaks secrets
implicitly, through a control-flow dependency.
The function reads from memory a (public) integer len

(line 4), which determines the number of initialization rounds
in the condition of the for-loop (line 7). Like the previous
vulnerability, the function is harmless under sequential ex-
ecution, but leaks under speculation. As before, the attacker
manipulates thepointerinput_len to point to a secret after
mistraining the branch predictor to skip validation. But in-
steadof leaking thesecretdirectly throughthedatacache, they

can leak the value indirectly through a control-flow depen-
dency, e.g., via the instructioncacheandnon-secretdependent
lines of the data cache. In particular, the secret determines
how often the initialization loop (line 7) is executed during
speculation, and therefore an attacker can make secret de-
pendent observations via instruction- and data-cache timing
attacks. Like the previous vulnerability, this vulnerability can
be fixed via theprotect primitive, as shown in lines 6 and 7.

2.2 Computing Fixes ViaMinimal Fence Inference

BLADEautomatically infers theplacementof theseprotect
statements. We illustrate this process using a simple running
example Ex1 shown in Figure 3. The code reads two values
from an array (x :=a[i1] and y :=a[i2]), adds them (z :=x+y),
and indexes another array with the result (w :=b[z]). We as-
sume that all array operations are implicitly bounds-checked
and thus no explicit validation code is needed.
Like the examples above, Ex1 contains a speculative exe-

cution vulnerability: the array reads may skip their bounds
check and so x and y can contain transient secrets (i.e., secrets
introducedbymisspeculation).This secretdata thenflows toz,
and finally leaks through the data cache by the array read b[z].
Def-Use Graph. To secure the program, we need to cut the
dataflow between the array reads which could introduce tran-
sient secret values into the program, and the index in the array
readwhere theyare leaked through the cache. For this,wefirst
build a def-use graphwhose nodes and directed edges capture
the data dependencies between the expressions and variables
of a program. For example, consider the def-use graph of pro-
gramEx1 in Figure 4. In the graph, the edge x→x+y indicates
that x is used to compute x+y.1 To track how transient values
propagate in the def-use graph, we extend the graph with
the special circle node T, which represents the source of tran-
sient values of the program. Since reading memory creates
transient values, we connect the T node to all nodes contain-
ing expressions that explicitly read memory, e.g., T→a[i1].
Following the data dependencies along the edges of the def-
use graph, we can see that node T is transitively connected
to node z, which indicates that z can contain transient data
at run-time. To detect insecure uses of transient values, we
then extend the graph with the special circle node S, which
represents the sink of stable (i.e., non-transient) values of a
program. Intuitively, this node draws all the values of a pro-
gram thatmust be stable to avoid transient execution attacks.
Therefore, we connect all expression used as array indices in
the program to the S node, e.g., z→S. The fact that the graph
in Figure 3 contains a path fromT to S indicates that transient
data flows through data dependencies into (what should be)
a stable index expression and thus the program is insecure.
Cutting the Dataflow. In order to make the program safe,
we need to cut the data-flow between T and S by introducing

1To avoid ambiguities in the graph, we assume that each variable is assigned
at most once, i.e., the code is in static single assignment form.

3

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

PLDI’20, June 15–20, 2020, London, UK Anon.

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

x :=a[i1] x :=protect(a[i1])
y :=a[i2] y :=protect(a[i2])
z :=x+y z :=protect(x+y)
w :=b[z]

Figure 3. Ex1: Running Example. The optimal patch
computed by BLADE is shown in green. A sub-optimal patch
is shown in orange.

T

a[i2]

a[i1]
b[z]

x

y

x+y z S

i1

i2

Figure 4. Def-use Graph of Ex1. We omit some irrelevant
edges for readability. The Figure contains two choices
of cut-sets, shown as dashed lines. The left cut requires
removing two nodes and thus, inserting two protect
statements. The right cut shows a minimal solution, which
only requires removing a single node.

as few protect statements as necessary. This problem can
be equivalently restated as follows: find aminimal cut-set, i.e.,
a minimal set of variables, such that removing the variables
from thegraph eliminates all paths fromT fromS. Each choice
of cut-set defines a way to repair the program: simply add
a protect statement for each variable in the set. Figure 4
contains two choices of cut-sets, shown as dotted lines. The
cut-set on the left requires two protect statements, for vari-
ablesx andy respectively, corresponding to theorange patch
in Figure 3. The cut-set on the right is minimal, it requires
only a single protect, for variable z, and corresponds to the
green patch in Figure 3. In general, the a minimal cut-set can
be computed as a solution to theMin-Cut/Max-Flow problem,
for which efficient polynomial-time algorithms exist [1].

2.3 Proving Correctness Via Transient-Flow Types

To formalize and verify the correctness of the patch computed
by cutting the def-use graph, we define a transient-flow type
system and construct the def-use graph for a given program
from the type-constraints generated during type inference.

Typing Judgement. The type system statically assigns a
transient-flow type to each variable: a variable is typed as
transient (written as T), if it can contain transient data (i.e.,
potential secrets) at run-time, and as stable (written as S),
otherwise. Given a typing environment Γ which assigns a
transient flow type to each variable, and a command c , the
type system defines a judgement Γ ⊢c saying that c is free of
speculative execution bugs. The type system enforces that
transient expressions may not be used in positions that may
leak their value by affecting memory reads and writes, e.g.,

they may not be used as array indices and in loop condi-
tions. Additionally, it requires that transient expressions may
not be assigned to stable variables, except through the use
of protect. To show that our type system indeed prevents
speculative execution attacks, we define a semantics for spec-
ulative execution of a while language (Section 3) and prove
thatwell-typed programs do not leak speculativelymore than
sequentially, that is by executing their statements in-order
and without speculation (see Section 5).
Type Inference. Given an input program, we construct the
corresponding def-use graph by collecting the type con-
straints generated during type inference. Type inference is
formalized by a typing-inference judgment Γ,Prot ⊢ c⇒ k,
which extends the typing judgment from above with (1) a
set of protected variables Prot (the cut-set), and (2) a set of
type-constraints k (the def-use graph). At a high level, type
inference has 3 steps: (i) generate a set of constraints under
an initial typing environment and protected set that allow
any program to type-check, (ii) construct the def-use graph
from the constraints and find a cut-set, and (iii) compute the
resulting typing environment. To characterize the security of
a still unrepaired program after type inference, we define a
typing judgment Γ,Prot⊢c, where unprotected variables are
explicitly accounted for in the Prot set.2 Intuitively, the pro-
gram is secure if we promise to insert a protect statement
for each variable in Prot.
To repair programs, we simply honor the promise of in-

serting protect statements for each for each variable in the
protected set of the typing judgment obtained above. Once
repaired, the program type checks under an empty protected
set and with the same typing environment.

2.4 AttackerModel

Before moving to the details of our semantics and transient
type system, we discuss the attacker model considered in
this work. The attacker runs cryptographic code on a spec-
ulative out-of-order processor and, as usual, can choose the
values of public inputs and observe public outputs, but may
not read secret data (e.g., cryptographic keys) in registers
and memory. Additionally, the attacker can influence how
programs are speculatively executed through the branch pre-
dictor and choose the instructions execution order in the
processor pipeline. The effects of these actions are observable
through the cache and are otherwise invisible at the ISA level.
In particular, while programs run, the attacker can take pre-
cise timing measurements through the data- and instruction-
cache with a cache-line granularity, which may disclose se-
cret data covertly. These features allow the attacker to mount
Spectre-PHT [20, 21] and Spectre-STL [9] attacks and leak
data through FLUSH+RELOAD [43] and PRIME+PROBE [34]
cache side-channels attacks. We do not consider speculative
attacks that relyon theReturnStackBuffer (e.g., Ret2Spec [25]

2The judgment Γ ⊢c is just a short-hand for Γ,∅⊢c.
4

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

Automatically Eliminating Speculative Leaks with BLADE PLDI’20, June 15–20, 2020, London, UK

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

Value v F n | b | a
Expr. e F v | x | e1+e2 | e1⩽e2

| length(e) | base(e)
Rhs. r F e | ∗e | e[e]
Cmd. c F skip | x :=r | ∗e=e | e1[e2]:=e3

| if e thenc1 elsec2
| whileedoc | fail | c1;c2
| x :=stable_read(e1,e2)
| x :=protect(r)

Figure 5. Surface Syntax.

and [22]) or the Branch Target Buffer (Spectre-BTB [21]). We
similarly do not consider attacks that do not use the cache to
exfiltrate data, e.g., port contention (SMoTherSpectre [7]) and
Meltdown attacks [9, 24], since hardware fixes address them.

3 A Semantics for Speculation

We now formalize the concepts presented in the overview.
We start by giving a formal semantics for a while language
with speculative execution. Figure 5 presents the language’s
surface syntax. Values consist of Booleans b, pointers n rep-
resented as natural numbers, and arrays a. Array length and
base address are given by functions length(·) and base(·). In
addition to variable assignments, pointer dereferences, array
stores, conditionals and loops, our language features two spe-
cial commands that help prevent transient execution attacks.
Command x :=protect(r) evaluates r and assigns its value to
x, only after the value is stable (i.e., non-transient). Command
x :=stable_read(e1,e2) is a restricted version of protect(·) that
only applies to array reads (see Section 3.4) Lastly, fail triggers
a memory violation error (caused by reading or writing an
array out-of-bounds) and aborts the program.
Processor Instructions.Oursemantics translates the surface
syntax into an abstract set of processor instructions shown in
Figure 6.Our processor instructions donot contain branching,
they represent a single predictedpath through the control flow.
The prediction choices are represented by a sequence of guard
instructions representing pending branch points. Guard in-
structionshave formguard(eb,cs,p),which records thebranch
condition e, its predicted truth value b and a unique guard
identifier p, used in our security analysis (Section 5). Each
guard attests the fact that the current execution is valid only if
the branch condition gets resolved as predicted. In order to en-
able a roll-back in caseof amissprediction, guards additionally
record the set of commands cs along the alternative branch.
Directives and Observations. Instructions do not have to
be executed in sequence, they can be executed in any order,
enabling out-of-order execution. We use a simple three stage
processor pipeline: the execution of each instruction is split
into fetch, exec, and retire. We do not fix the order in which

Instr. i F nop | x :=e | x :=load(e)
| store(e1,e2) | x :=protect(e)
| guard(eb,cs,p) | fail

Dir. d F fetch | fetchb | execn
| retire

Obs. o F ϵ | load(n,ps) | store(n,ps)
| fail | rollback(p)

Prediction b ∈ { true,false}
Guard Id. p ∈ N
Reorder Buffer is F i :is | []
Cmd Stack cs F c :cs | []
Memory Store µ ∈ N⇀Value
Variables Map ρ ∈ Var→Value
Configuration C F ⟨is,cs,µ,ρ⟩

Figure 6. Processor Syntax.

instructions, and their individual stages are executed, nor do
we supply a model of the branch predictor to decide which
control flow path to follow. Instead, we let the attacker supply
those decisions through a set of directives [11] shown in Fig.
6. For example, directive fetch true fetches the true branch
of a conditional and exec n executes the nth instruction in
the reorder buffer. Executing an instruction generates an ob-
servation (Fig. 6) which records attacker observable behavior.
Observations include speculativememory reads and writes
(i.e., load(n,ps) and store(n,ps) issued while guards ps are
pending), rollbacks (i.e., rollback(p) due to misspeculation
of guard p), and memory violations (fail). Most instructions
generate the empty observation ϵ .
Configurations and Reduction Relation. We formally
specify our semantics as a reduction relation between proces-
sor configurations. A configuration ⟨is,cs,µ,ρ⟩ consists of a
queue of in-flight instructions is called the reorder buffer, a
stack of commands cs, a memory µ, andmap from variables to
values ρ. A reduction step C

d
−→o C ′ denotes that, under direc-

tived, configurationC is transformed intoC ′ andgeneratesob-
servation o. To execute a program cwith initialmemory µ and
variablemapρ, theprocessor initializes theconfigurationwith
an empty reorder buffer and inserts the program into the com-
mand stack, i.e., ⟨[],[c],µ,ρ⟩. Then, the executionproceedsun-
til both thereorderbufferandthestack in theconfigurationare
empty , i.e., we reach a configuration of the form ⟨[],[],µ ′,ρ ′⟩,
for some final memory store µ ′ and variable map ρ ′.

We nowdiscuss the semantics rules of each execution stage
and then those for our security primitives.

3.1 Fetch Stage

The fetch stage flattens the input command into a sequence
of instructions which it stores in the reorder buffer. Figure 7
presents selected rules; the remaining rules are in Appendix
A. Rule [Fetch-Seq] pops command c1;c2 from the commands

5

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

PLDI’20, June 15–20, 2020, London, UK Anon.

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

Fetch-Seq

⟨is,(c1;c2):cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is,c1 :c2 :cs,µ,ρ⟩

Fetch-Asgn

⟨is,x :=e :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is++[x :=e],cs,µ,ρ⟩

Fetch-Ptr-Load

⟨is,x :=∗e :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is++[x :=load(e)],cs,µ,ρ⟩

Fetch-Array-Load
c=x :=e1[e2] e=e2< length(e1) fresh(p)
e′=base(e1)+e2 c′= if e thenx :=∗e′ elsefail

⟨is,c :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is,c′ :cs,µ,ρ⟩

Fetch-If-True
c= if e thenc1 elsec2

fresh(p) i=guard(etrue,c2 :cs,p)

⟨is,c :cs,µ,ρ⟩
fetchtrue
−−−−−−−→ϵ ⟨is++[i],c1 :cs,µ,ρ⟩

Figure 7. Fetch stage (selected rules).

stack and pushes the two sub-commands for further process-
ing. [Fetch-Asgn] pops an assignment from the commands
stack and appends the corresponding processor instruction
(x := e) at the end of the reorder buffer.3 Rule [Fetch-Ptr-
Load] is similar and simply translates pointer dereferences to
the corresponding load instruction.Arrays provide amemory-
safe interface to read andwritememory: the processor injects
bounds-checks when fetching commands that read and write
arrays. For example, rule [Fetch-Load-True] expands com-
mand x :=e1[e2] into the corresponding pointer dereference,
but guards the commandwith abounds-check condition. First,
the rule generates the condition e = e2 < length(e1) and cal-
culates the address of the indexed element e′=base(e1)+e2.
Then, it replaces the array read on the stack with command
if e then x :=∗e′ else fail to abort the program and prevent
the buffer overrun if the bounds check fails. Later, we show
that speculative out-of-order execution can simply ignore the
bounds check guard and cause the processor to transiently
read memory at an invalid address. Rule [Fetch-If-True]
fetches a conditional branch from the stack and, following the
prediction provided in directive fetch true, speculates that
the condition ewill evaluate to true. Thus, the processor in-
serts the corresponding instruction guard(etrue,c2 :cs,p)with
a fresh guard identifier p in the reorder buffer and pushes
the then-branch c1 onto the stack cs. Importantly, the guard
instruction stores the else-branch together with a copy of

3Notation [i1, ..., in] represents a list of n elements, is1++ is2 denotes list
concatenation, and |is | computes the length of the list is.

Execute
|is1 |=n−1

ρ ′=ϕ(is1,ρ) ⟨is1,i,is2,cs⟩
(µ ,ρ′,o)

⟨is′,cs′⟩

⟨is1++[i]++is2,cs,µ,ρ⟩
execn
−−−−−→o ⟨is′,cs′,µ,ρ⟩

Exec-Asgn
i= (x :=e) v=JeKρ i′= (x :=v)

⟨is1,i,is2,cs⟩
(µ ,ρ ,ϵ)

⟨is1++[i′]++is2,cs⟩

Exec-Branch-Ok
i=guard(eb,cs′,p) JeKρ =b

⟨is1,i,is2,cs⟩
(µ ,ρ ,ϵ)

⟨is1++[nop]++is2,cs⟩

Exec-Branch-Mispredict
i=guard(eb,cs′,p) JeKρ ,b

⟨is1,i,is2,cs⟩
(µ ,ρ ,rollback(p))

⟨is1,cs′⟩

Exec-Load
i= (x :=load(e)) store(,) < is1

n=JeKρ ps=Lis1M i′= (x :=µ(n))

⟨is1,i,is2,cs⟩
(µ ,ρ ,read(n,ps))

⟨is1++[i′]++is2,cs⟩

Figure 8. Execute stage (selected rules).

the current commands stack (i.e., c2 :cs) as a rollback stack to
restart the execution in case of misprediction.

3.2 Execute Stage

In the execute stage, the processor evaluates the operands of
instructions in the reorder buffer and rolls back the program
state whenever it detects a misprediction.
Transient Variable Map. To evaluate operands in the pres-
ence of out-of-order execution, we need to take into account
howprevious, possibly unresolved assignments in the reorder
buffer affect the variable map. In particular, we need to en-
sure that an instruction cannot execute if it depends on a
preceding assignment whose value is still unknown. To up-
date variable map ρ with the pending assignments in reorder
buffer is, we define a function ϕ(is,ρ), called the transient
variable map. The function walks through the reorder buffer,
registers each resolved assignment instruction (x :=v) in the
variable map (through function update ρ[x 7→v]) and marks
variables from pending assignments (i.e., x :=e, x := load(e),
and x := protect(r)) as undefined (ρ[x 7→ ⊥]), making their
respective values unavailable to following instructions.
Execute Rule and Auxiliary Relation. Step rules for the
reduction relation are shown in Figure 8. Rule [Execute] exe-
cutes the n-th instruction in the reorder buffer, following the
directive execn. For this, the rule splits the reorder buffer into

6

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

Automatically Eliminating Speculative Leaks with BLADE PLDI’20, June 15–20, 2020, London, UK

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

prefix is1, n-th instrucion i and suffix is2. Next, it computes
the transient variable map ϕ (is1,ρ) and executes a transition
step under the newmap using an auxiliary relation⇝. Notice
that [Execute] does not update the store or the variable map
(the transient map is simply discarded). These changes are
performed later in the retire stage.

The rules for the auxiliary relation are shown in Fig. 8. The
relation transforms a tuple ⟨is1,i,is2,cs⟩ consisting of prefix,
suffix and current instruction i into a tuple ⟨is′,cs′⟩ specifying
the reorder buffer and command stack obtained by executing
i. For example, rule [Exec-Asgn] evaluates the right-hand
side of the assignment x :=ewhere JeKρ denotes the value of
e under ρ. The premise v=JeKρ ensures that the expression is
defined i.e., it does not evaluate to⊥. Then, the rule substitutes
the computed value into the assignment (x :=v), and reinserts
the instruction back into its original position in the reorder
buffer.

GuardsandRollback.Rules [Exec-Branch-Ok] and [Exec-
Branch-Mispredict] resolve guard instructions. In rule
[Exec-Branch-Ok], the predicted and computed value of
the guard expression match, and the processor only has to re-
place the guardwith anop. In contrast, in rule [Exec-Branch-
Mispredict] the predicted and computed value differ (JeKρ ,
b). This causes the processor to revert the program state and
issue a rollback observation. For the rollback, the processor
discards the instructions past the guard (i.e., is2) and substi-
tutes the current commands stack cswith the rollback stack
cs′ which causes execution to revert to the alternative branch.

Loads. Rule [Exec-Load] executes a memory load. The rule
computes the address (n = JeKρ), retrieves the value at that
address from memory (µ(n)) and rewrites the load into an
assignment (x :=µ(n)). Inserting the assignment into the re-
order buffer allows transiently forwarding the loaded value
to later instructions. The premise store(,) < is1 prevents
the processor from reading stale data from memory: if the
load aliases with a preceding (but pending) store, ignoring
the store would produce a stale read. To record that the load
is issues speculatively, the observation read(n,ps) stores list
ps containing the identifiers of the guards still pending in the
reorder buffer. Function LisM simply extracts the identifiers of
the guard instructions in the buffer is.

3.3 Retire Stage

The retire stage removes completed instructions from the re-
order buffer and propagates their changes to variablemap and
memory store. While instructions are executed out-of-order,
they are retired in-order to preserve the illusion of sequential
execution to the user. Figure 9 presents the rules for the retire
stage. Rule [Retire-Nop] removes nop. Rules [Retire-Asgn]
and [Retire-Store] remove the resolved assignment x :=v
and instruction store(n,v) from the reorder buffer and update
the variable map (ρ[x 7→v]) and the memory store (µ[n 7→v])

Retire-Nop
⟨nop:is,cs,µ,ρ⟩

retire
−−−−→ϵ ⟨is,cs,µ,ρ⟩

Retire-Asgn
⟨x :=v :is,cs,µ,ρ⟩

retire
−−−−→ϵ ⟨is,cs,µ,ρ[x 7→v]⟩

Retire-Store
i=store(n,v)

⟨i :is,cs,µ,ρ⟩
retire
−−−−→ϵ ⟨is,cs,µ[n 7→v],ρ⟩

Retire-Fail
⟨fail:is,cs,µ,ρ⟩

retire
−−−−→fail ⟨[],[],µ,ρ⟩

Figure 9. Retire stage.

respectively. Rule [Retire-Fail] aborts the program by emp-
tying reorder buffer and command stack and generates a fail
observation, simulating a processor raising an exception (e.g.,
a page fault).
We demonstrate how the attacker can leak a secret from

program Ex1 (Fig. 3) in ourmodel. First, the attacker instructs
the processor to fetch all the instructions, suppling prediction
true for all bounds-check conditions. Figure 10 shows the
resulting buffer and how it evolves after each attacker direc-
tive, which instruct the processor to speculatively execute
the load instructions and the assignment (but not the guard
instructions). Memory µ and variablemap ρ are shown on the
right. Directive exec4 transiently reads array a past its bound,
at index 2, reading into the memory (µ(3)=42) of secret array
s[0] and generates the corresponding observation. Finally, the
processor forwards the values of x and y to compute their
sum in the fifth instruction, (z :=42), which is then used as
an index in the last instruction and leaked to the attacker via
observation read(42,[1,2,3]).

3.4 Security Primitives

Next, we turn to the rules describing our security primitives.
Protect. Instruction x := protect(r) assigns the value of r ,
only after all previous guard instructions have been exe-
cuted, i.e., when the value has become stable and no more
rollbacks are possible. Figure 11 formalizes this intuition. Rule
[Fetch-Protect-Expr] fetches protect commands involv-
ing simple expressions (x :=protect(e)) and inserts the cor-
responding protect instruction in the reorder buffer. Rule
[Fetch-Protect-Array] piggy-backs on the previous rule
by splitting a protect of an array read (x := protect(e1[e2]))
into a separate assignment of the array value (x := e1[e2])
and protect of the variable (x := protect(x)). Rules [Exec-
Protect1] and [Exec-Protect2] extend auxiliary relation
⇝. Rule [Exec-Protect1] evaluates the expression (v=JeKρ)

7

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

PLDI’20, June 15–20, 2020, London, UK Anon.

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

Reorder Buffer exec 2 exec 4 exec 5 exec 7
1 guard((i1< length(a))true,[fail],1)
2 x :=load(base(a)+i1) x :=µ(2)
3 guard((i2< length(a))true,[fail],2)
4 y :=load(base(a)+i2) y :=µ(3)
5 z :=x+y z :=42
6 guard((z< length(b))true,[fail],3)
7 w :=load(base(b)+z) w :=µ(42)

Observations: read(2,[1]) read(3,[1,2]) ϵ read(42,[1,2,3])

Memory Layout

µ(0)=0 b[0]
µ(1)=0 a[0]
µ(2)=0 a[1]
µ(3)=42 s[0]
··· ···

VariableMap

ρ(i1)=1
ρ(i1)=2

Figure 10. Leaking execution of running example Ex1.

Fetch-Protect-Array
c= (x :=protect(e1[e2]))

c1= (x :=e1[e2]) c2= (x :=protect(x))

⟨is,c :cs,µ,ρ⟩
fetch
−−−−→ϵ ⟨is,c1 :c2 :cs,µ,ρ⟩

Fetch-Protect-Expr
c= (x :=protect(e)) i= (x :=protect(e))

⟨is,c :cs,µ,ρ⟩
fetch
−−−−→ϵ ⟨is++[i],cs,µ,ρ⟩

Exec-Protect1
i= (x :=protect(e)) v=JeKρ i′= (x :=protect(v))

⟨is1,i,is2,cs⟩
(µ ,ρ ,ϵ)

⟨is1++[i′]++is2,cs⟩

Exec-Protect2
i= (x :=protect(v)) guard(, ,) < is1 i′= (x :=v)

⟨is1,i,is2,cs⟩
(µ ,ρ ,ϵ)

⟨is1++[i′]++is2,cs⟩

Figure 11. Semantics of protect(·) (selected rules).

and reinserts the instruction in the reorder buffer as if it were
a normal assignment.However, the processor leaves the value
wrapped inside the protect instruction in the reorder buffer,
i.e., x := protect(v), to prevent forwarding the value to the
later instructions via the the transient variable map.When no
guards are pending in the reorder buffer (guard(, ,) < is1),
rule [Exec-Protect2] transforms the instruction into a nor-
mal assignment, so that the processor can propagate and
commit its value.
Example. Consider again Ex1 and the execution shown in
Figure 10. In the repaired program, x + y is wrapped in a
protect statement. As a result, directive exec5 produces value
z :=protect(42), instead of z :=42which prevents instruction
7 from executing (as its target address is undefined), until all
guards are resolved. This in turn prevents the leaking of the
transient value.
Stable Read. Unfortunately, current processors do not pro-
vide themeans to implement protect in its full generality. Our

semantics therefore contains a primitve stable_read(e1,e2)
that implements a restricted version of protect(e1[e2]) for
array reads. While protect(·) prevents forwarding loaded val-
ues until all pending branches are resolved, stable_read(·)
stallsmemory loads until individual bounds-check conditions
have been resolved. stable_read(·) can be implemented us-
ing today’s hardware, for example through speculative Load
Hardening (SLH) [10], the spectremitigation proposed by and
deployed in the Clang compiler.We provide formal semantics
in Appendix B.

Example.Consider again Ex1. Instead of using protect(·), we
can repair the example by inserting stable_read. Instead of
a single protect(·) for expression x+y, we however need to
insert two stable_read for a[i1] and a[i2], respectively.

4 Type System and Inference

In Section 4.1, we present a transient-flow type systemwhich
statically rejects programs that can potentially leak through
transient execution attacks. Given an unannotated program,
weapplyconstraint-based type inference [3, 27] togenerate its
use-def graph and reconstruct type information (Section 4.2).
Then, reusing off-the-shelf Max-Flow/Min-Cut algorithms,
we analyze the graph and locate potential speculative vulner-
abilities in the form of a variable min-cut set. Finally, using
a simple program repair algorithmwe patch the program by
inserting a minimum number of protect so that it does not
leak speculatively anymore (Figure 13).

4.1 Type System

Our transient-flow type system prevents programs from leak-
ing transient values via cache timing channels. To this end, the
type system assigns a transient-flow type to expressions and
tracks how transient values propagate within programs, re-
jecting programs in which transient values reach commands
which may leak them. An expression can either be typed as
stable (S) indicating that it cannot contain transient values
during execution, or as transient (T) indicating that it can.
These types form a 2-point lattice [23], which allows stable
expressions to be typed as transient, but not vice versa, i.e.,
we define a can-flow-to relation ⊑ such that S ⊑ T, but T ̸⊑ S.

8

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

Automatically Eliminating Speculative Leaks with BLADE PLDI’20, June 15–20, 2020, London, UK

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

Value
Γ ⊢v :τ ⇒∅

Var
Γ(x)=τ

Γ ⊢x :τ ⇒ x ⊑αx

Bop
Γ ⊢e1 :τ1 ⇒ k1 Γ ⊢e2 :τ2 ⇒ k2 τ1 ⊑ τ τ2 ⊑ τ

Γ ⊢e1 ⊕ e2 :τ ⇒k1∪k2∪(e1⊑e1⊕e2)∪(e2⊑e1⊕e2)

Array-Read
Γ ⊢e1 :S ⇒k1 Γ ⊢e2 :S ⇒k2

Γ ⊢e1[e2]:T ⇒k1∪k2∪(e1⊑S)∪(e2⊑S)∪(T⊑e1[e2])

(a) Typing Rules for Expressions and Arrays.

Asgn
Γ ⊢ r :τ ⇒k τ ⊑ Γ(x)

Γ,Prot⊢x :=r ⇒k∪(r ⊑x)

Protect
Γ ⊢ r :τ ⇒k

Γ,Prot⊢x :=protect(r) ⇒k

Asgn-Prot
Γ ⊢ r :τ ⇒k x ∈ Prot

Γ,Prot⊢x :=r ⇒k∪(r ⊑x)

Stable-Read
Γ ⊢e1 :S ⇒k Γ ⊢e2 :S

Γ,Prot⊢x :=stable_read(e1,e2) ⇒k∪(e1⊑S)∪(e2⊑S)

If-Then-Else
Γ ⊢e :S ⇒k Γ,Prot⊢c1 ⇒k1 Γ,Prot⊢c2 ⇒k2

Γ,Prot⊢ if e thenc1 elsec2 ⇒k∪k1∪k2∪(e ⊑S)

(b) Typing Rules fo Commands.

Figure 12. Transient flow type system and
type constraints generation (selected rules).

Typing Expressions. Given a typing environment for vari-
ables Γ ∈ Var→{S,T}, the typing judgement Γ ⊢ r :τ assigns a
transient-flowtypeτ to r . Figure12presents selectedrules (see
Appendix C for the rest). The shaded part of the rules gener-
ates type constraints during type inference and are explained
later. Values can assume any type. Variables are assigned their
respective type from the environment. Rule [Bop] propagates
the type of the operands to the result of binary operators
⊕ ∈ {+,< }. Finally, rule [Array-Read] assigns the transient
type to array reads as the arraymaypotentially be indexedout
of bounds during speculation. Importantly, the rule requires
the array index to be stable to prevent programs from leaking
through the cache.

Typing Commands.Given a set of protected variables Prot,
we define a typing judgment Γ,Prot ⊢ c for commands. In-
tuitively, a command c is well-typed under environment Γ
and set Prot, if c does not leak, under the assumption that
the expressions assigned to all variables in Prot are protected
using the protect(·) primitive. Figure 12b shows our typing
rules. Rule [Asgn] disallows assignments from transient to
stable variables (as T ̸⊑ S). Rule [Protect] relaxes this
policy as long as the right-hand side is explicitly protected.
Intuitively, the result of protect(·) is stable and it can thus
flow securely to variables of any type. Rule [Asgn-Prot] is
similar, but instead of requiring an explicit protect(·) state-
ment, it demands that the variable is accounted for in the
protected set Prot. This is secure because all assignments to
variables in Prot will eventually be protected through the
repair function discussed later in this section. Since prim-
itive x := stable_read(e1, e2) corresponds to the array read
e1[e2], rule [Stable-Read] requires the array and the index
argument to be stable like in rule [Array-Read]. Similar to
protect(·), the result of stable_read(·) is stable and thus the
type of the variable needs no constraints.

Implicit Flows. To prevent programs from leaking data im-
plicitly through their control flow, rule [If-Then-Else] re-
quires the branch condition to be stable. This might seem
overly restrictive, at first: why can’t we accept a program that
branches on transient data, as long as it does not perform
any attacker-observable operations (e.g., memory reads and
writes) along the branches? Indeed, classic information-flow
control (IFC) type systems (e.g., [36]) take this approach by
keeping track of an explicit program counter label. Unfor-
tunately, such permissiveness is unsound under speculation.
Even if a branch does not contain observable behavior, the
value of the branch condition can be leaked by the instruc-
tions that follow a mispredicted branch. In particular, the
rollback caused by a misprediction may cause to repeat load
and store instructions after the mispredicted branch, thus re-
vealing whether the attacker guessed the value of the branch
condition.

Example. Consider the following program: if tr then x :=
0 else skip;y := a[0]. The program can leak the value of tr
during speculative execution. To see that, assume that the
processor predicts that tr will evaluate to true. Then, the pro-
cessor speculatively executes the then-branch (x:=0) and the
load instruction (y :=a[0]), before resolving the condition. If
tr is true, the memory trace of the program contains a sin-
gle read observation. However, if tr is false, the processor
detects a misprediction, restarts the execution from the other
branch (skip) and executes the array read, producing a roll-
back and two read observations. From these observations, an
attacker could potentially make inferences about the value of
tr . Consequently, if tr is typed as T, our type system rejects
the program as unsafe.

9

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

PLDI’20, June 15–20, 2020, London, UK Anon.

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

4.2 Type Inference

We now present our type inference algorithm.

Constraints. We start by collecting a set of constraints k
via typing judgement Γ,Prot ⊢ s ⇒ k . For this, we define a
dummy environment Γ∗ and protected set Prot∗, such that
Γ∗,Prot∗ ⊢c ⇒k holds foranycommandc , (i.e.,weletΓ∗=λx .S
and include all variables in the cut-set) and use it to extract
the set of constraints k . The syntax for constraints is shown
in Figure 21. The constraints relate atomswhich represent the
unknown type of variables, i.e., αx for x , and expression, i.e.,
r . Constraints record can-flow-to relationships between the
atoms and lattice valuesT and S. They are accumulated via op-
erator∪, wherewe identifyk1∪···∪kn with the set {k1,...,kn}.

Solutions and Satisfiability.Wedefine the solution to a set
of constraints as a function σ from atoms to flow types, i.e.,
σ ∈ Atoms 7→ {T,S}, and extend solutions to map T and S

to themselves. For a set of constraints k and a solution func-
tionσ , wewriteσ ⊢k to say that the constraintsk are satisfied
under solution σ . A solution σ satisfies k , if all can-flow-to
constraints hold, when the atoms are replaced by their values
under σ . We say that a set of constraints k is satisfiable, if
there is a solution σ such that σ ⊢k .

Def-Use Graph & Paths. The constraints generated by our
type system give rise to the def-use graph of the type-checked
program. For a set of constraints k , we call a sequence of
atoms a1...an a path in k , if ai ⊑ai+1 ∈k for i ∈ {1,...,n−1} and
say that a1 is the path’s entry and an its exit. A T-S path is a
pathwith entryT andexitS. A set of constraintsk is satisfiable
if and only if there is no T-S path in k , as such a path would
correspond to a derivation of false. If k is satisfiable, we can
compute a solution σ (k) by letting σ (k)(a) =T, if there is a
path with entry T and exit a, and S otherwise.

Cuts. If a set of constraints is unsatisfiable, we can make it
satisfiable by removing someof thenodes in its graphor equiv-
alently protecting some of the variables. A set of atomsA cuts
a path a1...an , if some a ∈A occurs along the path, i.e., there
existsa ∈A and i ∈ {1,...,n} such thatai =a.We callA a cut-set
for a set of constraints k , ifA cuts all T-S paths in k . A cut-set
A is minimal for k , if all other cut-setsA′ contain as many or
more atoms thanA, i.e., #A⩽#A′.

Extracting Types FromCuts. From a set of variablesA such
that A is a cut-set of constraints k , we can extract a typing
environment Γ(k,A) as follows: for an atom αx , we define
Γ(k,A)(x)=T, if there is a path with entry T and exit αx in k
that is not cut byA, and let Γ(k,A)(x)=S otherwise.

Proposition 1 (Type Inference). If Γ∗,Prot∗ ⊢c ⇒k andA is
a set of variables that cut k , then Γ(k,A),A⊢s .

Remark. To infer a repair using stable_read instead of
protect, we can restrict our cut-set to only include variables
that are assigned from an array read.

Atom a F αx | r
Constraint k F a⊑S | T⊑a | a⊑a | k∪k | ∅

Solution σ ∈ Atoms 7→{S,T}

Figure 13. Constraint Syntax.

Example. Consider again Ex1 in Figure 3. The graph defined
by the constraints k , given by Γ∗,Prot∗ ⊢Ex1 ⇒k is shown in
Figure 4, wherewe have omittedα-nodes. The constraints are
not satisfiable, since there are T-S paths. Both {x,y} and {z}
are cut-sets, since they cut eachT-S path, however, the set {z}
contains only one element and is therefore minimal. The typ-
ing environment Γ(k,{x,y}) extracted from the sub-obptimal
cut {x,y} types all variables as S, while the typing extracted
from the optimal cut, i.e., Γ(k,{z}) types x andy as T and z, i1
and i2 as S. By Proposition 2 both Γ(k,{x,y}),{x,y} ⊢Ex1 and
Γ(k,{z}),{z} ⊢Ex1 hold.

4.3 ProgramRepair

As a final step, our repair algorithm repair (c,Prot) traverses
program c and inserts a protect(·) statement for each variable
in the cut-setProt. Sinceweassume that programsare in static
single assignment form, there is a single assignment x := r
for each variable x ∈ Prot, and our repair algorithm simply
replaces it with x :=protect(r).

5 Consistency and Security

We now present two formal results about our speculative
semantics and the security of the type system. Our full def-
initions and proofs can be found in Appendix D.
Consistency.Wewrite C ⇓DO C ′ for the complete speculative
execution of configuration C to final configuration C ′, which
generates a trace of observations O under list of directives
D. Similarly, we write ⟨µ, ρ⟩ ⇓cO ⟨µ ′, ρ ′⟩ for the sequential
execution of program c with initial memory µ and variable
map ρ resulting in final memory µ ′ and variable map ρ ′. To
relate speculative and sequential observations, we define a
projection function, written O↓, which removes prediction
identifiers, rollbacks, and mispeculated loads and stores.

Theorem 5.1 (Consistency). For all programs c, initial mem-
ory stores µ, variable maps ρ, and directives D, such that
⟨µ, ρ⟩ ⇓cO ⟨µ ′, ρ ′⟩ and ⟨[], [c], µ, ρ⟩ ⇓DO′ ⟨[], [], µ ′′, ρ ′′⟩, then
µ ′=µ ′′, ρ ′=ρ ′′, andO�O′↓.

The theorem ensures equivalence of the final memory
stores, variablemaps, and observation traces from the sequen-
tial and the speculative execution. Notice that trace equiva-
lence is up to permutation, i.e., O�O′↓, because the processor
can execute load and store instructions out-of-order.
SpeculativeNon-Interference.Speculativenon-interference
is parametric in the security policy that specifies which
variables and part of the memory are controlled by the at-
tacker [17]. In the following, we write L for the set of public

10

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

Automatically Eliminating Speculative Leaks with BLADE PLDI’20, June 15–20, 2020, London, UK

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

variables and memory locations that are observable by the
attacker. Two variable maps are indistinguishable to the at-
tacker, written ρ1 ≈L ρ2, if and only if ρ1(x) = ρ2(x) for all
x ∈ L. Similarly, memory stores are related pointwise, i.e.,
µ1≈L µ2 iff µ1(n)=µ2(n) for all n ∈ L.

Definition 1 (Speculative Non-Interference). A program c
satisfies speculative non-interference if and only if for all direc-
tives D, memory stores and variable maps such that µ1 ≈L µ2
and ρ1 ≈L ρ2, let Ci = ⟨[],[c],µi,ρi⟩ for i ∈ {1,2}, such that
C1 ⇓

D
O1

C ′
1, C2 ⇓

D
O2

C ′
2, ifO1↓=O2↓, thenO1=O2.

In the defintion above, programs leak by producing differ-
ent observations starting from memories and variables in-
distinguishable to the attacker. Speculative non-interference
requires showing absence of leaks for the speculative traces
(O1 =O2) assuming that the program does not already leak
sequentially (O1↓= O2↓). Notice that here we consider syn-
tactic equivalence for the traces because both executions fol-
low the same list of directives. We now present our sound-
ness theorem: well-typed programs satisfy speculative non-
interference.

Theorem 5.2 (Soundness). For all programs c, if Γ ⊢c then c
satisfies speculative non-interference.

We conclude with a corollary that combines all the compo-
nents of our protection chain (type inference, type checking
and automatic repair via our security primitives) and shows
that repaired programs satisfy speculative non-interference.

Corollary 5.3. For all programs c, there exists a set of con-
straints k such that Γ∗,Prot∗ ⊢c⇒k. Let A be a set of variables
that cut k, then the repaired program repair (c,A) satisfies spec-
ulative non-interference.

6 Implementation and Evaluation

Wenowdescribe our implementation and evaluateBLADE on
an implementation of the Signal secure messaging protocol
and various cryptographic algorithms. Our evaluation shows
thatBLADEcansecureexistingsoftwaresystemsagainst spec-
ulative execution attacks automatically. Moreover, BLADE
introduces twoorders ofmagnitude less fences thanabaseline
algorithm implemented in Clang. As a result, the repairs com-
puted byBLADE incur only aminimal performance overhead.

6.1 Implementation

WeimplementedBLADE in 3500 lines ofHaskell code.BLADE
takes as input aWebAssembly program, computes a repaired
program that is safe under speculative execution and verifies
its correctness via type-checking. Internally,BLADEproceeds
in three stages. First, BLADE converts theWebAssembly pro-
gram into an intermediate representation similar to theWhile
language in Figure 5. This simplifies further processing asWe-
bAssembly is a stack-based language, i.e., arguments are not
represented directly, but instead kept on an argument stack.

Second, BLADE builds the use-def graph (§4.1) of the input
program, infers a minimal cut-set (§4.2), and computes the
repair (§4.3). Finally, in the last stage,BLADEextracts a typing-
environment from the use-def graph and type-checks the re-
paired program (§4). This independent checking step provides
extra confidence that the repaired program indeed does not
leak more speculatively, than it does sequentially (§5). Source
code will be made available under an open source license.

6.2 Evaluation

We evaluate BLADE by answering three questions: (Q1) Can
weapplyBLADE to secure existing software? (Q2)Howmany
protect statements does BLADE have to insert in order to
secure those systems? and (Q3) How do the inserted fences
affect performance?
(Q1) Applicability. To evaluate BLADE’s applicability, we
run it on crypto code, which is already carefully written to es-
chew cache-timing side channels. Our benchmarks are taken
from twomain sources: first, a verified implementation [29]
of the Signal messaging protocol [15], and second, verified
implementations of several crypto primitives taken from [38].
In particular, our benchmarks consist of
▷ Themessaging algorithm implemented inmodule SignalCore
and common cryptographic constructions implemented in
module Signal Crypto and used in Signal.
▷ TheHACL*SHA2hash,AESblockcypher,Curve25519elyptic
curve function, and ED25519 digital signature used in Signal.
▷ The SALSA20 stream cypher, SHA2 hash, and TEA block
cypher from [38].
The original implementations of our benchmarks are prov-
ably free from cache and timing side-channel. However, those
proofs considered only a sequential execution model and
therefore do not account for the speculative execution vul-
nerabilities addressed in this work.
Results. Table 1 shows the code size inWebssembly text for-
mat, and the runtime of BLADE on each benchmark. The
runtime includes translation, repair and type-checking. The
results are encouraging: the execution time scales propor-
tionally with the code size and the analysis completes fairly
quickly, even for large benchmarks (>60kWASM LOC): the
runtime is less than 10s for all of our benchmarks.
(Q2) Number of Fences.Next, we evaluate howmany fences
the analysis has to insert to make the programs secure.
The results are shown in Table 1. Column B contains our
baseline, which replaces all non-constant array reads, i.e.,
reads whose address depends on a variable, with statement
stable_read (Section 3.4), implementing a SLH-like mit-
igation that masks the address with the array bounds-check
condition. This is the proposed mitigation in the Clang com-
piler [10]. ColumnP shows the number ofprotect inserted
by BLADE. All benchmarks are modified by the baseline, ex-
cept for TEA, which is a simple, toy encryption algorithm

11

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

PLDI’20, June 15–20, 2020, London, UK Anon.

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

Name B P S P/B LOC Time

CRYPTO [29] 92 1 2 1.1 3386 181.0 ms
CORE [29] 47 1 2 2.1 6595 347.8 ms
SHA2 [29] 156 18 34 11.5 7310 286.7 ms
AES[29] 48 0 0 0 6284 28.95 ms
CURVE [29] 2214 0 0 0 59921 5.571 s
ED25519 [29] 2403 6 10 0.2 60308 8.797 s
SALSA 20 [38] 7 0 0 0 529 20.20 ms
SHA 256 [38] 23 0 0 0 334 11.23 ms
TEA [38] 0 0 0 - 112 3.036 ms

Total 4990 26 48 0.5 144779 -

Table 1. (B) contains our baseline, i.e., the number of
stable_read, if every non-constant read is protected;
(P) contains the number of protect statements insert by
BLADE; (S) contains the number ofstable_read inserted,
if stable_read is used to implement protect; (P/B)
contains the ratio of protect statments to the baseline
fences in %; (LOC) contains the number of lines of WASM
code in text format; (Time) shows the mean timing for
fence inference, repair, and typechecking over 15 trials;
Experiments were run on a 12” Macbook with 8GB RAM.

(that should not be used in practice). In particular, for five of
the nine programs, BLADE does not need to insert any fences.
ColumnP/B shows the ratio of protect statements to baseline
readmasks in percent. Formost benchmarks, our analysis has
to insert under 3% of fences compared to the baseline. For the
SHA2 implementation of HACL* this rises to 11.5%. Across all
benchmarks, the number of fences is two orders ofmagnitude
lower than the baseline. Since protect statements are an
idealized primitive that are not available in todays hardware,
we show the number of stable-read primitives that are
needed to implement the protect in column S. The table
shows that using stable reads requires inserting more fences
by a factor of 1.8x,whichunderlines the benefits of ahardware
implementation of protect.

(Q3) Performance Impact of Fences. To evaluate the per-
formance impact of our repair, we compared how a naive
placement of fences—applying speculative load hardening to
every load of a non-constant address—compares against our
approach.We picked the SHA2-512 hash function for this test,
andused inputsof size 4KB.Naive fenceplacement introduced
44 fences while ours introduced only 5. Our measurements
showed that while the naive repair algorithm caused 13.9%
overhead, the overhead of our minimal fence replacement
algorithmwas only 0.42%. We used a sample size of 500, and
found the relative margin of error of our measurements were
less than 0.07%.

7 RelatedWork

Transient Execution Attacks. Since Spectre [21] andMelt-
down [24]were announced,many transient execution attacks

exploiting different microarchitectural components and side-
channels have been discovered and new ones come to light at
a steadypace. These attacks leakdata across arbitrary security
boundaries, including SGX enclaves [14, 35], hypervisors and
virtual machines [40], and even remotely over a network [31].
We refer to [9] for a comprehensive systematization.
Detection and Repair. Wu and Wang [41] detect cache
side channels via abstract interpretation by augmenting the
control-flow to accomodate for speculation. Spectector [17]
and Pitchfork [11] use symbolic execution on x86 binaries
to detect speculative vulnerabilities. Cheang et al. [13] and
Bloem et al. [8] apply bounded model checking to detect po-
tential speculative vulnerabilities respectively via 4-ways self-
composition and taint-tracking. Almost all these efforts [8, 11,
13, 17, 41] consider only in-order execution (except Pitchfork
[11]) for a fixed speculation bound, and focus on vulnerability
detection but do not propose techniques to repair vulnerable
programs. In contrast, our type system enforces speculative
non-interference even when program instructions are exe-
cuted out-of-order with unbounded speculation and automati-
cally synthesizes repairs.Givena set ofuntrusted input source,
oo7Wang et al. [37] statically analyzes a binary to detect vul-
nerable patterns and inserts fences in turn. Our tool, BLADE,
notonlyrepairsvulnerableprogramswithoutuserannotation,
but ensures that program patches contain a minimum num-
ber of fences. Furthermore, BLADE formally guarantees that
repaired programs are free from speculation-based attacks.
Speculative Execution Semantics.There have been several
recent proposals for speculative execution semantics [11, 13,
17, 26]. Of those, [11] is closest to ours, and inspired our se-
mantics (e.g.,we share the3-stagespipeline, attacker-supplied
directives and the instruction reorder buffer). However their
semantics targets an assembly language with direct jumps,
while we reason about speculative execution of imperative
programs with structured control-flow.
Hardware Mitigations and Secure Design. Both AMD
AMD [5] and Intel Intel [19] recommend inserting serializ-
ing, fence instructions after bounds checks to protect against
Spectre v1 attacks and some compilers followed suit [18, 28].
Unfortunately, these defenses causes significant performance
degradation [9]. Taram et al. [32] propose context-sensitive
fencing, ahardware-basedmitigation thatdynamically inserts
fences in the instruction streamwhen dangerous conditions
arise. Several secure hardware designs have been studied to
remove speculative attacks from future processors. InvisiS-
pec Yan et al. [42] is a new micro-architecture design that
features a special speculative buffer to prevent speculative
loads from polluting the cache. STT [2] tracks speculative
taints inside the processor micro-architecture and prevent
speculative values fromreaching instructions that could serve
as covert channels.We think our approach could be applied to
guide such hardware mitigations by pinpointing the program
parts that need to be protected.

12

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

Automatically Eliminating Speculative Leaks with BLADE PLDI’20, June 15–20, 2020, London, UK

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

References

[1] Flows in Networks. Princeton University Press, 1962.
[2] Speculative taint tracking (stt): A comprehensive protection for

speculatively accessed data. InMICRO, 2019.
[3] Alex Aiken. Constraint-based program analysis. In Radhia Cousot

and David A. Schmidt, editors, Static Analysis, pages 1–1, Berlin,
Heidelberg, 1996. Springer Berlin Heidelberg. ISBN 978-3-540-70674-8.

[4] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupres-
soir, and Michael Emmi. Verifying constant-time implementations.
In Usenix Security, 2016.

[5] AMD. Software techniques for managing speculation on AMD
processors. https://developer.amd.com/wp-content/resources/

Managing-Speculation-on-AMD-Processors.pdf, 2018.
[6] GILLES BARTHE, SANDRINE BLAZY, BENJAMIN GRÉGOIRE, RÉMI

HUTIN, VINCENT LAPORTE, DAVID PICHARDIE, and ALIX TRIEU.
Formal verification of a constant-time preserving c compiler. In POPL,
2020.

[7] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandt-
ner, Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil
Kurmus. Smotherspectre: Exploiting speculative execution through
port contention. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’19, pages 785–800,
New York, NY, USA, 2019. ACM. ISBN 978-1-4503-6747-9. doi: 10.1145/
3319535.3363194. URL http://doi.acm.org/10.1145/3319535.3363194.

[8] Roderick Bloem, Swen Jacobs, and Yakir Vizel. Efficient information-
flow verification under speculative execution. In Yu-Fang Chen,
Chih-Hong Cheng, and Javier Esparza, editors,Automated Technology
for Verification and Analysis, pages 499–514, Cham, 2019. Springer
International Publishing. ISBN 978-3-030-31784-3.

[9] Claudio Canella, Jo Van Bulck,Michael Schwarz,Moritz Lipp, Benjamin
Von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and
Daniel Gruss. A systematic evaluation of transient execution
attacks and defenses. In Proceedings of the 28th USENIX Conference
on Security Symposium, SEC’19, pages 249–266, Berkeley, CA,
USA, 2019. USENIX Association. ISBN 978-1-939133-06-9. URL
http://dl.acm.org/citation.cfm?id=3361338.3361356.

[10] Chandler Carruth. Speculative load hardening. https:

//llvm.org/docs/SpeculativeLoadHardening.html, 2019.
[11] Sunjay Cauligi, Craig Disselkoen, Klaus von Gleissenthall, Deian

Stefan, Tamara Rezk, and Gilles Barthe. Towards constant-time
foundations for the new spectre era. CoRR, abs/1910.01755, 2019. URL
http://arxiv.org/abs/1910.01755.

[12] Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown,
Riad S. Wahby, John Renner, Benjamin Gregoire, Gilles Barthe, Ranjit
Jhala, and Deian Stefan. FaCT: A dsl for timing-sensitive computation.
In Programming Language Design and Implementation (PLDI). ACM
SIGPLAN, June 2019.

[13] Kevin Cheang, Cameron Rasmussen, Sanjit A. Seshia, and Pramod
Subramanyan. A formal approach to secure speculation. In Proceedings
of the Computer Security Foundations Symposium (CSF), 2019.

[14] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang
Lin, and Ten-Hwang Lai. Sgxpectre attacks: Leaking enclave
secrets via speculative execution. CoRR, abs/1802.09085, 2018. URL
http://arxiv.org/abs/1802.09085.

[15] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt,
and Douglas Stebila. A formal security analysis of the signal messaging
protocol. In EuroS&P, 2017.

[16] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of mi-
croarchitectural timing attacks and countermeasures on contemporary
hardware. In Journal of Cryptographic Engineering, 2018.

[17] Marco Guarnieri, Boris Koepf, José FranciscoMorales, Jan Reineke, and
Andrés Sánchez. Spectector: Principled detection of speculative infor-
mation flows. In Proc. IEEE Symp. on Security and Privacy, SSP ’20, 2020.

[18] Intel. Using intel compilers to
mitigate speculative execution side-
channel issues. https://software.

intel.com/en-us/articles/using-intel-compilers-to-mitigate-speculative-execution-side-channel-issues,
2018.

[19] Intel. Intel analysis of speculative execution side channels.
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/

Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf, 2018.
[20] Vladimir Kiriansky and Carl Waldspurger. Speculative buffer

overflows: Attacks and defenses. CoRR, abs/1807.03757, 2018. URL
http://arxiv.org/abs/1807.03757.

[21] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks:
Exploiting speculative execution. In 40th IEEE Symposium on Security
and Privacy (S&P’19), 2019.

[22] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. Spectre returns! speculation
attacks using the return stack buffer. In Proceedings of the
12th USENIX Conference on Offensive Technologies, WOOT’18,
pages 3–3, Berkeley, CA, USA, 2018. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=3307423.3307426.

[23] J. Landauer. A lattice of information. In CSFW, 1993.
[24] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner

Haas, Anders Fogh, Jann Horn, StefanMangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading kernel
memory from user space. In 27th USENIX Security Symposium (USENIX
Security 18), 2018.

[25] Giorgi Maisuradze and Christian Rossow. Ret2spec: Speculative
execution using return stack buffers. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS ’18, pages 2109–2122, New York, NY, USA, 2018. ACM.
ISBN 978-1-4503-5693-0. doi: 10.1145/3243734.3243761. URL
http://doi.acm.org/10.1145/3243734.3243761.

[26] Ross McIlroy, Jaroslav Sevcík, Tobias Tebbi, Ben L. Titzer, and Toon
Verwaest. Spectre is here to stay: An analysis of side-channels
and speculative execution. CoRR, abs/1902.05178, 2019. URL
http://arxiv.org/abs/1902.05178.

[27] Hanne Riis Nielson and Flemming Nielson. Flow logics for constraint
based analysis. In Kai Koskimies, editor, Compiler Construction, pages
109–127, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg. ISBN
978-3-540-69724-4.

[28] Andrew Pardoe. Spectre mitigations in msvc. https://devblogs.

microsoft.com/cppblog/spectre-mitigations-in-msvc/, 2018.
[29] Jonathan Protzenko, Benjamin Beurdouche, Denis Merigoux, and

Karthikeyan Bhargavan. Formally verified cryptographic web
applications in webassembly. In Security and Privacy, 2019.

[30] G. Romer and C. Carruth. C++ proposal, 2019. URL http:

//www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0928r0.pdf.
[31] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss. Net-

spectre: Read arbitrary memory over network. CoRR, abs/1807.10535,
2018. URL http://arxiv.org/abs/1807.10535.

[32] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. Context-
sensitive fencing: Securing speculative execution via microcode
customization. InASPLOS’19.

[33] Vadim Tkachenko. 20-30% performance hit from the spectre bug
fix on ubuntu. https://www.percona.com/blog/2018/01/23/20-30-
performance-hit-spectre-bug-fix-ubuntu/, Jan 2018.

[34] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache
attacks on aes, and countermeasures. J. Cryptol., 23(1):37–71,
January 2010. ISSN 0933-2790. doi: 10.1007/s00145-009-9049-y. URL
http://dx.doi.org/10.1007/s00145-009-9049-y.

[35] Jo Van Bulck,MarinaMinkin, OfirWeisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom,

13

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

PLDI’20, June 15–20, 2020, London, UK Anon.

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

and Raoul Strackx. Foreshadow: Extracting the keys to the Intel SGX
kingdomwith transient out-of-order execution. In Proceedings of the
27th USENIX Security Symposium. USENIX Association, August 2018.
See also technical report Foreshadow-NG [40].

[36] D. Volpano, G. Smith, and C. Irvine. A Sound Type System for Secure
Flow Analysis. J. Computer Security, 4(3):167–187, 1996.

[37] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika
Mitra, and Abhik Roychoudhury. oo7: Low-overhead defense against
spectre attacks via binary analysis. CoRR, abs/1807.05843, 2018. URL
http://arxiv.org/abs/1807.05843.

[38] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and
Deian Stefan. Ct-wasm: Type-driven secure cryptography for the web
ecosystem. In POPL, 2019.

[39] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and
Deian Stefan. Ct-wasm: Type-driven secure cryptography for
the web ecosystem. Proc. ACM Program. Lang., 3(POPL):77:1–
77:29, January 2019. ISSN 2475-1421. doi: 10.1145/3290390. URL
http://doi.acm.org/10.1145/3290390.

[40] OfirWeisse, Jo Van Bulck,MarinaMinkin, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas F. Wenisch,
and Yuval Yarom. Foreshadow-NG: Breaking the virtual memory
abstraction with transient out-of-order execution. Technical report,
2018. See also USENIX Security paper Foreshadow [35].

[41] MengWuandChaoWang. Abstract interpretationunder speculative ex-
ecution. InProceedings of the 40thACMSIGPLANConference onProgram-
ming Language Design and Implementation, PLDI 2019, pages 802–815,
New York, NY, USA, 2019. ACM. ISBN 978-1-4503-6712-7. doi: 10.1145/
3314221.3314647. URL http://doi.acm.org/10.1145/3314221.3314647.

[42] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, AdamMorrison, Christo-
pherW. Fletcher, and Josep Torrellas. Invisispec: Making speculative
execution invisible in the cache hierarchy. In Proceedings of the 51st
Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-51, pages 428–441, Piscataway, NJ, USA, 2018. IEEE Press.
ISBN 978-1-5386-6240-3. doi: 10.1109/MICRO.2018.00042. URL
https://doi.org/10.1109/MICRO.2018.00042.

[43] Yuval Yarom and Katrina Falkner. Flush+reload: A high reso-
lution, low noise, l3 cache side-channel attack. In 23rd USENIX
Security Symposium (USENIX Security 14), pages 719–732, San
Diego, CA, August 2014. USENIX Association. ISBN 978-1-931971-
15-7. URL https://www.usenix.org/conference/usenixsecurity14/

technical-sessions/presentation/yarom.

14

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

Automatically Eliminating Speculative Leaks with BLADE PLDI’20, June 15–20, 2020, London, UK

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

A Full Calculus

Fetch-Skip

⟨is,skip:cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is++[nop],cs,µ,ρ⟩

Fetch-Asgn

⟨is,x :=e :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is++[x :=e],cs,µ,ρ⟩

Fetch-Seq

⟨is,c1;c2 :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is,c1 :c2 :cs,µ,ρ⟩

Fetch-Ptr-Load

⟨is,x :=∗e :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is++[x :=load(e)],cs,µ,ρ⟩

Fetch-Ptr-Store

⟨is,∗e1 :=e2 :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is++[store(e1,e2)],cs,µ,ρ⟩

Fetch-Fail

⟨is,fail:cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is++[fail],cs,µ,ρ⟩

Fetch-Array-Load
c=x :=e1[e2] e=e2< length(e1) fresh(p)
e′=base(e1)+e2 c′= if e thenx :=∗e′ elsefail

⟨is,c :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is,c′ :cs,µ,ρ⟩

Fetch-Array-Store
c=e1[e2]:=e3 e=e2< length(e1) fresh(p)
e′=base(e1)+e2 c′= if e then ∗e′ :=eelsefail

⟨is,c :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is,c′ :cs,µ,ρ⟩

Fetch-If-True
c= if e thenc1 elsec2

fresh(p) i=guard(etrue,c2 :cs,p)

⟨is,c :cs,µ,ρ⟩
fetchtrue
−−−−−−−→ϵ ⟨is++[i],c1 :cs,µ,ρ⟩

Fetch-If-False
c= if e thenc1 elsec2

fresh(p) i=guard(efalse,c1 :cs,p)

⟨is,c :cs,µ,ρ⟩
fetchfalse
−−−−−−−→ϵ ⟨is++[i],c2 :cs,µ,ρ⟩

Fetch-While
c1=c;whilee c c2= if e thenc1 elseskip

⟨is,whilee c :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is,c2 :cs,µ,ρ⟩

Figure 14. Fetch stage.

15

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

PLDI’20, June 15–20, 2020, London, UK Anon.

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

Execute
|is1 |=n−1

ρ ′=ϕ(is1,ρ) ⟨is1,i,is2,cs⟩
(µ ,ρ′,o)

⟨is′,cs′⟩

⟨is1++[i]++is2,cs,µ,ρ⟩
execn
−−−−→o ⟨is′,cs′,µ,ρ⟩

Exec-Asgn
i= (x :=e) v=JeKρ i′= (x :=v)

⟨is1,i,is2,cs⟩
(µ ,ρ ,ϵ)

⟨is1++[i′]++is2,cs⟩

Exec-Branch-Ok
i=guard(eb,cs′,p) JeKρ =b

⟨is1,i,is2,cs⟩
(µ ,ρ ,ϵ)

⟨is1++[nop]++is2,cs⟩

Exec-Branch-Mispredict
i=guard(eb,cs′,p) JeKρ ,b

⟨is1,i,is2,cs⟩
(µ ,ρ ,rollback(p))

⟨is1,cs′⟩

Exec-Load
i=x :=load(e) store(,) < is1

n=JeKρ ps=Lis1M i′= (x :=µ(n))

⟨is1,i,is2,cs⟩
(µ ,ρ ,read(n,ps))

⟨is1++[i′]++is2,cs⟩

Exec-Store-Addr
i=store(e1,e2) n=Je1Kρ i′=store(n,e2)

⟨is1,i,is2,cs⟩
(µ ,ρ ,ϵ)

⟨is1++[i′]++is2,cs⟩

Exec-Store-Value
i=store(n,e)

v=JeKρ ps=Lis1M i′=store(n,v)

⟨is1,i,is2,cs⟩
(µ ,ρ ,write(n,ps))

⟨is1++[i′]++is2,cs⟩

Figure 15. Execute stage.

Retire-Nop
⟨nop:is,cs,µ,ρ⟩

retire
−−−−→ϵ ⟨is,cs,µ,ρ⟩

Retire-Asgn
⟨x :=v :is,cs,µ,ρ⟩

retire
−−−−→ϵ ⟨is,cs,µ,ρ[x 7→v]⟩

Retire-Store
i=store(n,v)

⟨i :is,cs,µ,ρ⟩
retire
−−−−→ϵ ⟨is,cs,µ[n 7→v],ρ⟩

Retire-Fail
⟨fail:is,cs,µ,ρ⟩

retire
−−−−→fail ⟨[],[],µ,ρ⟩

Figure 16. Retire stage.

ϕ(ρ,[])=ρ
ϕ(ρ,(x :=v):is)=ϕ(ρ[x 7→v],is)
ϕ(ρ,(x :=e):is)=ϕ(ρ[x 7→⊥],is)
ϕ(ρ,(x :=load(e)):is)=ϕ(ρ[x 7→⊥],is)
ϕ(ρ,(x :=protect(e)):is)=ϕ(ρ[x 7→⊥],is)
ϕ(ρ,i :is)=ϕ(ρ,is)

(a) Transient Variable Map.

JvKρ =v
JxKρ =ρ(x)
Jlength(e)Kρ = length(JeKρ)
Jbase(e)Kρ =base(JeKρ)
Je1+e2Kρ =Je1Kρ+Je2Kρ
Je1⩽e2Kρ =Je1Kρ⩽Je2Kρ

(b) Evaluation Function.

L[]M= []
Lguard(eb,cs,p):isM=p :LisM
Li :isM=LisM

(c) Pending Guard Identifiers.

Figure 17.Helper functions.

16

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

Automatically Eliminating Speculative Leaks with BLADE PLDI’20, June 15–20, 2020, London, UK

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

Fetch-Protect-Ptr
c=x :=protect(∗e)

c1=x :=∗e c2=x :=protect(x)

⟨is,c :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is,c1 :c2 :cs,µ,ρ⟩

Fetch-Protect-Array
c=x :=protect(e1[e2])

c1=x :=e1[e2] c2=x :=protect(x)

⟨is,c :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is,c1 :c2 :cs,µ,ρ⟩

Fetch-Protect-Expr
c=x :=protect(e) i=x :=protect(e)

⟨is,c :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is++[i],cs,µ,ρ⟩

Exec-Protect1
i=x :=protect(e) v=JeKρ i′=x :=protect(v)

⟨is1,i,is2,cs⟩
(µ ,ρ ,ϵ)

⟨is1++[i′]++is2,cs⟩

Exec-Protect2
i=x :=protect(v)

guard(, ,) < is1 i′= (x :=v)

⟨is1,i,is2,cs⟩
(µ ,ρ ,ϵ)

⟨is1++[i′]++is2,cs⟩

Figure 18. Semantics of protect(·).

17

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

PLDI’20, June 15–20, 2020, London, UK Anon.

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

B Semantics of Stable Read

Current processors do not provide a protect primitive in-
struction nor the means to implement it on top of existing
instructions, in its full generality. However, for array reads, it
is possible to replicate the effects of protect by exploiting the
same data-dependencies tracking capabilities at the core of
the processor pipeline. Indeed, Speculative Load Hardening
(SLH), a mitigation technique deployed in the code gener-
ated by the CLANG compiler, relies on data-dependencies to
secure memory loads automatically [10]. Using our formal
model, we give rigorous semantics to SLH and show that it
can stop transient execution attacks.
At a high level, SLH injects artificial data-dependencies

between the conditions used in branch instructions and the
addresses loaded in the following instructions to transform
control-flow dependencies into data-flow dependencies. In-
tuitively, these data-dependencies validate control-flow de-
cisions at runtime by stalling speculative loads until the pro-
cessor resolves the conditions. Using branch conditions, SLH
masks the address of loads instructions in such a way that the
processor zeroes out the address if the condition is mispre-
dicted, preventing misloads.
To formalize this mechanism, we extend our processor

model as follows. We introduce a new processor instruction
x := e ? e1 : e2, which corresponds to the conditional move
instruction CMOVon x86 processors. This instruction simply
assigns the value of e1 (resp. e2) to variable x, if the condition
e evaluates to true (resp. false). Importantly, this instruction
is not subject to speculation: the processor must first evaluate
the condition before it can resolve the assignment. We also
extend expressions with the standard bitwise AND operator
(&) andwrite 0 and 1 for bit words consisting of all 0 and 1. As
usual bitmask 0 and 1 are respectively the zero and identity
element for&, i.e., Je&0Kρ =0 and Je&1Kρ =JeKρ .
Figure 19 presents the semantics rules for CMOV and for

the stable read command implementedusing SLH.Rule [Exec-
CMOV] evaluates the condition (b=JρKe) of the conditional
assignment x :=e?:etrue :efalse and assigns the corresponding
expressions (x :=eb). Rule [Fetch-Stable-Read-SLH] fetches
command x :=stable_read(e1,e2), computes the bounds check
condition, the address of the indexed element, and push on
the stack the following command.

r :=e1⩽ length(e2)
if r then
r :=r?1:0;
x :=∗((base(e1)+e2)&r);
else
fail

The code above is similar to the code generated by a regular
array read, but additionally stores the result of the bounds-
check condition in reserved variable r . In the then-branch, the
condition is thenconverted intoa suitablebitmaskusingusing

Exec-CMOV
i=x :=e?:etrue :efalse b=JeKρ i′=x :=eb

⟨is1,i,is2,cs⟩
(µ ,ρ ,ϵ)

⟨is1++[i′]++is2,cs⟩

Fetch-Stable-Read-SLH
c=x :=stable_read(e1,e2) e=e2< length(e1)
e′=base(e1)+e2 c1= r :=e c2= r :=r?1:0
c3=x :=∗(e′&r) c′=c1;if r thenc2;c3 elsefail

⟨is,c :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is,c′ :cs,µ,ρ⟩

Figure 19. Semantics of x :=stable_read(e1,e2).

the non-speculative CMOV instruction i.e., r :=r?1:0, which
then masks the address loaded, i.e., ∗((base(e1)+e2)&r). As a
result, thevalueof theaddress remainsundefineduntil thepro-
cessor evaluates the bounds check condition. When the con-
dition resolves, if the index is inbound r=1 and the program
reads the correct address Je&1Kρ =JeKρ If the index is out-of-
bounds, instead, r=0 and the load can only read speculatively
from a constant address (x :=µ(0)), thus closing the leak.4

Revisited Example. Consider again running example Ex1
in Figure 3, where instead of standard array reads, we employ
the stable_read(·) primitive from above. After fetching the
program, the addresses of the loads are masked with the re-
spective array bounds-check conditions. Assuming the same
memory layout and content as in Figure 10 (except for the
fact that arrays are shifted by one position since µ(0)= 0 is
reserved), the processor resolves the first bounds check and
reads the arraywithin its bounds, i.e., x :=µ(3)=0. The second
load attempts to read the array out of bounds (y :=a[2]), and
our countermeasure prevents the buffer overrun by redirect-
ing the load to the dummy value stored at address 0. First, the
processor resolves the bounds check, i.e., r :=0, and forwardes
it to the load y :=load((base(a)+i2)&r). Then, the condition
zeros out the address and the processor assigns the dummy
value to variable y, i.e., y :=µ(0). As a result, we always read
array b at index z=0 and close the leak.

4We assume that the first memory cell is reserved to the processor, which
initializes it with dummy data, e.g., µ(0)=0.

18

