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Abstract WeintroduceBLADE, a newapproach to automat-
ically and efficiently synthesizing provably correct repairs
for transient execution vulnerabilities like Spectre. BLADE is
built on the insight that to stop speculative execution attacks,
it suffices to cut the dataflow from expressions that specu-
latively introduce secrets (sources) to those that leak them
through the cache (sinks), rather than prohibiting speculation
altogether. We formalize this insight in a static type sytem
that (1) types each expression as either transient, i.e., possibly
containing speculative secrets or as being stable, and (2) pro-
hibits speculative leaks by requiring that all sink expressions
are stable. We introduce protect, a new abstract primitive
for fine grained speculation control that can be implemented
via existing architectural mechanisms, and show how our
type system can automatically synthesize aminimal number
of protect calls needed to ensure the program is secure.
We evaluate BLADE by using it to repair several verified, yet
vulnerableWebAssembly implementations of cryptographic
primitives. BLADE can fix existing programs that leak via
speculation automatically, without user intervention, and
efficiently using two orders of magnitude fewer fences than
would be added by existing compilers, thereby and ensuring
security with minimal performance overhead.

1 Introduction

Implementing secure cryptographic algorithms is hard. The
codemustnot onlybe functionally correct andmemory safe, it
must avoid divulging secrets indirectly through side channels
like control-flow, memory-access patterns, or execution time.
Consequently,much recentwork focusesonhowtoensure im-
plementationsdonot leaksecrets e.g.,via typesystems[12,39],
verification[4], and program transformations [6].

Unfortunately, these efforts are foiled by speculative exe-
cution. Even if secrets are closely controlled via guards and
access checks, the processor can simply ignore those checks
when executing speculatively. An attacker can exploit this to
leak secrets in turn.

In principle, memory fences block speculation, and hence,
offer a way to recover the original security guarantees. In
practice, however, fences pose a confounding dilemma. Pro-
grammerscaneither relyonheuristic approaches for inserting
fences [37], but then forgo guarantees about the absence of
side-channels. Alternatively, they can recover security guar-
antees by conservatively inserting fences after every load, but
endure the huge performance costs.

In this paper, we introduce BLADE, a new approach to
automatically, provably and efficiently eliminate speculation-
based leakage. BLADE is based on the key insight that to
prevent leaking data via speculative execution, it is unneces-
sary to stop all speculation as done by traditional memory
fences. Instead, it suffices to cut thedataflowfromexpressions
(sources) that speculatively introducesecrets to those that leak
them through the cache (sinks). We develop this insight into
an automatic enforcement algorithm via four contributions.
1. A Semantics for Speculation.Our first contribution is a
formal operational semantics for a simple While language
that precisely captures how speculation can occur and what
an attacker can observe via speculation (§ 3). To prevent leak-
age, we propose and formalize the semantics of an abstract
primitive calledprotect that does not exist in today’s hard-
ware but captures the essence of several primitives proposed
in recent work [2, 32]. Furthermore, this primitive can be
implemented in software e.g., via speculative load harden-
ing [30]. Crucially, and in contrast to a regular fence which
stops all speculation, protect only stops speculation for
a given variable. For example x :=protect(e) ensures that e’s
value is only assigned to x after e has been assigned its stable,
non-speculative value.
2. A Type System for Speculation.Our second contribution
is an approach to conservatively approximating the dynamic
semantics of speculation via a static type sytem that types each
expression as either transient (T), i.e., expressions that may
contain speculative secrets, or stable (S), i.e., those that cannot
(§ 4.1). Our system prohibits speculative leaks by requiring
that all sink expressions that can influence intrinsic attacker
visible behavior (e.g., cache addresses) are typed as stable.
We connect the static and dynamic semantics by proving
that well-typed programs are indeed secure, i.e., satisfy a cor-
rectness condition called speculative non-interference [17]
which states that the programdoes not leak under speculative
execution more than it would under sequential execution.
3. Automatic Protection. Existing programs that are free
of protect statements are likely insecure under specula-
tion and will be rejected by our type system. Thus, our third
contribution is an algorithm that automatically synthesizes a
minimal number of protect statements to ensure that the
program satisfies speculative non-interference. To this end,
we extend the type checker to construct a def-use graph that
captures the data-flow between program expressions. A cut-
set in the graph is a set of variables whose removal eliminates
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1 void SHA2_update_last(int *input_len, ...)

2 {

3 if (! valid(input_len)) { ... }

4 int len = *input_len;

5 int *dst3 = ... + len;

6 _mm_lfence();
7 int *dst3_safe = protect(.. + len);
8 ...

9 *dst3_safe = pad;

10 ...

11 }

Figure 1. Code fragment from the HACL* SHA2 imple-
mentation, containing a potential speculative execution
vulnerability that leaks explicitly through the cache by
writing memory at a secret-tainted address (line 9). A naive
patch is shown is shown in red, the patch computed by
BLADE is shown in green.

all paths from secret-sources to observable-sinks. We show
that inserting aprotect statement for each variable in a cut-
set suffices to yield a program that is well-typed, and hence,
secure with respect to speculation (§5.3). Happily, finding
such cuts is an instance of the classic max-flow/min-cut prob-
lem, so existing polynomial time algorithms let us efficiently
synthesize protect statements that resolve the dilemma of
enforcing security with minimal performance overhead.

4. Evaluation.Our final contribution is an implementation
of our method in a tool called BLADE, and an evaluation
using BLADE to repair verified yet vulnerable (to transient
execution attacks) programs: theWebAssembly implemen-
tations of the signal messaging Protocol and its respective
cryptographic libraries [29], and a number of verified cryp-
tographic algorithms from [38] (§ 6). Our evaluation shows
that BLADE can automatically compute fixes for existing
programs. Compared to an existing fully automatic protec-
tion as implemented in existing compilers (notably Clang),
BLADE inserts two orders of magnitude fewer fences and
thus imposes negligible performance overhead.

2 Overview

In this section,wepresent twopotential speculative execution
vulnerabilities inHACL*— a verified cryptographic library
— that were discovered by BLADE and discuss how BLADE
repairs the vulnerabilities by inserting protect statements.
We then showhowBLADE computes the repairs via ourmini-
mal fence inference algorithm and finally how BLADE proves
that the repairs are indeed correct, via our transient-flow type
system.

2.1 Two Speculation Bugs and Their Fixes

Figure 1 shows a code fragment from a function in the im-
plementation of the SHA2 hash inHACL*. Though BLADE
operates onWebAssembly, we present equivalent simplified
C code for readability. The function takes as input a pointer
input_len, validates the input (line 3), loads frommemory
the public length of the hash (line 4), calculates a target ad-
dress dst3 (line 5), and finally pads the buffer pointed to by
dst3 (line 9).

1. Leaking Through a Memory Write. During normal, se-
quential execution this code is not a problem: the function
validates the input to prevent classic buffer overflows vulner-
abilities. However, an attacker can exploit the function to leak
senstive data during speculation. To do this, the attacker first
has to modify the value that the pointer input_len holds
during speculation. Since input_len is a function parame-
ter, this can be achieved e.g., by calling the function repeatedly
with legitimate addresses, training thebranchpredictor topre-
dict the next input to be valid. After (mis)training the branch
predictor, the attacker manipulates input_len to point to
an address containing secret data (e.g., the secret key used
by the hash function) and calls the function again, this time
with an invalid pointer. As a result of the mistraining, the
branch predictor causes the processor to skip validation and
erroneously load the secret intolen, which in turn, is used to
calculate pointerdst3. The buffer pointed to bydst3 is then
written in line 9, completing the attack. Even though pointer
dst3 is incorrect due to misprediction and the write will
therefore be squashed, its side-effects persist, and therefore
remain visible to the attacker. The attacker can then extract
the target address — and thereby the secret via cache timing
measurements [16].

Preventing the Attack: Memory Fences. Since the attack
exploits the fact that input validation is speculatively skipped,
we can prevent it bymaking sure that the buffer in line 9 is not
written until the input has been validated. To mitigate these
class of attacks, Intel [19] and AMD [5] recommend inserting
a speculationbarrier after critical validation check-points. Fol-
lowing this strategy, wewould place amemory fence on line 6.
This fencestopsall speculativeexecutionpast the fence, i.e.,no
statements after the fence are executed until all previous state-
ments (including input validation) have been resolved. While
the effects of the fence prevent the attack, they are more re-
strictive than necessary and incur high performance cost [33].

Preventing the Attack Efficiently.We propose an alterna-
tive way to stop speculation from reaching the write in line 9
through a new primitive called protect. Rather than elimi-
nate all speculation,protectonly stops speculation along a
particular data-path. We use protect to patch the program
in line 7. Instead of assigning pointer dst3 directly as in
line 5, the expression that computes the address is guarded by
a protect statement. This ensures that the value assigned
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1 void SHA2_update_last(int *input_len,...)

2 {

3 if (! valid(input_len)) { ... }

4 int len = *(input_len);

5 ...

6 int len_safe = protect(*input_len)
7 for ( i = 0; i < len_safe + ...)

8 dst2[i] = 0;

9 ...

10 }

Figure 2. SHA2 code fragment containing a potential
speculative execution vulnerability that leaks implicitly
through a control-flow dependency.

to dst3_safe is always guaranteed to use len’s final, non-
speculative value. Therefore,writing todst3_safe in line 9
prevents any invalid secret-tainted address fromspeculatively
reaching the store, where it could be leaked to the attacker.

Theprotectprimitiveoffers anabstract interface forfine
grained control of speculation. There are a number of possible
implementations for this interface. For example, protect
could be implemented in hardware. While unfortunately,
today’s hardware does not offer an equivalent instruction
to protect, similar functionalities have been proposed in
recent work [2, 32]. Alternatively, protect can be imple-
mented in software (a similar proposal has beenmade in [30]).
In general, protect can be implemented through a fence
instruction.However, better solutions exist for reading arrays.
For example, Speculative Load Hardening (SLH), a mitigation
deployed in the code generated by Clang [10], stalls individ-
ual array reads until the corresponding bounds-check con-
dition gets resolved. We model software implementations of
protect through a restricted primitive calledsafe_read,
which can only be applied to array reads. We then formalize
an implementation of safe_read via SLH in the supple-
mentary material, and evaluate the number of protect and
safe_read needed to patchHACL* and their overhead in
Section 6.
2. Leaking Through aControl-FlowDependency. Figure 2
shows a code fragment taken from the same function as in
Figure 1. The code contains a second potential vulnerabil-
ity, but in contrast to Figure 1 the vulnerability leaks secrets
implicitly, through a control-flow dependency.
The function reads from memory a (public) integer len

(line 4), which determines the number of initialization rounds
in the condition of the for-loop (line 7). Like the previous
vulnerability, the function is harmless under sequential ex-
ecution, but leaks under speculation. As before, the attacker
manipulates thepointerinput_len to point to a secret after
mistraining the branch predictor to skip validation. But in-
steadof leaking thesecretdirectly throughthedatacache, they

can leak the value indirectly through a control-flow depen-
dency, e.g., via the instructioncacheandnon-secretdependent
lines of the data cache. In particular, the secret determines
how often the initialization loop (line 7) is executed during
speculation, and therefore an attacker can make secret de-
pendent observations via instruction- and data-cache timing
attacks. Like the previous vulnerability, this vulnerability can
be fixed via theprotect primitive, as shown in lines 6 and 7.

2.2 Computing Fixes ViaMinimal Fence Inference

BLADEautomatically infers theplacementof theseprotect
statements. We illustrate this process using a simple running
example Ex1 shown in Figure 3. The code reads two values
from an array (x :=a[i1] and y :=a[i2]), adds them (z :=x+y),
and indexes another array with the result (w :=b[z]). We as-
sume that all array operations are implicitly bounds-checked
and thus no explicit validation code is needed.
Like the examples above, Ex1 contains a speculative exe-

cution vulnerability: the array reads may skip their bounds
check and so x and y can contain transient secrets (i.e., secrets
introducedbymisspeculation).This secretdata thenflows toz,
and finally leaks through the data cache by the array read b[z].
Def-Use Graph. To secure the program, we need to cut the
dataflow between the array reads which could introduce tran-
sient secret values into the program, and the index in the array
readwhere theyare leaked through the cache. For this,wefirst
build a def-use graphwhose nodes and directed edges capture
the data dependencies between the expressions and variables
of a program. For example, consider the def-use graph of pro-
gramEx1 in Figure 4. In the graph, the edge x→x+y indicates
that x is used to compute x+y.1 To track how transient values
propagate in the def-use graph, we extend the graph with
the special circle node T, which represents the source of tran-
sient values of the program. Since reading memory creates
transient values, we connect the T node to all nodes contain-
ing expressions that explicitly read memory, e.g., T→a[i1].
Following the data dependencies along the edges of the def-
use graph, we can see that node T is transitively connected
to node z, which indicates that z can contain transient data
at run-time. To detect insecure uses of transient values, we
then extend the graph with the special circle node S, which
represents the sink of stable (i.e., non-transient) values of a
program. Intuitively, this node draws all the values of a pro-
gram thatmust be stable to avoid transient execution attacks.
Therefore, we connect all expression used as array indices in
the program to the S node, e.g., z→S. The fact that the graph
in Figure 3 contains a path fromT to S indicates that transient
data flows through data dependencies into (what should be)
a stable index expression and thus the program is insecure.
Cutting the Dataflow. In order to make the program safe,
we need to cut the data-flow between T and S by introducing

1To avoid ambiguities in the graph, we assume that each variable is assigned
at most once, i.e., the code is in static single assignment form.
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x :=a[i1] x :=protect(a[i1])
y :=a[i2] y :=protect(a[i2])
z :=x+y z :=protect(x+y)
w :=b[z]

Figure 3. Ex1: Running Example. The optimal patch
computed by BLADE is shown in green. A sub-optimal patch
is shown in orange.

T

a[i2]

a[i1]
b[z]

x

y

x+y z S

i1

i2

Figure 4. Def-use Graph of Ex1. We omit some irrelevant
edges for readability. The Figure contains two choices
of cut-sets, shown as dashed lines. The left cut requires
removing two nodes and thus, inserting two protect
statements. The right cut shows a minimal solution, which
only requires removing a single node.

as few protect statements as necessary. This problem can
be equivalently restated as follows: find aminimal cut-set, i.e.,
a minimal set of variables, such that removing the variables
from thegraph eliminates all paths fromT fromS. Each choice
of cut-set defines a way to repair the program: simply add
a protect statement for each variable in the set. Figure 4
contains two choices of cut-sets, shown as dotted lines. The
cut-set on the left requires two protect statements, for vari-
ablesx andy respectively, corresponding to theorange patch
in Figure 3. The cut-set on the right is minimal, it requires
only a single protect, for variable z, and corresponds to the
green patch in Figure 3. In general, the a minimal cut-set can
be computed as a solution to theMin-Cut/Max-Flow problem,
for which efficient polynomial-time algorithms exist [1].

2.3 Proving Correctness Via Transient-Flow Types

To formalize and verify the correctness of the patch computed
by cutting the def-use graph, we define a transient-flow type
system and construct the def-use graph for a given program
from the type-constraints generated during type inference.

Typing Judgement. The type system statically assigns a
transient-flow type to each variable: a variable is typed as
transient (written as T), if it can contain transient data (i.e.,
potential secrets) at run-time, and as stable (written as S),
otherwise. Given a typing environment Γ which assigns a
transient flow type to each variable, and a command c , the
type system defines a judgement Γ ⊢c saying that c is free of
speculative execution bugs. The type system enforces that
transient expressions may not be used in positions that may
leak their value by affecting memory reads and writes, e.g.,

they may not be used as array indices and in loop condi-
tions. Additionally, it requires that transient expressions may
not be assigned to stable variables, except through the use
of protect. To show that our type system indeed prevents
speculative execution attacks, we define a semantics for spec-
ulative execution of a while language (Section 3) and prove
thatwell-typed programs do not leak speculativelymore than
sequentially, that is by executing their statements in-order
and without speculation (see Section 5).
Type Inference. Given an input program, we construct the
corresponding def-use graph by collecting the type con-
straints generated during type inference. Type inference is
formalized by a typing-inference judgment Γ,Prot ⊢ c⇒ k,
which extends the typing judgment from above with (1) a
set of protected variables Prot (the cut-set), and (2) a set of
type-constraints k (the def-use graph). At a high level, type
inference has 3 steps: (i) generate a set of constraints under
an initial typing environment and protected set that allow
any program to type-check, (ii) construct the def-use graph
from the constraints and find a cut-set, and (iii) compute the
resulting typing environment. To characterize the security of
a still unrepaired program after type inference, we define a
typing judgment Γ,Prot⊢c, where unprotected variables are
explicitly accounted for in the Prot set.2 Intuitively, the pro-
gram is secure if we promise to insert a protect statement
for each variable in Prot.
To repair programs, we simply honor the promise of in-

serting protect statements for each for each variable in the
protected set of the typing judgment obtained above. Once
repaired, the program type checks under an empty protected
set and with the same typing environment.

2.4 AttackerModel

Before moving to the details of our semantics and transient
type system, we discuss the attacker model considered in
this work. The attacker runs cryptographic code on a spec-
ulative out-of-order processor and, as usual, can choose the
values of public inputs and observe public outputs, but may
not read secret data (e.g., cryptographic keys) in registers
and memory. Additionally, the attacker can influence how
programs are speculatively executed through the branch pre-
dictor and choose the instructions execution order in the
processor pipeline. The effects of these actions are observable
through the cache and are otherwise invisible at the ISA level.
In particular, while programs run, the attacker can take pre-
cise timing measurements through the data- and instruction-
cache with a cache-line granularity, which may disclose se-
cret data covertly. These features allow the attacker to mount
Spectre-PHT [20, 21] and Spectre-STL [9] attacks and leak
data through FLUSH+RELOAD [43] and PRIME+PROBE [34]
cache side-channels attacks. We do not consider speculative
attacks that relyon theReturnStackBuffer (e.g., Ret2Spec [25]

2The judgment Γ ⊢c is just a short-hand for Γ,∅⊢c.
4
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Value v F n | b | a
Expr. e F v | x | e1+e2 | e1⩽e2

| length(e) | base(e)
Rhs. r F e | ∗e | e[e]
Cmd. c F skip | x :=r | ∗e=e | e1[e2]:=e3

| if e thenc1 elsec2
| whileedoc | fail | c1;c2
| x :=stable_read(e1,e2)
| x :=protect(r)

Figure 5. Surface Syntax.

and [22]) or the Branch Target Buffer (Spectre-BTB [21]). We
similarly do not consider attacks that do not use the cache to
exfiltrate data, e.g., port contention (SMoTherSpectre [7]) and
Meltdown attacks [9, 24], since hardware fixes address them.

3 A Semantics for Speculation

We now formalize the concepts presented in the overview.
We start by giving a formal semantics for a while language
with speculative execution. Figure 5 presents the language’s
surface syntax. Values consist of Booleans b, pointers n rep-
resented as natural numbers, and arrays a. Array length and
base address are given by functions length(·) and base(·). In
addition to variable assignments, pointer dereferences, array
stores, conditionals and loops, our language features two spe-
cial commands that help prevent transient execution attacks.
Command x :=protect(r) evaluates r and assigns its value to
x, only after the value is stable (i.e., non-transient). Command
x :=stable_read(e1,e2) is a restricted version of protect(·) that
only applies to array reads (see Section 3.4) Lastly, fail triggers
a memory violation error (caused by reading or writing an
array out-of-bounds) and aborts the program.
Processor Instructions.Oursemantics translates the surface
syntax into an abstract set of processor instructions shown in
Figure 6.Our processor instructions donot contain branching,
they represent a single predictedpath through the control flow.
The prediction choices are represented by a sequence of guard
instructions representing pending branch points. Guard in-
structionshave formguard(eb,cs,p),which records thebranch
condition e, its predicted truth value b and a unique guard
identifier p, used in our security analysis (Section 5). Each
guard attests the fact that the current execution is valid only if
the branch condition gets resolved as predicted. In order to en-
able a roll-back in caseof amissprediction, guards additionally
record the set of commands cs along the alternative branch.
Directives and Observations. Instructions do not have to
be executed in sequence, they can be executed in any order,
enabling out-of-order execution. We use a simple three stage
processor pipeline: the execution of each instruction is split
into fetch, exec, and retire. We do not fix the order in which

Instr. i F nop | x :=e | x :=load(e)
| store(e1,e2) | x :=protect(e)
| guard(eb,cs,p) | fail

Dir. d F fetch | fetchb | execn
| retire

Obs. o F ϵ | load(n,ps) | store(n,ps)
| fail | rollback(p)

Prediction b ∈ { true,false}
Guard Id. p ∈ N
Reorder Buffer is F i :is | [ ]
Cmd Stack cs F c :cs | [ ]
Memory Store µ ∈ N⇀Value
Variables Map ρ ∈ Var→Value
Configuration C F ⟨is,cs,µ,ρ⟩

Figure 6. Processor Syntax.

instructions, and their individual stages are executed, nor do
we supply a model of the branch predictor to decide which
control flow path to follow. Instead, we let the attacker supply
those decisions through a set of directives [11] shown in Fig.
6. For example, directive fetch true fetches the true branch
of a conditional and exec n executes the nth instruction in
the reorder buffer. Executing an instruction generates an ob-
servation (Fig. 6) which records attacker observable behavior.
Observations include speculativememory reads and writes
(i.e., load(n,ps) and store(n,ps) issued while guards ps are
pending), rollbacks (i.e., rollback(p) due to misspeculation
of guard p), and memory violations (fail). Most instructions
generate the empty observation ϵ .
Configurations and Reduction Relation. We formally
specify our semantics as a reduction relation between proces-
sor configurations. A configuration ⟨is,cs,µ,ρ⟩ consists of a
queue of in-flight instructions is called the reorder buffer, a
stack of commands cs, a memory µ, andmap from variables to
values ρ. A reduction step C

d
−→o C ′ denotes that, under direc-

tived, configurationC is transformed intoC ′ andgeneratesob-
servation o. To execute a program cwith initialmemory µ and
variablemapρ, theprocessor initializes theconfigurationwith
an empty reorder buffer and inserts the program into the com-
mand stack, i.e., ⟨[ ],[c ],µ,ρ⟩. Then, the executionproceedsun-
til both thereorderbufferandthestack in theconfigurationare
empty , i.e., we reach a configuration of the form ⟨[ ],[ ],µ ′,ρ ′⟩,
for some final memory store µ ′ and variable map ρ ′.

We nowdiscuss the semantics rules of each execution stage
and then those for our security primitives.

3.1 Fetch Stage

The fetch stage flattens the input command into a sequence
of instructions which it stores in the reorder buffer. Figure 7
presents selected rules; the remaining rules are in Appendix
A. Rule [Fetch-Seq] pops command c1;c2 from the commands

5



441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

PLDI’20, June 15–20, 2020, London, UK Anon.

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

Fetch-Seq

⟨is,(c1;c2):cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is,c1 :c2 :cs,µ,ρ⟩

Fetch-Asgn

⟨is,x :=e :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is++[x :=e ],cs,µ,ρ⟩

Fetch-Ptr-Load

⟨is,x :=∗e :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is++[x :=load(e)],cs,µ,ρ⟩

Fetch-Array-Load
c=x :=e1[e2] e=e2< length(e1) fresh(p)
e′=base(e1)+e2 c′= if e thenx :=∗e′ elsefail

⟨is,c :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is,c′ :cs,µ,ρ⟩

Fetch-If-True
c= if e thenc1 elsec2

fresh(p) i=guard(etrue,c2 :cs,p)

⟨is,c :cs,µ,ρ⟩
fetchtrue
−−−−−−−→ϵ ⟨is++[ i ],c1 :cs,µ,ρ⟩

Figure 7. Fetch stage (selected rules).

stack and pushes the two sub-commands for further process-
ing. [Fetch-Asgn] pops an assignment from the commands
stack and appends the corresponding processor instruction
(x := e) at the end of the reorder buffer.3 Rule [Fetch-Ptr-
Load] is similar and simply translates pointer dereferences to
the corresponding load instruction.Arrays provide amemory-
safe interface to read andwritememory: the processor injects
bounds-checks when fetching commands that read and write
arrays. For example, rule [Fetch-Load-True] expands com-
mand x :=e1[e2] into the corresponding pointer dereference,
but guards the commandwith abounds-check condition. First,
the rule generates the condition e = e2 < length(e1) and cal-
culates the address of the indexed element e′=base(e1)+e2.
Then, it replaces the array read on the stack with command
if e then x :=∗e′ else fail to abort the program and prevent
the buffer overrun if the bounds check fails. Later, we show
that speculative out-of-order execution can simply ignore the
bounds check guard and cause the processor to transiently
read memory at an invalid address. Rule [Fetch-If-True]
fetches a conditional branch from the stack and, following the
prediction provided in directive fetch true, speculates that
the condition ewill evaluate to true. Thus, the processor in-
serts the corresponding instruction guard(etrue,c2 :cs,p)with
a fresh guard identifier p in the reorder buffer and pushes
the then-branch c1 onto the stack cs. Importantly, the guard
instruction stores the else-branch together with a copy of

3Notation [i1, ..., in ] represents a list of n elements, is1++ is2 denotes list
concatenation, and |is | computes the length of the list is.

Execute
|is1 |=n−1

ρ ′=ϕ(is1,ρ) ⟨is1,i,is2,cs⟩
(µ ,ρ′,o)

⟨is′,cs′⟩

⟨is1++[ i ]++is2,cs,µ,ρ⟩
execn
−−−−−→o ⟨is′,cs′,µ,ρ⟩

Exec-Asgn
i= (x :=e) v=JeKρ i′= (x :=v)

⟨is1,i,is2,cs⟩
(µ ,ρ ,ϵ )

⟨is1++[ i′ ]++is2,cs⟩

Exec-Branch-Ok
i=guard(eb,cs′,p) JeKρ =b

⟨is1,i,is2,cs⟩
(µ ,ρ ,ϵ )

⟨is1++[nop]++is2,cs⟩

Exec-Branch-Mispredict
i=guard(eb,cs′,p) JeKρ ,b

⟨is1,i,is2,cs⟩
(µ ,ρ ,rollback(p))

⟨is1,cs′⟩

Exec-Load
i= (x :=load(e)) store( , ) < is1

n=JeKρ ps=Lis1M i′= (x :=µ(n))

⟨is1,i,is2,cs⟩
(µ ,ρ ,read(n,ps))

⟨is1++[ i′ ]++is2,cs⟩

Figure 8. Execute stage (selected rules).

the current commands stack (i.e., c2 :cs) as a rollback stack to
restart the execution in case of misprediction.

3.2 Execute Stage

In the execute stage, the processor evaluates the operands of
instructions in the reorder buffer and rolls back the program
state whenever it detects a misprediction.
Transient Variable Map. To evaluate operands in the pres-
ence of out-of-order execution, we need to take into account
howprevious, possibly unresolved assignments in the reorder
buffer affect the variable map. In particular, we need to en-
sure that an instruction cannot execute if it depends on a
preceding assignment whose value is still unknown. To up-
date variable map ρ with the pending assignments in reorder
buffer is, we define a function ϕ(is,ρ), called the transient
variable map. The function walks through the reorder buffer,
registers each resolved assignment instruction (x :=v) in the
variable map (through function update ρ[x 7→v]) and marks
variables from pending assignments (i.e., x :=e, x := load(e),
and x := protect(r)) as undefined (ρ[x 7→ ⊥]), making their
respective values unavailable to following instructions.
Execute Rule and Auxiliary Relation. Step rules for the
reduction relation are shown in Figure 8. Rule [Execute] exe-
cutes the n-th instruction in the reorder buffer, following the
directive execn. For this, the rule splits the reorder buffer into
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prefix is1, n-th instrucion i and suffix is2. Next, it computes
the transient variable map ϕ (is1,ρ) and executes a transition
step under the newmap using an auxiliary relation⇝. Notice
that [Execute] does not update the store or the variable map
(the transient map is simply discarded). These changes are
performed later in the retire stage.

The rules for the auxiliary relation are shown in Fig. 8. The
relation transforms a tuple ⟨is1,i,is2,cs⟩ consisting of prefix,
suffix and current instruction i into a tuple ⟨is′,cs′⟩ specifying
the reorder buffer and command stack obtained by executing
i. For example, rule [Exec-Asgn] evaluates the right-hand
side of the assignment x :=ewhere JeKρ denotes the value of
e under ρ. The premise v=JeKρ ensures that the expression is
defined i.e., it does not evaluate to⊥. Then, the rule substitutes
the computed value into the assignment (x :=v), and reinserts
the instruction back into its original position in the reorder
buffer.

GuardsandRollback.Rules [Exec-Branch-Ok] and [Exec-
Branch-Mispredict] resolve guard instructions. In rule
[Exec-Branch-Ok], the predicted and computed value of
the guard expression match, and the processor only has to re-
place the guardwith anop. In contrast, in rule [Exec-Branch-
Mispredict] the predicted and computed value differ (JeKρ ,
b). This causes the processor to revert the program state and
issue a rollback observation. For the rollback, the processor
discards the instructions past the guard (i.e., is2) and substi-
tutes the current commands stack cswith the rollback stack
cs′ which causes execution to revert to the alternative branch.

Loads. Rule [Exec-Load] executes a memory load. The rule
computes the address (n = JeKρ ), retrieves the value at that
address from memory (µ(n)) and rewrites the load into an
assignment (x :=µ(n)). Inserting the assignment into the re-
order buffer allows transiently forwarding the loaded value
to later instructions. The premise store( , ) < is1 prevents
the processor from reading stale data from memory: if the
load aliases with a preceding (but pending) store, ignoring
the store would produce a stale read. To record that the load
is issues speculatively, the observation read(n,ps) stores list
ps containing the identifiers of the guards still pending in the
reorder buffer. Function LisM simply extracts the identifiers of
the guard instructions in the buffer is.

3.3 Retire Stage

The retire stage removes completed instructions from the re-
order buffer and propagates their changes to variablemap and
memory store. While instructions are executed out-of-order,
they are retired in-order to preserve the illusion of sequential
execution to the user. Figure 9 presents the rules for the retire
stage. Rule [Retire-Nop] removes nop. Rules [Retire-Asgn]
and [Retire-Store] remove the resolved assignment x :=v
and instruction store(n,v) from the reorder buffer and update
the variable map (ρ[x 7→v]) and the memory store (µ[n 7→v])

Retire-Nop
⟨nop:is,cs,µ,ρ⟩

retire
−−−−→ϵ ⟨is,cs,µ,ρ⟩

Retire-Asgn
⟨x :=v :is,cs,µ,ρ⟩

retire
−−−−→ϵ ⟨is,cs,µ,ρ[x 7→v]⟩

Retire-Store
i=store(n,v)

⟨i :is,cs,µ,ρ⟩
retire
−−−−→ϵ ⟨is,cs,µ[n 7→v],ρ⟩

Retire-Fail
⟨fail:is,cs,µ,ρ⟩

retire
−−−−→fail ⟨[ ],[ ],µ,ρ⟩

Figure 9. Retire stage.

respectively. Rule [Retire-Fail] aborts the program by emp-
tying reorder buffer and command stack and generates a fail
observation, simulating a processor raising an exception (e.g.,
a page fault).
We demonstrate how the attacker can leak a secret from

program Ex1 (Fig. 3) in ourmodel. First, the attacker instructs
the processor to fetch all the instructions, suppling prediction
true for all bounds-check conditions. Figure 10 shows the
resulting buffer and how it evolves after each attacker direc-
tive, which instruct the processor to speculatively execute
the load instructions and the assignment (but not the guard
instructions). Memory µ and variablemap ρ are shown on the
right. Directive exec4 transiently reads array a past its bound,
at index 2, reading into the memory (µ(3)=42) of secret array
s[0] and generates the corresponding observation. Finally, the
processor forwards the values of x and y to compute their
sum in the fifth instruction, (z :=42), which is then used as
an index in the last instruction and leaked to the attacker via
observation read(42,[1,2,3]).

3.4 Security Primitives

Next, we turn to the rules describing our security primitives.
Protect. Instruction x := protect(r) assigns the value of r ,
only after all previous guard instructions have been exe-
cuted, i.e., when the value has become stable and no more
rollbacks are possible. Figure 11 formalizes this intuition. Rule
[Fetch-Protect-Expr] fetches protect commands involv-
ing simple expressions (x :=protect(e)) and inserts the cor-
responding protect instruction in the reorder buffer. Rule
[Fetch-Protect-Array] piggy-backs on the previous rule
by splitting a protect of an array read (x := protect(e1[e2]))
into a separate assignment of the array value (x := e1[e2])
and protect of the variable (x := protect(x)). Rules [Exec-
Protect1] and [Exec-Protect2] extend auxiliary relation
⇝. Rule [Exec-Protect1] evaluates the expression (v=JeKρ )
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Reorder Buffer exec 2 exec 4 exec 5 exec 7
1 guard((i1< length(a))true,[fail],1)
2 x :=load(base(a)+i1) x :=µ(2)
3 guard((i2< length(a))true,[fail],2)
4 y :=load(base(a)+i2) y :=µ(3)
5 z :=x+y z :=42
6 guard((z< length(b))true,[fail],3)
7 w :=load(base(b)+z) w :=µ(42)

Observations: read(2,[1]) read(3,[1,2]) ϵ read(42,[1,2,3])

Memory Layout

µ(0)=0 b[0]
µ(1)=0 a[0]
µ(2)=0 a[1]
µ(3)=42 s[0]
··· ···

VariableMap

ρ(i1)=1
ρ(i1)=2

Figure 10. Leaking execution of running example Ex1.

Fetch-Protect-Array
c= (x :=protect(e1[e2]))

c1= (x :=e1[e2]) c2= (x :=protect(x))

⟨is,c :cs,µ,ρ⟩
fetch
−−−−→ϵ ⟨is,c1 :c2 :cs,µ,ρ⟩

Fetch-Protect-Expr
c= (x :=protect(e)) i= (x :=protect(e))

⟨is,c :cs,µ,ρ⟩
fetch
−−−−→ϵ ⟨is++[ i ],cs,µ,ρ⟩

Exec-Protect1
i= (x :=protect(e)) v=JeKρ i′= (x :=protect(v))

⟨is1,i,is2,cs⟩
(µ ,ρ ,ϵ )

⟨is1++[ i′ ]++is2,cs⟩

Exec-Protect2
i= (x :=protect(v)) guard( , , ) < is1 i′= (x :=v)

⟨is1,i,is2,cs⟩
(µ ,ρ ,ϵ )

⟨is1++[ i′ ]++is2,cs⟩

Figure 11. Semantics of protect(·) (selected rules).

and reinserts the instruction in the reorder buffer as if it were
a normal assignment.However, the processor leaves the value
wrapped inside the protect instruction in the reorder buffer,
i.e., x := protect(v), to prevent forwarding the value to the
later instructions via the the transient variable map.When no
guards are pending in the reorder buffer (guard( , , ) < is1),
rule [Exec-Protect2] transforms the instruction into a nor-
mal assignment, so that the processor can propagate and
commit its value.
Example. Consider again Ex1 and the execution shown in
Figure 10. In the repaired program, x + y is wrapped in a
protect statement. As a result, directive exec5 produces value
z :=protect(42), instead of z :=42which prevents instruction
7 from executing (as its target address is undefined), until all
guards are resolved. This in turn prevents the leaking of the
transient value.
Stable Read. Unfortunately, current processors do not pro-
vide themeans to implement protect in its full generality. Our

semantics therefore contains a primitve stable_read(e1,e2)
that implements a restricted version of protect(e1[e2]) for
array reads. While protect(·) prevents forwarding loaded val-
ues until all pending branches are resolved, stable_read(·)
stallsmemory loads until individual bounds-check conditions
have been resolved. stable_read(·) can be implemented us-
ing today’s hardware, for example through speculative Load
Hardening (SLH) [10], the spectremitigation proposed by and
deployed in the Clang compiler.We provide formal semantics
in Appendix B.

Example.Consider again Ex1. Instead of using protect(·), we
can repair the example by inserting stable_read. Instead of
a single protect(·) for expression x+y, we however need to
insert two stable_read for a[i1] and a[i2], respectively.

4 Type System and Inference

In Section 4.1, we present a transient-flow type systemwhich
statically rejects programs that can potentially leak through
transient execution attacks. Given an unannotated program,
weapplyconstraint-based type inference [3, 27] togenerate its
use-def graph and reconstruct type information (Section 4.2).
Then, reusing off-the-shelf Max-Flow/Min-Cut algorithms,
we analyze the graph and locate potential speculative vulner-
abilities in the form of a variable min-cut set. Finally, using
a simple program repair algorithmwe patch the program by
inserting a minimum number of protect so that it does not
leak speculatively anymore (Figure 13).

4.1 Type System

Our transient-flow type system prevents programs from leak-
ing transient values via cache timing channels. To this end, the
type system assigns a transient-flow type to expressions and
tracks how transient values propagate within programs, re-
jecting programs in which transient values reach commands
which may leak them. An expression can either be typed as
stable (S) indicating that it cannot contain transient values
during execution, or as transient (T) indicating that it can.
These types form a 2-point lattice [23], which allows stable
expressions to be typed as transient, but not vice versa, i.e.,
we define a can-flow-to relation ⊑ such that S ⊑ T, but T ̸⊑ S.
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Value
Γ ⊢v :τ ⇒∅

Var
Γ(x)=τ

Γ ⊢x :τ ⇒ x ⊑αx

Bop
Γ ⊢e1 :τ1 ⇒ k1 Γ ⊢e2 :τ2 ⇒ k2 τ1 ⊑ τ τ2 ⊑ τ

Γ ⊢e1 ⊕ e2 :τ ⇒k1∪k2∪(e1⊑e1⊕e2)∪(e2⊑e1⊕e2)

Array-Read
Γ ⊢e1 :S ⇒k1 Γ ⊢e2 :S ⇒k2

Γ ⊢e1[e2]:T ⇒k1∪k2∪(e1⊑S)∪(e2⊑S)∪(T⊑e1[e2])

(a) Typing Rules for Expressions and Arrays.

Asgn
Γ ⊢ r :τ ⇒k τ ⊑ Γ(x)

Γ,Prot⊢x :=r ⇒k∪(r ⊑x)

Protect
Γ ⊢ r :τ ⇒k

Γ,Prot⊢x :=protect(r) ⇒k

Asgn-Prot
Γ ⊢ r :τ ⇒k x ∈ Prot

Γ,Prot⊢x :=r ⇒k∪(r ⊑x)

Stable-Read
Γ ⊢e1 :S ⇒k Γ ⊢e2 :S

Γ,Prot⊢x :=stable_read(e1,e2) ⇒k∪(e1⊑S)∪(e2⊑S)

If-Then-Else
Γ ⊢e :S ⇒k Γ,Prot⊢c1 ⇒k1 Γ,Prot⊢c2 ⇒k2

Γ,Prot⊢ if e thenc1 elsec2 ⇒k∪k1∪k2∪(e ⊑S)

(b) Typing Rules fo Commands.

Figure 12. Transient flow type system and
type constraints generation (selected rules).

Typing Expressions. Given a typing environment for vari-
ables Γ ∈ Var→{S,T}, the typing judgement Γ ⊢ r :τ assigns a
transient-flowtypeτ to r . Figure12presents selectedrules (see
Appendix C for the rest). The shaded part of the rules gener-
ates type constraints during type inference and are explained
later. Values can assume any type. Variables are assigned their
respective type from the environment. Rule [Bop] propagates
the type of the operands to the result of binary operators
⊕ ∈ {+,< }. Finally, rule [Array-Read] assigns the transient
type to array reads as the arraymaypotentially be indexedout
of bounds during speculation. Importantly, the rule requires
the array index to be stable to prevent programs from leaking
through the cache.

Typing Commands.Given a set of protected variables Prot,
we define a typing judgment Γ,Prot ⊢ c for commands. In-
tuitively, a command c is well-typed under environment Γ
and set Prot, if c does not leak, under the assumption that
the expressions assigned to all variables in Prot are protected
using the protect(·) primitive. Figure 12b shows our typing
rules. Rule [Asgn] disallows assignments from transient to
stable variables (as T ̸⊑ S). Rule [Protect] relaxes this
policy as long as the right-hand side is explicitly protected.
Intuitively, the result of protect(·) is stable and it can thus
flow securely to variables of any type. Rule [Asgn-Prot] is
similar, but instead of requiring an explicit protect(·) state-
ment, it demands that the variable is accounted for in the
protected set Prot. This is secure because all assignments to
variables in Prot will eventually be protected through the
repair function discussed later in this section. Since prim-
itive x := stable_read(e1, e2) corresponds to the array read
e1[e2], rule [Stable-Read] requires the array and the index
argument to be stable like in rule [Array-Read]. Similar to
protect(·), the result of stable_read(·) is stable and thus the
type of the variable needs no constraints.

Implicit Flows. To prevent programs from leaking data im-
plicitly through their control flow, rule [If-Then-Else] re-
quires the branch condition to be stable. This might seem
overly restrictive, at first: why can’t we accept a program that
branches on transient data, as long as it does not perform
any attacker-observable operations (e.g., memory reads and
writes) along the branches? Indeed, classic information-flow
control (IFC) type systems (e.g., [36]) take this approach by
keeping track of an explicit program counter label. Unfor-
tunately, such permissiveness is unsound under speculation.
Even if a branch does not contain observable behavior, the
value of the branch condition can be leaked by the instruc-
tions that follow a mispredicted branch. In particular, the
rollback caused by a misprediction may cause to repeat load
and store instructions after the mispredicted branch, thus re-
vealing whether the attacker guessed the value of the branch
condition.

Example. Consider the following program: if tr then x :=
0 else skip;y := a[0]. The program can leak the value of tr
during speculative execution. To see that, assume that the
processor predicts that tr will evaluate to true. Then, the pro-
cessor speculatively executes the then-branch (x:=0) and the
load instruction (y :=a[0]), before resolving the condition. If
tr is true, the memory trace of the program contains a sin-
gle read observation. However, if tr is false, the processor
detects a misprediction, restarts the execution from the other
branch (skip) and executes the array read, producing a roll-
back and two read observations. From these observations, an
attacker could potentially make inferences about the value of
tr . Consequently, if tr is typed as T, our type system rejects
the program as unsafe.
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4.2 Type Inference

We now present our type inference algorithm.

Constraints. We start by collecting a set of constraints k
via typing judgement Γ,Prot ⊢ s ⇒ k . For this, we define a
dummy environment Γ∗ and protected set Prot∗, such that
Γ∗,Prot∗ ⊢c ⇒k holds foranycommandc , (i.e.,weletΓ∗=λx .S
and include all variables in the cut-set) and use it to extract
the set of constraints k . The syntax for constraints is shown
in Figure 21. The constraints relate atomswhich represent the
unknown type of variables, i.e., αx for x , and expression, i.e.,
r . Constraints record can-flow-to relationships between the
atoms and lattice valuesT and S. They are accumulated via op-
erator∪, wherewe identifyk1∪···∪kn with the set {k1,...,kn}.

Solutions and Satisfiability.Wedefine the solution to a set
of constraints as a function σ from atoms to flow types, i.e.,
σ ∈ Atoms 7→ {T,S}, and extend solutions to map T and S

to themselves. For a set of constraints k and a solution func-
tionσ , wewriteσ ⊢k to say that the constraintsk are satisfied
under solution σ . A solution σ satisfies k , if all can-flow-to
constraints hold, when the atoms are replaced by their values
under σ . We say that a set of constraints k is satisfiable, if
there is a solution σ such that σ ⊢k .

Def-Use Graph & Paths. The constraints generated by our
type system give rise to the def-use graph of the type-checked
program. For a set of constraints k , we call a sequence of
atoms a1...an a path in k , if ai ⊑ai+1 ∈k for i ∈ {1,...,n−1} and
say that a1 is the path’s entry and an its exit. A T-S path is a
pathwith entryT andexitS. A set of constraintsk is satisfiable
if and only if there is no T-S path in k , as such a path would
correspond to a derivation of false. If k is satisfiable, we can
compute a solution σ (k) by letting σ (k)(a) =T, if there is a
path with entry T and exit a, and S otherwise.

Cuts. If a set of constraints is unsatisfiable, we can make it
satisfiable by removing someof thenodes in its graphor equiv-
alently protecting some of the variables. A set of atomsA cuts
a path a1...an , if some a ∈A occurs along the path, i.e., there
existsa ∈A and i ∈ {1,...,n} such thatai =a.We callA a cut-set
for a set of constraints k , ifA cuts all T-S paths in k . A cut-set
A is minimal for k , if all other cut-setsA′ contain as many or
more atoms thanA, i.e., #A⩽#A′.

Extracting Types FromCuts. From a set of variablesA such
that A is a cut-set of constraints k , we can extract a typing
environment Γ(k,A) as follows: for an atom αx , we define
Γ(k,A)(x)=T, if there is a path with entry T and exit αx in k
that is not cut byA, and let Γ(k,A)(x)=S otherwise.

Proposition 1 (Type Inference). If Γ∗,Prot∗ ⊢c ⇒k andA is
a set of variables that cut k , then Γ(k,A),A⊢s .

Remark. To infer a repair using stable_read instead of
protect, we can restrict our cut-set to only include variables
that are assigned from an array read.

Atom a F αx | r
Constraint k F a⊑S | T⊑a | a⊑a | k∪k | ∅

Solution σ ∈ Atoms 7→{S,T}

Figure 13. Constraint Syntax.

Example. Consider again Ex1 in Figure 3. The graph defined
by the constraints k , given by Γ∗,Prot∗ ⊢Ex1 ⇒k is shown in
Figure 4, wherewe have omittedα-nodes. The constraints are
not satisfiable, since there are T-S paths. Both {x,y} and {z}
are cut-sets, since they cut eachT-S path, however, the set {z}
contains only one element and is therefore minimal. The typ-
ing environment Γ(k,{x,y}) extracted from the sub-obptimal
cut {x,y} types all variables as S, while the typing extracted
from the optimal cut, i.e., Γ(k,{z}) types x andy as T and z, i1
and i2 as S. By Proposition 2 both Γ(k,{x,y}),{x,y} ⊢Ex1 and
Γ(k,{z}),{z} ⊢Ex1 hold.

4.3 ProgramRepair

As a final step, our repair algorithm repair (c,Prot) traverses
program c and inserts a protect(·) statement for each variable
in the cut-setProt. Sinceweassume that programsare in static
single assignment form, there is a single assignment x := r
for each variable x ∈ Prot, and our repair algorithm simply
replaces it with x :=protect(r).

5 Consistency and Security

We now present two formal results about our speculative
semantics and the security of the type system. Our full def-
initions and proofs can be found in Appendix D.
Consistency.Wewrite C ⇓DO C ′ for the complete speculative
execution of configuration C to final configuration C ′, which
generates a trace of observations O under list of directives
D. Similarly, we write ⟨µ, ρ⟩ ⇓cO ⟨µ ′, ρ ′⟩ for the sequential
execution of program c with initial memory µ and variable
map ρ resulting in final memory µ ′ and variable map ρ ′. To
relate speculative and sequential observations, we define a
projection function, written O↓, which removes prediction
identifiers, rollbacks, and mispeculated loads and stores.

Theorem 5.1 (Consistency). For all programs c, initial mem-
ory stores µ, variable maps ρ, and directives D, such that
⟨µ, ρ⟩ ⇓cO ⟨µ ′, ρ ′⟩ and ⟨[ ], [c ], µ, ρ⟩ ⇓DO′ ⟨[ ], [ ], µ ′′, ρ ′′⟩, then
µ ′=µ ′′, ρ ′=ρ ′′, andO�O′↓.

The theorem ensures equivalence of the final memory
stores, variablemaps, and observation traces from the sequen-
tial and the speculative execution. Notice that trace equiva-
lence is up to permutation, i.e., O�O′↓, because the processor
can execute load and store instructions out-of-order.
SpeculativeNon-Interference.Speculativenon-interference
is parametric in the security policy that specifies which
variables and part of the memory are controlled by the at-
tacker [17]. In the following, we write L for the set of public
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variables and memory locations that are observable by the
attacker. Two variable maps are indistinguishable to the at-
tacker, written ρ1 ≈L ρ2, if and only if ρ1(x) = ρ2(x) for all
x ∈ L. Similarly, memory stores are related pointwise, i.e.,
µ1≈L µ2 iff µ1(n)=µ2(n) for all n ∈ L.

Definition 1 (Speculative Non-Interference). A program c
satisfies speculative non-interference if and only if for all direc-
tives D, memory stores and variable maps such that µ1 ≈L µ2
and ρ1 ≈L ρ2, let Ci = ⟨[ ],[c ],µi,ρi⟩ for i ∈ {1,2}, such that
C1 ⇓

D
O1

C ′
1, C2 ⇓

D
O2

C ′
2, ifO1↓=O2↓, thenO1=O2.

In the defintion above, programs leak by producing differ-
ent observations starting from memories and variables in-
distinguishable to the attacker. Speculative non-interference
requires showing absence of leaks for the speculative traces
(O1 =O2) assuming that the program does not already leak
sequentially (O1↓= O2↓). Notice that here we consider syn-
tactic equivalence for the traces because both executions fol-
low the same list of directives. We now present our sound-
ness theorem: well-typed programs satisfy speculative non-
interference.

Theorem 5.2 (Soundness). For all programs c, if Γ ⊢c then c
satisfies speculative non-interference.

We conclude with a corollary that combines all the compo-
nents of our protection chain (type inference, type checking
and automatic repair via our security primitives) and shows
that repaired programs satisfy speculative non-interference.

Corollary 5.3. For all programs c, there exists a set of con-
straints k such that Γ∗,Prot∗ ⊢c⇒k. Let A be a set of variables
that cut k, then the repaired program repair (c,A) satisfies spec-
ulative non-interference.

6 Implementation and Evaluation

Wenowdescribe our implementation and evaluateBLADE on
an implementation of the Signal secure messaging protocol
and various cryptographic algorithms. Our evaluation shows
thatBLADEcansecureexistingsoftwaresystemsagainst spec-
ulative execution attacks automatically. Moreover, BLADE
introduces twoorders ofmagnitude less fences thanabaseline
algorithm implemented in Clang. As a result, the repairs com-
puted byBLADE incur only aminimal performance overhead.

6.1 Implementation

WeimplementedBLADE in 3500 lines ofHaskell code.BLADE
takes as input aWebAssembly program, computes a repaired
program that is safe under speculative execution and verifies
its correctness via type-checking. Internally,BLADEproceeds
in three stages. First, BLADE converts theWebAssembly pro-
gram into an intermediate representation similar to theWhile
language in Figure 5. This simplifies further processing asWe-
bAssembly is a stack-based language, i.e., arguments are not
represented directly, but instead kept on an argument stack.

Second, BLADE builds the use-def graph (§4.1) of the input
program, infers a minimal cut-set (§4.2), and computes the
repair (§4.3). Finally, in the last stage,BLADEextracts a typing-
environment from the use-def graph and type-checks the re-
paired program (§4). This independent checking step provides
extra confidence that the repaired program indeed does not
leak more speculatively, than it does sequentially (§5). Source
code will be made available under an open source license.

6.2 Evaluation

We evaluate BLADE by answering three questions: (Q1) Can
weapplyBLADE to secure existing software? (Q2)Howmany
protect statements does BLADE have to insert in order to
secure those systems? and (Q3) How do the inserted fences
affect performance?
(Q1) Applicability. To evaluate BLADE’s applicability, we
run it on crypto code, which is already carefully written to es-
chew cache-timing side channels. Our benchmarks are taken
from twomain sources: first, a verified implementation [29]
of the Signal messaging protocol [15], and second, verified
implementations of several crypto primitives taken from [38].
In particular, our benchmarks consist of
▷ Themessaging algorithm implemented inmodule SignalCore
and common cryptographic constructions implemented in
module Signal Crypto and used in Signal.
▷ TheHACL*SHA2hash,AESblockcypher,Curve25519elyptic
curve function, and ED25519 digital signature used in Signal.
▷ The SALSA20 stream cypher, SHA2 hash, and TEA block
cypher from [38].
The original implementations of our benchmarks are prov-
ably free from cache and timing side-channel. However, those
proofs considered only a sequential execution model and
therefore do not account for the speculative execution vul-
nerabilities addressed in this work.
Results. Table 1 shows the code size inWebssembly text for-
mat, and the runtime of BLADE on each benchmark. The
runtime includes translation, repair and type-checking. The
results are encouraging: the execution time scales propor-
tionally with the code size and the analysis completes fairly
quickly, even for large benchmarks (>60kWASM LOC): the
runtime is less than 10s for all of our benchmarks.
(Q2) Number of Fences.Next, we evaluate howmany fences
the analysis has to insert to make the programs secure.
The results are shown in Table 1. Column B contains our
baseline, which replaces all non-constant array reads, i.e.,
reads whose address depends on a variable, with statement
stable_read (Section 3.4), implementing a SLH-like mit-
igation that masks the address with the array bounds-check
condition. This is the proposed mitigation in the Clang com-
piler [10]. ColumnP shows the number ofprotect inserted
by BLADE. All benchmarks are modified by the baseline, ex-
cept for TEA, which is a simple, toy encryption algorithm
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Name B P S P/B LOC Time

CRYPTO [29] 92 1 2 1.1 3386 181.0 ms
CORE [29] 47 1 2 2.1 6595 347.8 ms
SHA2 [29] 156 18 34 11.5 7310 286.7 ms
AES[29] 48 0 0 0 6284 28.95 ms
CURVE [29] 2214 0 0 0 59921 5.571 s
ED25519 [29] 2403 6 10 0.2 60308 8.797 s
SALSA 20 [38] 7 0 0 0 529 20.20 ms
SHA 256 [38] 23 0 0 0 334 11.23 ms
TEA [38] 0 0 0 - 112 3.036 ms

Total 4990 26 48 0.5 144779 -

Table 1. (B) contains our baseline, i.e., the number of
stable_read, if every non-constant read is protected;
(P) contains the number of protect statements insert by
BLADE; (S) contains the number ofstable_read inserted,
if stable_read is used to implement protect; (P/B)
contains the ratio of protect statments to the baseline
fences in %; (LOC) contains the number of lines of WASM
code in text format; (Time) shows the mean timing for
fence inference, repair, and typechecking over 15 trials;
Experiments were run on a 12” Macbook with 8GB RAM.

(that should not be used in practice). In particular, for five of
the nine programs, BLADE does not need to insert any fences.
ColumnP/B shows the ratio of protect statements to baseline
readmasks in percent. Formost benchmarks, our analysis has
to insert under 3% of fences compared to the baseline. For the
SHA2 implementation of HACL* this rises to 11.5%. Across all
benchmarks, the number of fences is two orders ofmagnitude
lower than the baseline. Since protect statements are an
idealized primitive that are not available in todays hardware,
we show the number of stable-read primitives that are
needed to implement the protect in column S. The table
shows that using stable reads requires inserting more fences
by a factor of 1.8x,whichunderlines the benefits of ahardware
implementation of protect.

(Q3) Performance Impact of Fences. To evaluate the per-
formance impact of our repair, we compared how a naive
placement of fences—applying speculative load hardening to
every load of a non-constant address—compares against our
approach.We picked the SHA2-512 hash function for this test,
andused inputsof size 4KB.Naive fenceplacement introduced
44 fences while ours introduced only 5. Our measurements
showed that while the naive repair algorithm caused 13.9%
overhead, the overhead of our minimal fence replacement
algorithmwas only 0.42%. We used a sample size of 500, and
found the relative margin of error of our measurements were
less than 0.07%.

7 RelatedWork

Transient Execution Attacks. Since Spectre [21] andMelt-
down [24]were announced,many transient execution attacks

exploiting different microarchitectural components and side-
channels have been discovered and new ones come to light at
a steadypace. These attacks leakdata across arbitrary security
boundaries, including SGX enclaves [14, 35], hypervisors and
virtual machines [40], and even remotely over a network [31].
We refer to [9] for a comprehensive systematization.
Detection and Repair. Wu and Wang [41] detect cache
side channels via abstract interpretation by augmenting the
control-flow to accomodate for speculation. Spectector [17]
and Pitchfork [11] use symbolic execution on x86 binaries
to detect speculative vulnerabilities. Cheang et al. [13] and
Bloem et al. [8] apply bounded model checking to detect po-
tential speculative vulnerabilities respectively via 4-ways self-
composition and taint-tracking. Almost all these efforts [8, 11,
13, 17, 41] consider only in-order execution (except Pitchfork
[11]) for a fixed speculation bound, and focus on vulnerability
detection but do not propose techniques to repair vulnerable
programs. In contrast, our type system enforces speculative
non-interference even when program instructions are exe-
cuted out-of-order with unbounded speculation and automati-
cally synthesizes repairs.Givena set ofuntrusted input source,
oo7Wang et al. [37] statically analyzes a binary to detect vul-
nerable patterns and inserts fences in turn. Our tool, BLADE,
notonlyrepairsvulnerableprogramswithoutuserannotation,
but ensures that program patches contain a minimum num-
ber of fences. Furthermore, BLADE formally guarantees that
repaired programs are free from speculation-based attacks.
Speculative Execution Semantics.There have been several
recent proposals for speculative execution semantics [11, 13,
17, 26]. Of those, [11] is closest to ours, and inspired our se-
mantics (e.g.,we share the3-stagespipeline, attacker-supplied
directives and the instruction reorder buffer). However their
semantics targets an assembly language with direct jumps,
while we reason about speculative execution of imperative
programs with structured control-flow.
Hardware Mitigations and Secure Design. Both AMD
AMD [5] and Intel Intel [19] recommend inserting serializ-
ing, fence instructions after bounds checks to protect against
Spectre v1 attacks and some compilers followed suit [18, 28].
Unfortunately, these defenses causes significant performance
degradation [9]. Taram et al. [32] propose context-sensitive
fencing, ahardware-basedmitigation thatdynamically inserts
fences in the instruction streamwhen dangerous conditions
arise. Several secure hardware designs have been studied to
remove speculative attacks from future processors. InvisiS-
pec Yan et al. [42] is a new micro-architecture design that
features a special speculative buffer to prevent speculative
loads from polluting the cache. STT [2] tracks speculative
taints inside the processor micro-architecture and prevent
speculative values fromreaching instructions that could serve
as covert channels.We think our approach could be applied to
guide such hardware mitigations by pinpointing the program
parts that need to be protected.
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A Full Calculus

Fetch-Skip

⟨is,skip:cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is++[nop],cs,µ,ρ⟩

Fetch-Asgn

⟨is,x :=e :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is++[x :=e ],cs,µ,ρ⟩

Fetch-Seq

⟨is,c1;c2 :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is,c1 :c2 :cs,µ,ρ⟩

Fetch-Ptr-Load

⟨is,x :=∗e :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is++[x :=load(e)],cs,µ,ρ⟩

Fetch-Ptr-Store

⟨is,∗e1 :=e2 :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is++[store(e1,e2)],cs,µ,ρ⟩

Fetch-Fail

⟨is,fail:cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is++[fail],cs,µ,ρ⟩

Fetch-Array-Load
c=x :=e1[e2] e=e2< length(e1) fresh(p)
e′=base(e1)+e2 c′= if e thenx :=∗e′ elsefail

⟨is,c :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is,c′ :cs,µ,ρ⟩

Fetch-Array-Store
c=e1[e2]:=e3 e=e2< length(e1) fresh(p)
e′=base(e1)+e2 c′= if e then ∗e′ :=eelsefail

⟨is,c :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is,c′ :cs,µ,ρ⟩

Fetch-If-True
c= if e thenc1 elsec2

fresh(p) i=guard(etrue,c2 :cs,p)

⟨is,c :cs,µ,ρ⟩
fetchtrue
−−−−−−−→ϵ ⟨is++[ i ],c1 :cs,µ,ρ⟩

Fetch-If-False
c= if e thenc1 elsec2

fresh(p) i=guard(efalse,c1 :cs,p)

⟨is,c :cs,µ,ρ⟩
fetchfalse
−−−−−−−→ϵ ⟨is++[ i ],c2 :cs,µ,ρ⟩

Fetch-While
c1=c;whilee c c2= if e thenc1 elseskip

⟨is,whilee c :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is,c2 :cs,µ,ρ⟩

Figure 14. Fetch stage.
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Execute
|is1 |=n−1

ρ ′=ϕ(is1,ρ) ⟨is1,i,is2,cs⟩
(µ ,ρ′,o)

⟨is′,cs′⟩

⟨is1++[ i ]++is2,cs,µ,ρ⟩
execn
−−−−→o ⟨is′,cs′,µ,ρ⟩

Exec-Asgn
i= (x :=e) v=JeKρ i′= (x :=v)

⟨is1,i,is2,cs⟩
(µ ,ρ ,ϵ )

⟨is1++[ i′ ]++is2,cs⟩

Exec-Branch-Ok
i=guard(eb,cs′,p) JeKρ =b

⟨is1,i,is2,cs⟩
(µ ,ρ ,ϵ )

⟨is1++[nop]++is2,cs⟩

Exec-Branch-Mispredict
i=guard(eb,cs′,p) JeKρ ,b

⟨is1,i,is2,cs⟩
(µ ,ρ ,rollback(p))

⟨is1,cs′⟩

Exec-Load
i=x :=load(e) store( , ) < is1

n=JeKρ ps=Lis1M i′= (x :=µ(n))

⟨is1,i,is2,cs⟩
(µ ,ρ ,read(n,ps))

⟨is1++[ i′ ]++is2,cs⟩

Exec-Store-Addr
i=store(e1,e2) n=Je1Kρ i′=store(n,e2)

⟨is1,i,is2,cs⟩
(µ ,ρ ,ϵ )

⟨is1++[ i′ ]++is2,cs⟩

Exec-Store-Value
i=store(n,e)

v=JeKρ ps=Lis1M i′=store(n,v)

⟨is1,i,is2,cs⟩
(µ ,ρ ,write(n,ps))

⟨is1++[ i′ ]++is2,cs⟩

Figure 15. Execute stage.

Retire-Nop
⟨nop:is,cs,µ,ρ⟩

retire
−−−−→ϵ ⟨is,cs,µ,ρ⟩

Retire-Asgn
⟨x :=v :is,cs,µ,ρ⟩

retire
−−−−→ϵ ⟨is,cs,µ,ρ[x 7→v]⟩

Retire-Store
i=store(n,v)

⟨i :is,cs,µ,ρ⟩
retire
−−−−→ϵ ⟨is,cs,µ[n 7→v],ρ⟩

Retire-Fail
⟨fail:is,cs,µ,ρ⟩

retire
−−−−→fail ⟨[ ],[ ],µ,ρ⟩

Figure 16. Retire stage.

ϕ(ρ,[ ])=ρ
ϕ(ρ,(x :=v):is)=ϕ(ρ[x 7→v],is)
ϕ(ρ,(x :=e):is)=ϕ(ρ[x 7→⊥],is)
ϕ(ρ,(x :=load(e)):is)=ϕ(ρ[x 7→⊥],is)
ϕ(ρ,(x :=protect(e)):is)=ϕ(ρ[x 7→⊥],is)
ϕ(ρ,i :is)=ϕ(ρ,is)

(a) Transient Variable Map.

JvKρ =v
JxKρ =ρ(x)
Jlength(e)Kρ = length(JeKρ )
Jbase(e)Kρ =base(JeKρ )
Je1+e2Kρ =Je1Kρ+Je2Kρ
Je1⩽e2Kρ =Je1Kρ⩽Je2Kρ

(b) Evaluation Function.

L[ ]M= [ ]
Lguard(eb,cs,p):isM=p :LisM
Li :isM=LisM

(c) Pending Guard Identifiers.

Figure 17.Helper functions.
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Fetch-Protect-Ptr
c=x :=protect(∗e)

c1=x :=∗e c2=x :=protect(x)

⟨is,c :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is,c1 :c2 :cs,µ,ρ⟩

Fetch-Protect-Array
c=x :=protect(e1[e2])

c1=x :=e1[e2] c2=x :=protect(x)

⟨is,c :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is,c1 :c2 :cs,µ,ρ⟩

Fetch-Protect-Expr
c=x :=protect(e) i=x :=protect(e)

⟨is,c :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is++[ i ],cs,µ,ρ⟩

Exec-Protect1
i=x :=protect(e) v=JeKρ i′=x :=protect(v)

⟨is1,i,is2,cs⟩
(µ ,ρ ,ϵ )

⟨is1++[ i′ ]++is2,cs⟩

Exec-Protect2
i=x :=protect(v)

guard( , , ) < is1 i′= (x :=v)

⟨is1,i,is2,cs⟩
(µ ,ρ ,ϵ )

⟨is1++[ i′ ]++is2,cs⟩

Figure 18. Semantics of protect(·).
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B Semantics of Stable Read

Current processors do not provide a protect primitive in-
struction nor the means to implement it on top of existing
instructions, in its full generality. However, for array reads, it
is possible to replicate the effects of protect by exploiting the
same data-dependencies tracking capabilities at the core of
the processor pipeline. Indeed, Speculative Load Hardening
(SLH), a mitigation technique deployed in the code gener-
ated by the CLANG compiler, relies on data-dependencies to
secure memory loads automatically [10]. Using our formal
model, we give rigorous semantics to SLH and show that it
can stop transient execution attacks.
At a high level, SLH injects artificial data-dependencies

between the conditions used in branch instructions and the
addresses loaded in the following instructions to transform
control-flow dependencies into data-flow dependencies. In-
tuitively, these data-dependencies validate control-flow de-
cisions at runtime by stalling speculative loads until the pro-
cessor resolves the conditions. Using branch conditions, SLH
masks the address of loads instructions in such a way that the
processor zeroes out the address if the condition is mispre-
dicted, preventing misloads.
To formalize this mechanism, we extend our processor

model as follows. We introduce a new processor instruction
x := e ? e1 : e2, which corresponds to the conditional move
instruction CMOVon x86 processors. This instruction simply
assigns the value of e1 (resp. e2) to variable x, if the condition
e evaluates to true (resp. false). Importantly, this instruction
is not subject to speculation: the processor must first evaluate
the condition before it can resolve the assignment. We also
extend expressions with the standard bitwise AND operator
(&) andwrite 0 and 1 for bit words consisting of all 0 and 1. As
usual bitmask 0 and 1 are respectively the zero and identity
element for&, i.e., Je&0Kρ =0 and Je&1Kρ =JeKρ .
Figure 19 presents the semantics rules for CMOV and for

the stable read command implementedusing SLH.Rule [Exec-
CMOV] evaluates the condition (b=JρKe) of the conditional
assignment x :=e?:etrue :efalse and assigns the corresponding
expressions (x :=eb). Rule [Fetch-Stable-Read-SLH] fetches
command x :=stable_read(e1,e2), computes the bounds check
condition, the address of the indexed element, and push on
the stack the following command.

r :=e1⩽ length(e2)
if r then
r :=r?1:0;
x :=∗((base(e1)+e2)&r);
else
fail

The code above is similar to the code generated by a regular
array read, but additionally stores the result of the bounds-
check condition in reserved variable r . In the then-branch, the
condition is thenconverted intoa suitablebitmaskusingusing

Exec-CMOV
i=x :=e?:etrue :efalse b=JeKρ i′=x :=eb

⟨is1,i,is2,cs⟩
(µ ,ρ ,ϵ )

⟨is1++[ i′ ]++is2,cs⟩

Fetch-Stable-Read-SLH
c=x :=stable_read(e1,e2) e=e2< length(e1)
e′=base(e1)+e2 c1= r :=e c2= r :=r?1:0
c3=x :=∗(e′&r) c′=c1;if r thenc2;c3 elsefail

⟨is,c :cs,µ,ρ⟩
fetch
−−−→ϵ ⟨is,c′ :cs,µ,ρ⟩

Figure 19. Semantics of x :=stable_read(e1,e2).

the non-speculative CMOV instruction i.e., r :=r?1:0, which
then masks the address loaded, i.e., ∗((base(e1)+e2)&r). As a
result, thevalueof theaddress remainsundefineduntil thepro-
cessor evaluates the bounds check condition. When the con-
dition resolves, if the index is inbound r=1 and the program
reads the correct address Je&1Kρ =JeKρ If the index is out-of-
bounds, instead, r=0 and the load can only read speculatively
from a constant address (x :=µ(0)), thus closing the leak.4

Revisited Example. Consider again running example Ex1
in Figure 3, where instead of standard array reads, we employ
the stable_read(·) primitive from above. After fetching the
program, the addresses of the loads are masked with the re-
spective array bounds-check conditions. Assuming the same
memory layout and content as in Figure 10 (except for the
fact that arrays are shifted by one position since µ(0)= 0 is
reserved), the processor resolves the first bounds check and
reads the arraywithin its bounds, i.e., x :=µ(3)=0. The second
load attempts to read the array out of bounds (y :=a[2]), and
our countermeasure prevents the buffer overrun by redirect-
ing the load to the dummy value stored at address 0. First, the
processor resolves the bounds check, i.e., r :=0, and forwardes
it to the load y :=load((base(a)+i2)&r). Then, the condition
zeros out the address and the processor assigns the dummy
value to variable y, i.e., y :=µ(0). As a result, we always read
array b at index z=0 and close the leak.

4We assume that the first memory cell is reserved to the processor, which
initializes it with dummy data, e.g., µ(0)=0.
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