
UTRECHT UNIVERSITY

MASTER THESIS

SVC
A prototype of a Structure-aware Version Control system

Author:
Marco VASSENA
ICA-4110161

Supervisor:
Dr. Wouter SWIERSTRA

Prof. Johan JEURING

Software Technology Group
Computing Science

August 31, 2015

Abstract

This thesis studies the problem of structure-aware revision control, which
consists of exploiting the knowledge of the structure of data to improve the
quality of version control systems. Formats are firstly described using an
EDSL, which distinguishes meta-data from the actual content. From the
unique format specification inverse-by-construction parser and printer are
derived. The data stored in a file is converted into a heterogeneous rose
tree, a generic representation of algebraic data types, used by a diff and
diff3 algorithm to respectively detect changes and merge revisions. Lastly
the semantics and the properties of the two algorithms are studied with a
formal model developed in the Agda proof assistant.

Contents

1 Introduction 5
1.1 Description of the problem 5
1.2 Research Questions . 6
1.3 Overview . 7

2 Format Representation 9
2.1 Introduction . 9

2.1.1 Motivation . 9
2.1.2 Type List . 10
2.1.3 Partial Isomorphism 13

2.2 Format . 14
2.2.1 Functor Format . 15
2.2.2 Applicative Format 15
2.2.3 Alternative Format 16
2.2.4 Token Format . 17
2.2.5 Example . 18
2.2.6 Kleene Operators 20

2.3 Extensions . 23
2.3.1 Monadic Format 23
2.3.2 Token and Stream 25
2.3.3 Extensible Format 26
2.3.4 Format Revised . 32

2.4 Conclusion . 34
2.4.1 Discussion . 34
2.4.2 Related and Future Work 35

3 Formal Model 41
3.1 Introduction . 41

3.1.1 Motivation . 41
3.1.2 Characteristics . 42
3.1.3 Reasoning by Specification 43
3.1.4 Naming Conventions 44

3.2 Basics . 44

2

3.2.1 Heterogeneous Rose Trees 44
3.2.2 Edit Script . 46
3.2.3 Diff . 48
3.2.4 Merge . 49
3.2.5 Diff3 . 50
3.2.6 Merged3 . 52
3.2.7 Summary . 53

3.3 Algorithms . 54
3.3.1 Diff . 54
3.3.2 Diff3 . 57

3.4 Formal Properties . 61
3.4.1 Conflicts . 61
3.4.2 Safety . 64
3.4.3 Maximality . 68
3.4.4 Structural Invariants 69

3.5 Conclusion . 74
3.5.1 Related Work . 74
3.5.2 Future Work . 78

4 Haskell Implementation 80
4.1 Basics . 80

4.1.1 Type Manipulation 81
4.1.2 Universe . 81
4.1.3 Typed List . 82

4.2 Diff . 84
4.2.1 Edit Script . 84
4.2.2 Memoization . 85
4.2.3 Algorithm . 88
4.2.4 Discussion and Related Work 89

4.3 Diff3 . 92
4.3.1 Edit Script . 92
4.3.2 Algorithm . 93
4.3.3 Type Checking . 93

4.4 Version Control System 97
4.4.1 Design . 97
4.4.2 Lowest Common Ancestor 99
4.4.3 Merge . 100
4.4.4 Recursive Three-Way Merge 102
4.4.5 Discussion . 103

5 Example 104
5.0.1 Csv . 104

3

6 Conclusion 109
6.0.1 Related and Future Work 110

4

Chapter 1

Introduction

The amount of data produced has grown in the past few decades. Nowa-
days data is stored in a variety of different formats and shared on the
cloud. In collaborative environments, such as the wiki web application, it
is accessible at the same time from multiple devices and can be modified,
often concurrently, by the users. In these settings it is crucial to handle
changes to data appropriately. For example it is important to keep track of
the history of each object, so that at any time it is possible to roll back to a
previous version and it should strive to automatically merge simultaneous
changes as much as possible.

1.1 Description of the problem

In software industry specific tools called Version Control Systems (VCS),
such as Git [11] and Mercurial [48], address the problem of content manage-
ment for software artifacts. Those tools employ line-based diff algorithms,
such as GNU diff, that detect changes line by line and therefore are suit-
able for source code. However they are not appropriate for any kind of
data, because some are not naturally organized in lines of text. For ex-
ample binary formats, such as videos and images, are not supported and
even text-based formats, such as HTML and XML, are poorly supported,
because single lines do not reflect the underlying tree-structure of their
content.

Whenever revision control is needed, embedded in a specific domain, these
systems must be reimplemented, tailored on the specifics of the formats
involved. In particular the key components of these tools are a comparison
function diff, which detects and collects the differences between two objects

5

in an edit script, and its inverse function patch, which applies the edits
stored in a script.

In revision control simultaneous changes need to be merged. Sometimes
this can be achieved automatically by merging algorithms such as the (re-
cursive) three-way merge and patch commutation [57], otherwise a conflict
is detected and the user must manually solve it, combining the conflict-
ing changes appropriately. The GNU diff3 tool is a line-based algorithm
employed in the three-way merge, that compares three files, the original
version and two modified versions of that file. When it succeeds it cre-
ates an edit script that includes changes from both the new versions and
whose patch, when applied to the original file, produces a file that merges
both. However a line-based approach restricts the opportunities of auto-
matic merging for non line-structured data, resulting in a greater number
of conflicts and ultimately additional burden to the user.

Furthermore, even though revision systems are widely spread, their be-
haviour is understood mostly empirically. As a result the outcome of
complex merges is often hard to predict and source of bug reports.

1.2 Research Questions

This master thesis aims to develop a prototype of a structure-aware version
control system that addresses the shortcomings of widespread industrial-
strength version control systems, which employs line-based algorithms.
In particular the prototype exploits the knowledge of data formats, in
order to compute more precise diffs that take into account the structure
of the content of files, hence improving the quality of revision control.
Specifically such a system avoids unnecessary conflicts and increases its
automatic merging capabilities.

In order to develop such a system, the thesis addresses the following specific
problems.

Data Format Description A structure-aware version control system
needs to retrieve the actual data from each file, in order to precisely diff
the content, rather than its representation on disk, consequently each file
has to parsed with respect to its format. Furthermore after merging the
data stored in two versions of the same file, it has to serialize it back to
disk for persistency. In this process it is essential to ensure consistency
between the parsing and unparsing function.

6

Is is possible to derive both parser and printer from a format descrip-
tion?

Generic Diff and Diff3 Considering the profusion and the complexity
of data formats, it is impractical to study specific diffing and merging
algorithms for each of them. However the data retrieved by parsers is
always structured in a parse tree, which is usually represented as a domain-
specific algebraic data type.

Is it possible to exploit generic programming techniques to implement a
generic diff and merge algorithm for structured data?

Formal Model Nowadays version control system play a vital role in
collaborative environments, therefore their semantics ought to be put on
a formal footing. Their core features, management and merge of revi-
sions, rely on diffing and merging algorithms, which should then be studied
closely.

How can we formalize diffing and merging algorithms and study their prop-
erties?

1.3 Overview

Chapter 2 presents an embedded domain specific language for formats.
The EDSL allows to describe binary and text data formats, from which
it is possible to derive automatically inverse parsers and printers. The
implementation is tested with real-world formats such as portable bit map
images (PBM), portable grey image format (PGM) and comma separated
values (CSV), HTML and XML.

Chapter 3 presents a formal model, developed in the Agda proof assistant
[47, 9], used to study the diff and merge algorithms. The model is used
to show that the two algorithms satisfy their specifications and to prove a
number of properties. In particular necessary and sufficient conditions for
the presence of conflicts are given.

In chapter 4 the algorithms studied in the model are implemented in the
Haskell programming language [40]. Exploiting advanced type features
a sizable amount of type-safety is retained in the translation from the
formal model, developed in a language with fully-fledged dependent types,
to Haskell. The chapter includes also a proof-of-concept structure-aware
version control system that employs the ideas discussed in this thesis.

7

Lastly chapter 6 concludes, summarizing the contributions of this thesis
and presenting ideas for future work.

8

Chapter 2

Format Representation

This chapter addresses the problem of finding a unique representation for
data formats, which is an important component of a structure-aware ver-
sion control system. Section 2.1 introduces the problem by analyzing the
issue in more detail 2.1.1 and briefly covers several auxiliary concepts,
such as heterogeneous lists 2.1.2 and partial isomorphism 2.1.3. The basic
format representation is presented in section 2.2, then several extensions
are discussed in 2.3. Section 2.4 concludes, summarizing the main contri-
butions of this chapter 2.4.1 and reviewing related work 2.4.2.

2.1 Introduction

2.1.1 Motivation

A format specifies how some data is stored and encoded in a file. When
the format of a file is known, it is possible to decode it and apply the diff
algorithm on the data itself, rather than its representation, thus leading to
more accurate edit scripts. These are then applied by a patch algorithm to
the decoded data, producing the new version, which is then serialized in a
file according to its format specification. A structure-aware version control
system exploits this to avoid unnecessary conflicts and thus improving the
quality of revision control.

Formats are usually described using formal grammars, such as context
free grammars. A parser is a function that recognizes a grammar in the
input string and extracts the structured data that it describes. Print-
ing is the opposite function, which consists of serializing some structured
data, according to the format specifications. In functional programming

9

languages parser combinators are commonly used to implement parsers.
Furthermore there are several tools, such as Yacc [29] and Happy [24],
called parser generator, that automatically generate a parser for a given
grammar.

Parsers and printers of a format should always be one the inverse of the
other in order to ensure round-trip behavior, i.e. serializing some data to
file and then parsing it back should yield the initial value. Similarly parsing
a properly formatted file and serializing its content should produce the
original file. These two functions are usually defined independently with
several drawbacks. Firstly it is a repetitive and error-prone task because
the two functions share similar information about the format, secondly, as
the format changes, the user is burdened with the task of keeping the two
functions synchronized. Lastly there is no actual guarantee that the two
functions are indeed each other’s inverse.

2.1.2 Type List

Haskell type system have been enhanced in GHC with several extensions.
The DataKind extension enables user defined kinds, through datatype
promotion, i.e. data types are automatically promoted to kinds and their
constructors to type constructors. Among these, lists are natively pro-
moted to the kind level, reusing the same syntax. It should always be
clear from the context when a list is a value or a type; ambiguous cases
will be distinguished prefixing types with a quote. The PolyKinds exten-
sion enables kind polymorphism. Kind variables are always universally
quantified implicitly, furthermore kinds are inferred automatically, there-
fore kind annotations are usually superfluous, however few will be left to
help the reader.

Examples The constructors for type level lists are kind polymorphic,
just like their value counterpart are polymorphic in the type.

*> :k '[]
'[] :: [k]

Note however that they are homogeneous with respect to the kinds of their
elements.

*> :k '[Int, Bool]
'[Int, Bool] :: [*]
*> :k '[Maybe, []]
'[Maybe, []] :: [* -> *]

10

In the second example [] is the list type constructor.

Type Family Common functions on lists can be lifted to the type level
using a closed type family.

For example it is possible to append type level lists just like it happens for
concrete lists. The type family contains a recursive call and it is defined
by induction on the first list, following closely that of (++) :: [a] -> [a]
-> [a].

type family (:++:) (xs :: [k]) (ys :: [k]) :: [k] where
'[] :++: ys = ys
(x ': xs) :++: ys = x ': (xs :++: ys)

Note that just like the standard append is polymorphic in a, so its type
level counter part is kind polymorphic. Likewise the input and output lists
share the same polymorphic kind k.

*> :kind! '[Int, Bool] :++: '[Char, Double]
'[Int, Bool] :++: '[Char, Double] :: [*]
= '[Int, Bool, Char, Double]

Analogously a type level map is easily defined:

type family Map (f :: k1 -> k2) (xs :: [k1]) :: [k2] where
Map f '[] = '[]
Map f (x ': xs) = f x ': Map f xs

For example mapping the type constructor [] :: * -> * over a list of types
of kind * yields a list of list types.

*> :kind! Map [] '[Char, Int , Bool]
Map [] '[Char, Int , Bool] :: [*]
= '[[Char], [Int], [Bool]]

Heterogeneous List The data type HList, introduced by Kiselyov [31],
is an heterogeneous list, indexed by a type level list. It differs from the con-
ventional homogeneous list data type, because it contain values of possibly
different types, that are stored in its index.

data HList (xs :: [*]) where
Nil :: HList '[]
Cons :: x -> HList xs -> HList (x ': xs)

The following functions will be assumed in the following. Their implemen-
tation is clear from their signatures and therefore omitted. Furthermore

11

they are completely analogous to the correspondent functions for homoge-
neous lists.

hHead :: HList (x ': xs) -> x
hsingleton :: x -> HList '[x]
happend :: HList xs -> HList ys -> HList (xs :++: ys)

SList Singleton types are needed to support dependently typed program-
ming in languages with a strict phase separation between run-time and
compile time [20], like Haskell. More precisely a singleton type is a type
with only one non-⊥ value and represents a run-time witness of a type
[20]. The type SList xs is the singleton type for the type level list xs.

data SList (xs :: [*]) where
SNil :: SList '[]
SCons :: SList xs -> SList (x ': xs)

Singleton types are essential to implement certain kind of functions, espe-
cially when type families are involved. Consider for instance the function
split, which splits an heterogeneous list in two parts:

split :: HList (xs :++: ys) -> (HList xs, HList ys)

The indexes of the two output lists, xs and ys, come from the index of
the input list, in which they are appended. Crucially it is not possible to
pattern match directly on it, because of the presence of the type family
application xs :++: ys in its index: should it be there a case for Nil or Cons
? That depends on the result of xs :++: ys, however it is not possible to
pattern match on it directly because it is just a type. Nevertheless it is
possible to implement this function if xs is known to be empty or not.
A singleton type of type SList xs introduces a true value, which can be
inspected providing this piece of information about its index.

split :: SList xs -> HList (xs :++: ys) -> (HList xs, HList ys)
split SNil hs = (Nil, hs)
split (SCons s) (Cons h hs) = (Cons h hs1, hs2)

where (hs1, hs2) = split s hs

By pattern matching on it the first part of the list can be distinguished
from the second, so that the two can be separated. Specifically when xs is
empty the rest of the list belongs to the second part, otherwise the head
of the list belongs to the first part.

Often it will be necessary to retrieve a singleton type of a list-indexed data
type. The type class Reify is defined for this purpose:

12

class Reify (f :: [*] -> *) where
toSList :: f xs -> SList xs

For example it is easy to make HList instance of Reify:

instance Reify HList where
toSList Nil = SNil
toSList (Cons _ hs) = SCons (toSList hs)

2.1.3 Partial Isomorphism

Parsers do not only recognize a grammar in an input string, but usu-
ally produce an abstract syntax tree, so that the structured data can be
then processed more conveniently. Typically abstract syntax trees are
represented directly as a domain specific user-defined data type. On the
contrary pretty printing requires to deconstruct the abstract syntax tree,
in order to serialize each part appropriately. In order to unify parser and
printer in a single entity, constructors and deconstructors of a data type
must be coupled together. The partial isomorphism data type is used for
this purpose.

data Iso xs ys = Iso { apply :: HList xs -> HList ys,
unapply :: HList ys -> Maybe (HList xs)}

A value of type Iso xs ys represents a partial isomorphism, consisting in
the mapping apply and its partial inverse unapply. The second function is
partial because a data type might have several constructors and therefore
the deconstructor of a specific isomorphism could fail if the value has been
constructed using another constructor.

Partial isomorphisms form a category:

identity :: Iso xs xs
identity = Iso id Just

(.) :: Iso ys zs -> Iso xs ys -> Iso xs zs
(.) g f = Iso s t

where s = apply g . apply f
t = unapply g >=> unapply f

Example As an example consider the two partial iomorphisms that cor-
respond to list constructors and deconstructors.

nil :: Iso '[] '[[a]]
nil = Iso f g

13

where f Nil = Cons [] Nil
g (Cons [] Nil) = Just Nil
g (Cons (_:_) Nil) = Nothing

cons :: Iso '[a : [a]] '[[a]]
cons = Iso f g

where f (Cons x (Cons xs Nil)) = Cons (x:xs) Nil
g (Cons [] Nil) = Nothing
g (Cons (x:xs) Nil) = Just (Cons x (Cons xs Nil))

2.2 Format

This thesis addresses the format problem presented in 2.1.1 by implement-
ing an Embedded Domain Specific Language (EDSL) that describes two
inverse semantics at once. The format specification is agnostic to the se-
mantics, which is selected afterwards instantiating appropriately a type
parameter.

Parsers for context-free grammars are usually implemented using applica-
tive and alternative parser combinators. Since Functor is a superclass of
Applicative and Applicative is a superclass of Alternative, any instance of the
class Alternative yields also the Functor and Applicative instances.

(<$>) :: Functor f => (a -> b) -> f a -> f b
pure :: Applicative f => a -> f a
(<*>) :: Applicative f => f (a -> b) -> f a -> f b
(<|>) :: Alternative f => f a -> f a -> f a
empty :: Alternative f => f a

Each of this combinator will be encoded as a constructor of the Format
data type. With an abuse of notation, the operators <$>, <*>, <|>, will
be used as the corresponding Format constructors. It should always be
clear from the context which is which. To keep the description clear, I will
firstly discuss formats with token of type Char and stream of type String,
then I will show the changes needed to support any kind of token and
stream.

data Format (f :: * -> *) (xs :: [*]) where

A value of type Format f xs has underlying semantics f and involve values
of types xs. Furthermore an instance of Reify (Format f) is assumed.

The two inverse semantics are represented as an interpretation of this data
type.

14

mkParser :: Alternative f => Format f xs -> f (HList xs)
mkPrinter :: Alternative f => Format f xs -> HList xs -> f String

2.2.1 Functor Format

The constructor corresponding to the Functor method fmap is defined as
follows:

data Format (f :: * -> *) (xs :: [*]) where
<$> :: Iso xs ys -> Format f xs -> Format f ys

The first field is a partial isomorphism that stores a function and its partial
inverse.

A parser f <$> p applies the function f to the result of the parser p. If the
parser p fails, also f <$> p fails. This behaviour is accordingly translated
in the parsing semantics:

mkParser (i <$> f) = apply i <$> mkParser f

Note that apply i is a pure function.

When printing the format i <$> f, the input list is deconstructed using the
inverse partial isomoprhism (unapply). If it fails the whole printer fails,
otherwise the result is used as input to the printer derived from f.

mkPrinter (i <$> f) hs =
case unapply i hs of

Just ys -> mkPrinter f ys
Nothing -> empty

Note that contrary to the standard definition the operator <$> is defined
right associative:

infixr 4 <$>

2.2.2 Applicative Format

The constructors corresponding to the Applicative combinators are defined
as follows:

data Format f xs where
...
Pure :: HList xs -> Format i xs
(<*>) :: Format f xs -> Format f ys -> Format f (xs :++: ys)

15

The signature of the sequencing operator (<*>) is slightly different from
the standard one given in the Applicative class shown previously. This
alternative version is actually equivalent, being the star operator (⋆) from
the class Monoidal proposed by McBride and Paterson’s [44], revisited to
use HList instead of tuples. Also Fokker employs this version in his lecture
notes [21]. This symmetric version is more convenient for our purposes
therefore it has been preferred over the original one.

The parsing semantics function is standard:

mkParser (Pure hs) = pure hs
mkParser (f1 <*> f2) = happend <$> mkParser f1 <*> mkParser f2

The format Pure hs is translated to a parser that always returns hs without
consuming any input, while the format f1 <*> f2 is converted in a parser
that firstly runs the parser of f1 and then that of f2 on the remaining
input. The function happend appends the two lists produced by the parsers
together, as it is required by the signature of <*>. The parser pure x never
fails, while f1 <*> f2 fails if any of the two fails.

Analogously the semantics for the corresponding printer is given by:

mkPrinter (Pure _) _ = pure ""
mkPrinter (f1 <*> f2) hs = (++) <$> mkPrinter f1 hs1 <*> mkPrinter f2 hs2

where (hs1, hs2) = split (toSList f1) hs

In the pure case the empty string is returned, because no input is consumed
by the corresponding parser. Similarly in the <*> case the two strings
produced by the two formats are appended in the same order, to invert
the effect of the corresponding parser.

It is straightforward to show that mkPrinter and mkParser represent each
other’s inverse for the applicative combinators.

2.2.3 Alternative Format

The constructors that correspond to the Alternative combinators have the
following signatures:

data Format f xs where
...
Empty :: Format i xs
(<|>) :: Format f xs -> Format f xs -> Format f xs

The parser combinator <|> represents choice between parsers. The parser
empty always fails without consuming any input and it is the identity of

16

<|>.

The specific semantics of the choice combinator is most of the time library-
dependent and some care is needed to ensure proper invertibility. This
issue is discusses in more depth in 2.4.1.

The parsing and printing functions just reuse the Alternative instances of
the underlying semantics.

mkParser Empty = empty
mkParser (f1 <|> f2) = mkParser f1 <|> mkParser f2

mkPrinter Empty _ = empty
mkPrinter (f1 <|> f2) hs = mkPrinter f1 hs <|> mkPrinter f2 hs

2.2.4 Token Format

Parsing libraries usually provide a primitive function to retrieve the next
token in the stream, whose type signature is generally similar to the fol-
lowing:

pSatisfy :: (Char -> Bool) -> Parser Char

If the next token in the stream satisfies the predicate then it is returned,
otherwise the parser fails. A corresponding constructor is added to Format:

data Format f xs where
...
Satisfy :: (Char -> Bool) -> Format f '[Char]

The specific primitive used to produce the next token, depends on the on
the actual parsing library at hand, therefore a hook is provided in the form
of a type class.

class ParseSatisfy f where
satisfy :: (Char -> Bool) -> f Char

The parser semantics is given by:

mkParser :: (ParseSatisfy f, Alterntaive f) => Format f xs -> f (HList xs)
mkParser (Satisfy p) = hsingleton <$> satisfy p

Similarly when printing, a token is produced only if it satisfy the predi-
cate.

mkPrinter (Satify p) (Cons c Nil)
| p c = pure [c]
| otherwise = empty

17

2.2.5 Example

This section presents few examples that can be already implemented with
the Format just defined.

Trivial Format A trivial format is a format parametrized by the empty
type level list. The parser produced by a trivial format upon success
produces the empty HList. The constant partial isomorphism ignore is used
to construct trivial formats.

ignore :: HList xs -> Iso xs '[]
ignore hs = Iso f g (toSList hs) SNil

where f _ = Nil
g _ = Just hs

The isomorphism maps any input to the empty list and maps the empty
list back to the given list. As a consequence the printer of a trivial format
never fails1.

Essentially a trivial format contains only static information: its parser
merely checks the presence of a certain pattern, and its printer just outputs
it.

An example of trivial format is the format char c which recognizes a specific
character.

char :: Char -> Format f '[]
char c = ignore (hsingleton c) <$> satisfy (c ==)

The trivial format string s recognizes a specific string and can be obtained
by repeatedly applying char.

string :: String -> Format f '[]
string [] = unit
string (c:cs) = char c <*> string cs

The trivial format unit always succeeds producing the empty HList. It does
not consume any input when parsing and that does not output nothing at
all when printing.

unit :: Format f '[]
unit = Pure Nil

Other two useful combinators, included in the Applicative class are:
1A case which requires special care is discussed in section 2.2.6

18

(<*) :: f a -> f b -> f a
(*>) :: f a -> f b -> f b

They are used to run a parser and then discard its result. In this setting,
these combinators would have the following signatures:

(<*) :: Format f xs -> Format f ys -> Format f xs
(*>) :: Format f xs -> Format f ys -> Format f ys

This degree of generality cannot be achieved because, due to the double
semantics embedded in Format, the discarded values must be printed, in
order to correctly invert the parser. However it is possible to discard
trivial formats, because they do not require any input value. For instance
the operator (<*) is define as:

(<*) :: Format f xs -> Format f '[] -> Format f xs
p <* q =

case rightIdentityAppend (toSList p) of
Refl -> p <*> q

First of all note that this operator simply combines the two formats with
<*>, therefore it affects the type level only. However the expression p <*>
q alone is rejected by the type checker: counterintuitively xs does not unify
with xs :++: []. In order to convince the type checker of this fact, a proof
about :++: is required. The function rightIdentityAppend produces for any
concrete type level list xs the proof that the empty list '[] is right identity
to append. The proof is by induction on xs and hence requires its singleton
type:

rightIdentityAppend :: SList xs -> xs :++: '[] :~: xs
rightIdentityAppend SNil = Refl
rightIdentityAppend (SCons s) =

case rightIdentityAppend s of
Refl -> Refl

The data type a :~: b represents propositional equality. Pattern matching
on it brings into scope the constraint a ~ b: a proof for the type checker
that a is equal to b.

data a :~: b where
Refl :: a :~: a

A similar reasoning applies for *>.

19

2.2.6 Kleene Operators

In parsing libraries the combinator many corresponds to the Kleene star
operator and the combinator some to Kleene plus. Similarly the parser
many p succeeds if p succeeds zero or more times and the parser some p
succeeds if p succeeds at least once. The default implementation of these
combinators is part of the Alternative class.

some :: Alternative f => f a -> f [a]
some p = (:) <$> p <*> many p

many :: Alternative f => f a -> f [a]
many p = some p <|> pure []

Their format counterpart has the following signature:

many, some :: Format f xs -> Format f (Map [] xs)

Their definition follows the same mutually recursive pattern:

some f = allCons (toSList f) <$> f <*> many f
many f = some f <|> allEmpty (toSList f) <*> unit

The partial isomorphisms allEmpty and allCons have the following signa-
tures:

allEmpty :: SList xs -> Iso [] (Map [] xs)
allCons :: SList xs -> Iso (xs :++: (Map [] xs)) (Map [] xs)

The isomorphism allCons corresponds to (:) for simple lists. When applied
it merges the heads (xs) with the corresponding tails (Map [] xs) applying
repeatedly the partial isomorphism cons. When unapplied it splits the
given lists (Map [] xs), in heads (xs) and tails (Map [] xs) using the cons
deconstructor (unapply). If any of the lists is empty the isomorphism fails.
Lastly it appends the two resulting HList.

Similarly the isomorphism allEmpty, when applied, produces an HList of
empty lists (Map [] xs), applying repeatedly the partial isomorphism nil.
When unapplied produces the empty HList after checking with the decon-
structor nil that all the lists are actually empty. If any of them is non-empty
the isomorphism fails.

Note that if the parser produced by some and many succeeds, it will produce
an heterogeneous list of homogeneous lists, each of the same length. Sim-
ilarly the corresponding printer will fail if the lists provided have different
lengths.

20

Termination Particular care must be taken when combining many and
some with trivial formats. Applying either many or some to a trivial format
results in a trivial format, because Map [] '[] equals '[]. For example the
following trivial format denotes a sequence or zero or more spaces:

spaces :: Format f '[]
spaces = many (char ' ')

The parser for this format shows the desired behavior, however the corre-
sponding printer hangs, without producing any spaces.

In fact the mutually recursive definition of many and some, terminates
only under the condition that the repeated action will eventually fail. For
parsers this condition can be easily checked. If the parser p consumes
at least one token, the parser many p will eventually terminate: since the
input string is finite, some p can succeed only a finite number of times,
after which only the alternative pure [] will succeed. On the contrary if p
does not consume any input the parser many p will hang.

Note that this behaviour is exactly the same for any type instance of
Alternative that use the default implementation of many and some:

*> many (pure ⊥) :: Maybe [a]
*** Exception: <<loop>>

Analogously, when printing the format many p of type Format f (Map [] xs),
the lists provided are always finite, therefore the p printer can succeed
only a finite number of time and the function will eventually terminate.
However when xs is empty, i.e. '[], the trivial format p always succeeds,
which, combined with many and some leads to non-termination. As a result
the spaces printer hangs, while building an infinite list of spaces.

In order to ensure termination also for these formats, the inverse semantics
for many and some when combined with trivial formats has been adjusted
as follows. The function atMost n f k is used to override the behaviour of
possibly non-terminating combinators such as many and some, represented
by k, precisely allowing to unapply the given format f at most n times.

atMost :: Int -> Format f []
-> (forall xs . Format f xs -> Format f (Map [] xs))
-> Format f []

atMost n f k = ignore hs <$> (k (f *> Pure hs))
where hs :: HList '[[a]]

hs = hsingleton (replicate n ⊥)

Firstly the trivial format f is transformed in a non-trivial format with f *>
Pure hs. As a result also the format k ((f *> Pure hs) is non-trivial and thus

21

terminating. Note that the presence of Pure does not affect parsing nor
printing, which is instead carried out by f. Using ignore hs the non-trivial
format is lastly transformed back in a trivial format. The list hs contains
n bottom objects of type a and it is responsible for the peculiar semantics
of atMost. The number of objects contained in this list corresponds to the
number of times that the format f is unapplied when printing. Since f
is trivial it will not inspect these undefined values, therefore, thanks to
Haskell lazy semantics, no run-time failure will occur.

The combinators many and some are redefined as follow.

many :: Format f xs -> Format f (Map [] xs)
many f =

case toSList f of
SNil -> atMost 0 f manyPrim
_ -> manyPrim f

some :: Format f xs -> Format f (Map [] xs)
some f = case toSList f of

SNil -> atMost 1 f somePrim
_ -> somePrim f

The functions manyPrim and somePrim correspond to the previous definition
of many and some. The semantics of many and some for non-trivial formats
is unchanged, while trivial formats will be printed f respectively 0 and 1
times. The motivation for this semantics is to output the shortest string
that can be matched by the corresponding parser. Furthermore note that
the function atMost can also be used to fine-tune arbitrary formats, for
example to implement pretty-printers.

Example Consider these two trivial formats:

spaces0 :: Format f []
spaces0 = many (char ' ')

spaces1 :: Format f []
spaces1 = some (char ' ')

When printed they will produce a finite string, respectively containing zero
and one space, instead of hanging:

*> mkPrinter spaces0 Nil :: Maybe String
Just ""
*> mkPrinter spaces1 Nil :: Maybe String
Just " "

22

2.3 Extensions

In this section several extensions are incrementally added to the core
framework discussed previously. They have the purpose to make the li-
brary more flexible and usable in practice.

2.3.1 Monadic Format

Formats often need to be self-contained, therefore they include meta-data
in the form of tags, magic numbers and headers, needed to decode the rest
of a file correctly.

Example The NetPbm is a family of formats that encodes images as a
bitmap. The Portable BitMap (PBM) includes a header that contains a
magic number (P1) and two numbers n and m that represents the dimen-
sions of the image. The header is followed by a bitmap of of n ×m bits,
which encodes the color of each bit (0 for white, 1 for black). In order to
parse each row in the bitmap correctly, its dimensions must be taken into
account.

A context-sensitive grammar cannot be recognized by Applicative parsers,
but requires Monadic parsers, which are strictly more expressive. The need
of such class of parsers motivates this extension.

Parsers for context-sensitive grammars are instance of the Monad class:

class Applicative m => Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a
fail :: String -> m a

The function return lifts a value into the monad and fail aborts the compu-
tation with an error message. The binding operator >>= allows to inspect
the value of the first computation and take actions based on it.

The data type Format is extended with these new constructors:

data Format f xs where
...
Return :: HList xs -> Format f xs
Fail :: String -> Format f xs
(>>=) :: Format f xs -> (HList xs -> Format f ys) -> Format f (xs :++: ys)

23

The only remarkable difference is the type signature of the bind construc-
tor. The resulting type-level list is xs :++: ys, instead of only ys, because
the input values relative to the first parser must be printed back, in order
to correctly invert this parser.

The parser and printing semantics are adapted to include also the Monad
constraint and the new cases are defined accordingly.

mkParser :: (Monad m, Alternative m) => Format m xs -> m (HList xs)
mkParser (Return hs) = return hs
mkParser (Fail msg) = fail msg
mkParser (f1 >>= k) = do

hs1 <- f1
hs2 <- k hs1
return (happend hs1 hs2)

mkPrinter :: (Monad m, Alternative m) => Format m xs -> HList xs -> m String
mkPrinter (Return _) hs = return ""
mkPrinter (Fail msg) _ = fail msg
mkPrinter (f1 >>= k) hs = (++) <$> mkPrinter f1 hs1 <*> mkPrinter f2 hs2

where (hs1, hs2) = split (toSList f1) hs
f2 = k hs1

Example The implementation of the PBM format is given in this para-
graph as an example of monadic formats. For ease of exposition the text-
based encoding is considered.

pbmFormat :: Format m '[Int, Int, [[Char]]]
pbmFormat = pbmHeader >>= \(Cons n (Cons m Nil)) -> pBitmap n m

The header of a pbm file contains the magic number and two integers that
represent the number of rows and columns of the bitmap.

pbmHeader :: Format m '[Int, Int]
pbmHeader = p1 *> int <*> (whitespace *> int <* whitespace)

where p1 = string "P1" *> whitespace

Since the magic number is statically know, p1 is a trivial format. The
format int is a simple formats that converts a non-empty string of digits
into an integer. The format whitespace consumes white space characters
when parsing and outputs a single space when printing:

whitespace :: Format m []
whitespace = some (char ' ' <|> char '\n' <|> char '\r' <|> char '\t')

24

The bitmap is parsed row by row, exploiting the information provided by
the header.

pBitMap :: Int -> Int -> Format m '[[[Char]]]
pBitMap n m = count n (count m (bit <* whitespace))

where bit = oneOf "01"

The format count n f replicates the format f exactly n times.

count :: Int -> Format f xs -> Format f (Map [] xs)
count n f

| n <= 0 = allEmpty (toSList f) <$> unit
| otherwise = allCons (toSList f) <$> f <*> count (n - 1) f

Note that, unlikely many and some, the format combinator count is well-
behaved also when applied to trivial formats, because it does unapply the
format f a finite number of times.

The format oneOf matches any of the characters listed and returns it.

oneOf :: [Char] -> Format f Char
oneOf cs = Satisfy (`elem` cs)

2.3.2 Token and Stream

Formats are roughly divided in text and binary formats, which determine
what type of tokens needs to be recognized and consequently what kind
of stream must be provided. As a consequence the framework presented
must be adapted to be parametric in the token and stream type.

The Format data type is firstly extended with an additional type parameter
that encodes the token type. The constructor Satisfiy is then adjusted
accordingly.

data Format (f :: * -> *) (i :: *) (xs :: [*]) where
(<$>) :: Iso xs ys -> Format f i xs -> Format f i ys
Pure :: HList xs -> Format f i xs
(<*>) :: Format f i xs -> Format f i ys -> Format f i (xs :++: ys)
Empty :: Format f i xs
(<|>) :: Format f i xs -> Format f i xs -> Format f i xs
Satisfy :: (i -> Bool) -> Format f i [i]
Return :: HList xs -> Format f i xs
Fail :: String -> Format f i xs
(>>=) :: Format f i xs -> (HList xs -> Format f i ys) -> Format f i (xs :++: ys)

Similarly another parameter is added to the ParseSatisfy type class

25

class ParseSatisfy f i where
satisfy :: (i -> Bool) -> f i

In the printing semantics the tokens produced must be combined to pro-
duce a stream. The type class PrintToken f i s provides the method printToken,
which transforms a single token of type i in a printer of the stream type f
s.

class PrintToken f i s where
printToken :: i -> f s

Furthermore it is reasonable to expect that the stream type is an instance
of Monoid, as it happens for common stream types such as String, ByteString
and lists. The type class Monoid provides the methods mconcat and mempty
which can be conveniently employed in the semantics of the applicative
combinators and monadic combinators.

mkPrinter :: (PrintToken f i s, Monoid s, Alternative f, Monad f)
=> Format f i xs -> f s

mkPrinter (Satisfy p) (Cons x Nil)
| p x = printToken x
| otherwise = empty

mkPrinter (Pure _) _ = pure mempty
mkPrinter (f1 <*> f2) hs = mappend <$> mkPrinter f1 hs1 <*> mkPrinter f2 hs2

where (hs1, hs2) = split (toSList f1) hs
mkPrinter (Return _) _ = return mempty
mkPrinter mkPrinter (f1 >>= k) hs

= mappend <$> mkPrinter f1 hs1 <*> mkPrinter f2 hs2
where (hs1, hs2) = split (toSList f1) hs

f2 = k hs1

2.3.3 Extensible Format

The monadic extension discussed in 2.3.1 shows a shortcoming of the cur-
rent Format representation. In order to provide new primitives the Format
data type has been changed, adding new constructors, the semantics func-
tions mkParser and mkPrinter have been adjusted to include the new cases
and lastly the set of constraints required to implement them increased.
The last change is particularly troublesome, because it brakes the support
for non-monadic parsers and printers.

The problem lies in the fact that the data type Format is a closed universe,
therefore it cannot be arbitrarily extended, without updating existing code.
This design problem is known as the expression problem [67] and tests the

26

expressivity of programming language. It requires to define a data type
which can be extended adding new cases and adding new functions over it,
without recompiling existing code and while retaining static type safety.
A number of solutions have been proposed in literature, but an alternative
approach to the problem is presented in this section. For simplicity the
solution is explained using the original basic example, while the necessary
changes to the Format data type are shown in section 2.3.4.

Expression Problem The data type Expr represents an arithmetic ex-
pression:

data Expr = Val Int | Add Expr Expr

The function eval computes the value of an arithmetic expression:

eval :: Expr -> Int
eval (Val i) = i
eval (Add e1 e2) = eval e1 + eval e2

Other consumer functions can be defined without modifying existing code.
For instance the function pretty returns a string representation of an ex-
pression.

pretty :: Expr -> String
pretty (Val i) = show i
pretty (Add e1 e2) = "(" ++ show e1 ++ " + " ++ show e2 ++ ")"

However adding a new constructor to Expr requires to update all the func-
tions defined over Expr to handle the new case.

To solve the expression problem a separate data type is defined for each
constructor of the original universe. An additional type parameter is added
to each of them.

data Val c where
Val :: Int -> Val c

data Add c where
Add :: (c a, c b) => a -> b -> Add c

The index c has kind * -> Constraint. The constraint kind is one of the
latest extension to the Glasgow Haskell Compiler (GHC), which provides
the distinct kind Constraint. Equality constraints have kind Constraint and
type classes are Constraint constructors.

Instead of building expressions using the constructors directly, the follow-
ing smart constructors are used:

27

val :: Int -> Val c
val = Val

add :: (Use a c, Use b c) => a c -> b c -> Add c
add = Add

The smart constructor add might look redundant at first sight, however its
signature is very important, because it restricts the arguments of Add to be
indexed by the same parameter c of kind * -> Constraint. The type synonym
Use ensures that the two arguments satisfy the constraints required by
Add:

type Use a c = c (a c)

In general the constraint Use a c requires the presence of an instance for c
(a c) for any constraint-indexed type a.

Arbitrary arithmetic expressions can be composed using the smart con-
structors, while leaving the constraint parameter abstract:

foo :: (Use Val c, Use Add c) => Add c
foo = val 0 `add` val 1 `add` val 2

The type signature is mandatory: since c is not instantiated, the con-
straints introduced by the smart constructors must be propagated. As a
result each definition will carry a number of class constraints that expose
the pieces of expression used. Note however that the user does not have to
manually keep track of them, because they are automatically inferred by
the type checker, which will trigger a type error if any is missing. Further-
more letting the type-checker infer them is very convenient, for example
no duplicated constraints are generated and the order of the constraints
themselves is insignificant. For instance in the example foo, the smart con-
structors val and add are used more than once, however only one constraint
per type is inferred.

Semantics functions are defined by means of a properly kinded type class:

class Eval a where
eval :: a -> Int

The type class Eval has one parameter of kind *, therefore its kind is *
-> Constraint, hence it can be used to instantiate the constraint parameter
c.

New instances are defined separately for each data type. For the base cases
the parameter c is actually just a phantom type.

instance Eval (Val c) where

28

eval (Val i) = i

Instead for the recursive cases the parameter c must be instantiated with
the same type class that is being implemented.

instance Eval (Add Eval) where
eval (Add e1 e2) = eval e1 + eval e2

This produces the constraint c ~ Eval, which after pattern matching on Add,
brings into scope the instances Eval a and Eval b, enabling the recursive calls
of eval on the two subexpressions. Lastly instead of using eval directly an
helper function is needed.

evalExpr :: Use a Eval => a Eval -> Int
evalExpr = eval

This function has the only purpose to fix the constraint parameter c of
indexed expression to Eval. In fact the smart constructors always leave
c abstract, because the same expression may be interpreted by different
semantic functions. Since the parameter of Eval is of kind *, if eval was
used directly on a constraint-indexed expressions, its parameter would be
ambiguous, resulting in a type error.

Adding new functions Adding new semantic functions is as simple as
declaring a new type class and implementing the corresponding instances
for each data type.

class Pretty a where
pretty :: a -> String

instance Pretty (Val c) where
pretty (Val i) = show i

instance Pretty (Add Pretty) where
pretty (Add e1 e2) = "(" ++ pretty e1 ++ " + " pretty e2 ++ ")"

prettyExpr :: Use a Pretty => a Pretty -> String
prettyExpr = pretty

Adding new cases Adding a new case requires to define a new data
type and relative smart constructor:

data Mul c where
Mul :: (c a, c b) => a -> b -> Mul c

29

mul :: (Use a c, Use b c) => a c -> b c -> Mul c
mul = Mul

bar :: (Use Val c, Use Add c, Use Mul c) => Mul c
bar = foo `mul` foo

As required by the expression problem, this solution retains static type
safety: when an expression is evaluated by some semantic function, if for
some piece of expression the corresponding instance has not been provided,
a compile-time error will be triggered.

*> evalExpr bar
No instance for (Eval (Mul Eval)) arising from a use of `evalExpr’

In the expression: evalExpr bar

Furthermore no recompilation is needed, because each instance is indepen-
dent from the others.

Discussion Several solutions to the expression problem have been pro-
posed. A naive solution to the problem consists in defining each case as a
separate data type, exploiting parametric polymorphism for the recursive
ones.

data Val = Val Int
data Add a b = Add a b

Likewise semantic functions are defined using type classes.

instance Eval Val where
eval (Val i) = i

instance (Eval a, Eval b) => Eval (Add a b) where
eval (Add e1 e2) = eval e1 + eval e2

The instances for the recursive cases are defined assuming an appropri-
ate context, that brings in scope the instances for the children, therefore
allowing the recursive call to eval.

The main drawback of this approach is that the structure of each expres-
sion is replicated in its type. For instance:

foo :: Add Val (Add Val Val)
foo = Add (Val 1) (Add (Val 2) (Val 3))

This encoding is inconvenient not only because of the unwieldy types that
it requires, but also because it restricts the class of well-typed programs
that can be defined with it. It is easy to incur in infinite types, even in

30

non recursive programs. For instance the following exponentiation function
cannot be typed, because it contains an infinite type.

exp e n = foldr (_ -> Mul e) e [1..n-1]

Swiestra represents an extensible data type as a fixed-point of a functor
[64]. Each constructor is defined as a separate data type that is injected
in a functor and semantic functions consist of algebras, defined in a piece-
wise manner using the type class system, which are ultimately folded over
the functor. Swiestra develops automatic injectors, which work as smart
constructor and appropriately arrange different data types in a functor.
However this feature, essential to make this technique practical, is frag-
ile because it relies on the controversial overlapping instances extension
and requires explicit type signatures in order to deduce the right injec-
tion.

Carette et al. present an alternative approach to the expression problem
that exploits only the type class system [10]. A series of lecture notes [32]
contain an introduction closer to this presentation.

Constructors are transformed in methods of a type class, parametrized by
a type, that wraps the result of a semantic function.

class Expr a where
val :: Int -> a
add :: a -> a -> a

Semantic functions are defined as a data type that wraps the result of the
interpretation and implementing the corresponding instance for Expr.

newtype Eval = Eval {eval :: Int}

instance Expr Eval where
val n = Eval n
add e1 e2 = Eval (eval e1 + eval e2)

New cases are added with a new class.

class MulExpr a where
mul :: a -> a -> a

instance MulExpr Eval where
mul e1 e2 = Eval (eval e1 * eval e2)

Compared to the approach presented here, this method has few advan-
tages. Firstly it does not require any particular extension, but exploits
uniquely the type class system. Secondly the number of constraints gen-
erated can be reduced via subclassing. For instance it would be natural to

31

make the class MulExpr subclass of Expr. One possible disadvantage of this
solution is that, once an expression is composed, it cannot be inspected,
since methods do not create an actual data type. Naive pattern-match
would not work in the solution proposed in this thesis either, however I
conjecture that some useful information could be stored with the constraint
parameter. Nevertheless both the two solutions fully and effectively solve
the original formulation of the expression problem.

2.3.4 Format Revised

The solution proposed in 2.3.3 has been effectively employed to leave the
format representation open to extensions.

Functor Format The format data type presented in 2.3.2 have been
split in several data types and an additional constraint parameter have
been added to each of them. As a representative example of the this
transformation, the revised functor format is shown:

data FMap c (m :: * -> *) (i :: *) (xs :: [*]) where
FMap :: (c m i a) => Iso xs ys -> a m i xs -> FMap c m i ys

The kind of the parameter c is not for the faint of heart:

c :: ((* -> *) -> * -> [*] -> *) -> Constraint

Luckily kinds are automatically inferred, therefore there is no need to
provide an explicit type signature for it2. Contrary to the simple example
presented in 2.3.3, the parameters m, i and xs of the argument of FMap
have been left explicit because the data type itself is indexed over those.
Nevertheless the argument is not explicitly indexed by a constraint kind,
so that its kind is slightly simpler:

a :: (* -> *) -> * -> [*] -> *

Following the pattern described in 2.3.3, a convenient type synonym is
defined:

type Use a c m i = c m i (a c)

In order to retain the well-known syntax for functors, a smart constructor
is also provided:

(<$>) :: Use a c m i => Iso args xs -> a c m i args -> FMap c m i xs
f <$> x = FMap f x

2Unfortunately GHC 7.8 does not support kind synonyms.

32

Analogous data types and relative smart constructors have been defined
for the other core combinators discussed in the previous sections, which
include Applicative, Alternative and Monad combinators.

Semantic Functions The interpretation function mkParser has been
converted into a type class constraint:

class ParseWith (m :: * -> *) (i :: *) a where
mkParser' :: a m i xs -> m (HList xs)

Also in this case a is not explicitly indexed with a constraint parame-
ter, hence an appropriate entry point is needed for constraint-indexed
types:

mkParser :: Use a ParseWith m i => a ParseWith m i xs -> m (HList xs)
mkParser = mkParser'

Furthermore a completely general, yet correct, instance is given in terms
of the underlying Functor instance:

instance Functor m => ParseWith m i (FMap ParseWith) where
mkParser' (FMap i f) = apply i <$> mkParser' f

The transformation of the semantic function mkPrinter follows exactly the
same pattern. Furthermore for the core combinators that belong to the
Applicative, Alternative and Monad classes analogous general instances have
been provided. As a result the only instances that must be manually added
are those of ParseSatisfy and PrintToken, because they are library specific.
To give a concrete example, the instance relative to Parsec [35] parser is
given:

instance Stream s m Char => ParseSatisfy (ParsecT s u m) Char where
parseSatisfy = satisfy

Error Messages Extending the format universe with new cases is straight-
forward. For example many parsing libraries include a combinator that
allows to provide an helpful error message, when a parser fails, typically
which token was expected.

<?> :: Parser a -> String -> Parser a

The combinator is converted in a new data type and an appropriate smart
constructor is defined:

data Help c m i xs where
Help :: c m i a => a m i xs -> String -> Help c m i xs

33

(<?>) :: Use a c m i => a c m i xs -> String -> Help c m i xs
f <?> msg = Help f msg

To keep the library as easily pluggable as possible an appropriate hook
is defined, by means of another type class, following the example of the
ParseSatisfy and PrintToken classes:

class ParseHelp m where
parseHelp :: m a -> String -> m a
parseHelp = const

Furthermore in this case it is possible to provide an appropriate default
behaviour, which simply ignores the given error message. For libraries
that provides such combinators, like Parsec [35], the instance is straight-
forward:

instance ParseHelp (ParsecT s u m) where
parseHelp = (<?>)

Once more a generic instance of ParseWith is given, assuming ParseHelp in
the context:

instance ParseHelp m => ParseWith m i (Help ParseWith) where
mkParser' (Help f msg) = parseHelp (mkParser' f) msg

2.4 Conclusion

2.4.1 Discussion

The library presented in this chapter can effectively describe various real-
world formats and derive automatically consistent parsers and printers for
them. Text-based and binary formats are both supported by abstracting
over the token and stream type. The library relies on a minimal core of
basic format combinators, inspired by those employed in parser combinator
libraries, that can be easily inverted. As a result the user of this library
specifies a data format just like writing a parser for it and gets the inverse
printer for free.

Plug-in Framework The library Boomerang [7], currently available
on Hackage, provides similar support for invertible parsing and printing.
However, differently from the library proposed in this thesis, the parser
and printer backend are fixed and implemented from scratch. Considering
the abundance of sophisticated, efficient and mature parsing and printing

34

libraries readily available it seems pointless to reinvent yet one more. One
of the benefits of this framework is that it allows to reuse any existing
library off the shelf, with minimal effort needed from the final user. Arbi-
trary libraries can seamlessly be plugged in as long as they implement at
least the Alternative type class, which is customary.

Extensible Framework The framework is extensible, letting the user
tailor the library to his needs, by introducing new primitives. For exam-
ple some parsing libraries provide specific functions to increase the per-
formance of certain operations, such as skipMany, or to selectively enable
backtracking, as it happens with try in Parsec [35]. The format repre-
sentation discussed in 2.3.4 can be easily extended with new constructs,
following the technique explained in 2.3.3.

Alternative semantics The generic parsing and printing semantics
given for the applicative combinators are inverse under few assumptions,
namely that pure does not consume any input when parsing and that <*>
applies the second parser on the input left after the first parser is applied,
which is the de-facto standard behaviour in parsing libraries.

Two opposite semantics are common for the choice combinator <|>: greedy
and symmetric choice. Each library typically provides only one of them,
depending on the specific parsing strategy implemented. For instance Par-
sec, an industrial strenght parsing library [35], provides a greedy choice
operator, whose semantics is predictive parsing with a look ahead of one
token. On the other hand UU-Parsinglib, based on the work by Swiestra
et al. [63], provides a symmetric choice operator that does not commit to
any alternative. If more than one succeeds, then an ambiguous grammar
is detected and a run-time failure occurs.

In the Format data type, the combinator <|> is not explicitly marked as
greedy or symmetric choice, therefore it is up to the user to ensure that
the corresponding printing operator has the appropriate inverse seman-
tics.

2.4.2 Related and Future Work

The problem of unifying parsing and printing in a single specification has
been studied extensively in literature. Some work are based on arrows
[1, 28]. Alimarine et al. approach consists of writing invertible programs
by construction, combining bidirectional arrows, i.e. BiArrows. As an ex-
ample of this technique they implement a parser using reversible arrows,

35

thus getting the corresponding printer for free. However this technique
stands back from the fairly ordinary applicative or monadic style, so com-
mon in parsing libraries. In this library formats are described using these
established styles, hence it is more likely to be adopted. Boespflug proposes
a similar embedded DSL based on reversible combinators called cassettes
and that relies on continuation passing style and rank-2 types for compo-
sition [41]. The translation to direct style reveals that the continuations
are impure and make use of control effects. It is particularly cumbersome
and unnatural to define cassette for user-defined data types: code involv-
ing continuation passing style is notoriously hard to understand, maintain
and debug. Matsuda and Wang develop FliPpr, a quite involved pro-
gramming transformation system that inverts the specification of a pretty
printer and produces the corresponding parser [42]. Similarly to the li-
brary developed in this thesis, the system does not reimplement parser
and printer from scratch, but rather reuses existing libraries as backend.
In addition their technique provides a fine-grained control over the pretty-
printing, which however has the drawback of somewhat cluttering the input
grammar with pretty printing annotations. For example the biased choice
operator <+ separates pretty from ugly patterns, which are nevertheless
accepted when parsing. Lastly it is arguably more natural and desirable
to implement a parser and get the corresponding printer for free, rather
than the other way around. The library proposed in this thesis does not
aim to print pretty output directly, however it is still possible to choose
one of the existing pretty printing library [27, 68, 62] as backend, for this
purpose. Printers for certain formats are inherently ambiguous and re-
sult in non-termination, such as the combination of the primitive version
of many and some with trivial formats 2.2.6. In these circumstances the
function atMost tunes a printer and selects a pretty version.

There is also a relevant series of works on type-safe variants of C printf and
scanf formatting functions. Danvy’s approach consists of an embedded
DSL, that exploits continuation passing style [18]. Asai reflects on his
work and reveals that it is based on delimited continuations [3]. He then
elaborates three new solutions, including two in direct style. Hinze employs
functor type-indexed formats, which are combined to compute the types
of the expected arguments. The library developed in this thesis is more
expressive than common string formats, because it supports user-defined
data types and recursive formats. The format representation proposed
here can be effectively employed to implement a type safe version of printf
and scanf. However the arguments to the printer are actually collected in
a single heterogeneous list: it would be interesting to investigate whether
it is possible to provide the printf variadic interface, exploiting Haskell
advanced type features. While the type of the function can be easily

36

computed from the index of the format using a closed type family, it seems
highly non-trivial to curry a function that takes a list-index data type as
argument. I conjecture that a continuation-passing style solution could
solve the problem.

The library presented in this chapter is greatly inspired by the work on
Invertible Syntax Descriptions by Rendel and Ostermann [56]. Following
the example of parsing libraries based on applicative functors, they de-
fine a small core of invertible primitives, which can be combined to build
complex invertible syntax descriptions. Their combinators are defined as
methods of ad-hoc classes such as IsoFunctor and IsoApplicative that resemble
the standard Applicative and Functor classes, but are tailored for partial
isomorphism. Instead this library, in its simplest description 2.2, repre-
sents basic formats as a universe. The parsing and printing semantics are
obtained as an interpretation, an approach similar to that proposed by
Swiestra [49].

Partial Isomorphism The library implemented in this thesis and that
of Rendel et al. both rely on partial isomorphisms to couple a function
and its inverse in a single entity, however they are slightly different. Their
isomorphism is symmetrical, because the two functions are both partial.
As a result the corresponding algebra of partial isomorphism is slightly
more expressive. For example a partial isomorphism for foldl is derived
from a minimal set of primitive isomorphisms, as a small-step abstract
machine. The partial isomorphism used in this library on the other hand
is partial only in the inverse function. The asymmetry precludes the basic
combinator inverse, essential to derive foldl, which is then implemented as a
primitive. However, regardless of which partial isomorphism is used, foldr
could not be derived following the same approach. Since foldr is strictly
more expressive than foldl it is an open question whether the algebra of
partial isomorphism is expressive enough to include it. It is also worth
pointing out that foldr can be inverted only under certain specific condi-
tions.

unfoldr g (foldr f z xs) ≡ xs

Specifically:
g (f x y) = Just (x, y)
g z = Nothing

The two isomorphisms differ also in the kind of their parameters: list of
types ([*]) are used in this library, while Randel employs simple types (*).
At first sight these representations might look equivalent, because the unit
type () corresponds to the empty list '[], and nested pairs can be used to

37

collect together heterogeneous types just like type level lists. However it
turns out that the type level representation is more precise and therefore
more flexible. Consider for example the two alternative signatures of the
Applicative sequencing operator:

<*> :: f a -> f b -> f (a, b)
<*> :: Format f xs -> Format f ys -> Format f (xs :++: ys)

Combining two trivial formats p and q with <*> should result in another
trivial format, however this happens only with the more accurate list rep-
resentation:

p <*> q :: f ((), ())
p <*> q :: Format f '[]

The interaction of trivial formats with list based combinators such as many
and some shows the same wicked behaviour:

many p :: f [()]
many p :: Format f '[]

The strict kind distinction between target types and container allows to
precisely manipulate the former using closed type families such as Map
and :++:, making the combinators more composable. Furthermore several
desired properties of the partial isomorphism algebra, such as associativity,
follow directly from the properties of the container type.

Design The technique presented by Rendel et al. is demonstrated on
a proof-of-concept parsing and pringing library. The instances given for
the newly created type classes, require full access to the library, how-
ever it is customary in libraries not to expose fundamental data types,
in order to prevent users from breaking internal invariants. The library
implemented in this thesis does not rely on a such privileged view, on the
contrary, since the behaviour of the core combinators is virtually stan-
dard, completely general and reusable instances are given. Furthermore
Rendel’s library could support generically only monadic parsers, because
of the symmetric partiality of the functions stored in his isomorphism. For
example consider the IsoFunctor combinator <$> :: Iso a b -> f a -> f b and
the standard Functor combinator <$> :: (a -> b) -> f a -> f b. In the latter
the first argument is a pure function, while in their isomorphism both func-
tions are partial. It is impossible to apply a partial function and get rid of
the Maybe wrapper without the increased expressive power of the monadic
binding. Concretely the only admissible generic instance that can be given
for IsoFunctor is:

38

instance Monad f => IsoFunctor f where
i <$> p = do

x <- p
case apply i x of

Just y -> return y
Nothing -> fail ""

On the other hand, the generic instance given in 2.3.4 for the functor FMap
accordingly requires its underlying semantics to be only a Functor. Fur-
thermore using the symmetric partial isomorphism they implement their
own satisfy function, named subset :: (a -> Bool) -> Iso a a, and instead as-
sume in the class Syntax a method token that returns the next token in
the stream. This design choice does not cope well with existing parsing
libraries, which usually provide satisfy as a primitive and implement token
as satisfy (const True). An unfortunate consequence of this mismatch is
that a generic instance would poorly interact with the underlying library.
In this library the isomorphism subset cannot be defined because the apply
function is not partial, but more importantly it is not needed, because it
is assumed as primitive in ParseSatisfy.

Rendel et al. recognize the problem of providing a suitable interface, in
order to support existing libraries and suggest subclassing as the main
extension mechanism. This is not an option for our library, because it is
not based on type classes, however extensibility is equivalently achieved,
by means of a novel solution to the expression problem 2.3.3.

Monadic Formats In section 2.3.1 the format universe is extended with
a monadic bind operator. Its signature is not as general as the conventional
one for practical purposes. As far as I know this is the first library that
provides invertible parsers and printers for context sensitive grammars,
even though with some limitations. It would be interesting to investigate
further this topic, in order to give to this combinator the standard degree
of generality:

(>>=) :: Format f xs -> (HList xs -> Format f ys) -> Format f ys

The problematic part lies in the printer semantics, in which the depen-
dency embedded by the continuation has to be somehow inverted. Specif-
ically, in order to correctly invert the parser, from an arbitrary HList ys
the corresponding HList xs has to be retrieved. The invertible program-
ming paradigm could provide some insight on this problem, though it is
important to keep in mind that only injective functions can be inverted,
consequently this approach could restrict the class of grammars accepted.
On the other hand the solution proposed in the library is conservative, but

39

sound, because no limitation whatsoever is imposed.

Formal Semantics In this thesis the correct invertibility of the formats
provided by this library has not been formally proved. It would be in-
teresting to investigate its formal properties, using a proof assistant with
dependent types. The work on Total Parser Combinator by Danielsson [16]
is particularly relevant and could represent a suitable base for this line of
research. Exploiting dependent types and mixing induction and coinduc-
tion, he develops a monadic parser combinators library that guarantees
termination and supports left recursion. The same techniques are then
employed to study correct-by-construction pretty printers [17]. The main
result of the paper is the proof that those printers satisfy the round-trip
property, i.e. if a value is pretty printed and the resulting string parsed
with respect to the same grammar, the original value is obtained. Future
work should strive to prove the same result for this format library. On the
other hand I expect a weaker property for the converse theorem, in fact the
ambiguity problem of the printers discussed in 2.2.6 is resolved arbitrarily.
Further research should study a suitable relation s₁ ⊆ s₂, which denotes
that the representation s₂ is as “pretty” as s₁. The desired theorem would
then be print (parse s) ⊆ s. Analyzing double semantics specification in a
proof assistant would also require to precisely describe the inductive and
coinductive definitions of the format combinators, hence explaining which
formats can be correctly defined in this framework.

40

Chapter 3

Formal Model

This chapter presents a formal model used to study the semantics of the
diff and diff3 algorithms. The model has been developed in the Agda proof
assistant [9, 46, 47] and used to mechanically verify several properties of the
algorithms. In the presentation minor details such as implicit arguments
and Set levels will be omitted to improve readability.

3.1 Introduction

3.1.1 Motivation

In practice the semantics of merging algorithms employed in version control
systems is not formalized, but it is usually understood empirically, leading
to severe misconceptions [30].

For instance it is often hard to predict the outcome of complex merging
operations. It is unclear whether a conflict detected is indeed due to
two irreconcilable edits or the consequence of a bug. Furthermore, even
when merges are successful, they might produce unexpected results, for
instance duplicating lines or changing their order. When software artifacts
are under revision control, they might produce invalid programs, or, even
worse, they could silently alter their semantics [45].

A formal model would identify the specifications of these algorithms, thus
unambiguously clearing all these matters. For example the necessary con-
dition discussed in section 3.4.1 sorts out the first issue and the safety
properties presented in 3.4.2 address the second.

41

3.1.2 Characteristics

The basic characteristics of the merger devised in this thesis are listed in
this section. They should help the reader to grasp its essential traits, to
categorize it and quickly compare it to similar tools.

Structured Data Some tools, such as 3DM by Lindholm, target specific
data formats, such as HTML and XML [37, 38], or are specifically designed
for software artifacts [2, 70], like those survey by Mens [45]. There are also
a number of file systems synchronizers like Unison [4, 54] and that by Ram-
sey et al. [55]. The algorithms developed in this thesis target structured
data more generally, just like those of Chawathe et al. [15, 14]. Specifi-
cally it is intended for algebraic data types, represented consequently as
typed, ordered rose-trees.

Syntactic Merging Textual mergers work directly on files, without
taking into account the possible structure of their content. The most
widespread tool in this category is GNU diff3. They are by design fairly
general, but sometimes imprecise, because of the fixed granularity of the
diffs produced [45]. Conversely syntactic merging is more precise, because
it works on parse trees [45], obtained parsing the input files accordingly to
their formats. The merger discussed here performs syntactic merging, ap-
plying a variant of the three-way merge algorithm to the nodes of the parse
tree. Correspondingly it raises a conflict if the merged object is not well-
structured, which in this setting corresponds to an ill-typed term.

Global Alignment Any synchronizer has to find corresponding parts
in each replica, i.e. fragments that are somehow related and should be
synchronized [22]. This process, called alignment, is either global or local.
In the first case the whole replicas are inspected, usually employing a global
heuristic to find a good alignment. Conversely in the second case, simple
rules are applied locally in specific points of the replicas. For instance
Harmony aligns trees whose children have the same names [22]. This works
deploys a global heuristic, analogous to that of diff3, which computes one
of the best alignment minimizing an appropriate cost model.

State-based and three-way The merger discussed in this work is state-
based, i.e. it relies only on the current states of the replicas to be merged,
instead of the list of operations that generated them [30]. Furthermore it
is three-way, so it takes as input two different versions of the same object

42

together with a previous common one, from which they both derived [30].
The main advantage of a state-based approach is that applications are
loosely coupled with the synchronizer, which can be used off the shelf [30].
On the other hand, change-based techniques, such as that employed by
Ramsey et al. [55], require applications to be data-replication aware and
to track the operations performed in form of logs. The main benefit of this
approach is that the presence of explicit operations logs prevents certain
kinds of conflict, resulting in a greater number of successful merges.

Persistent Similarly to Harmony [22], the merger proposed in this the-
sis is persistent, i.e. when merging two replicas it will not back out the
incompatible changes it may detect, but it will instead report a conflict to
the user. Foster et al. remark that persistence precludes convergence [22],
the guarantee that the merger will always synchronize the two replicas to
a same version, at the cost of backing out conflicting edits as needed.

3.1.3 Reasoning by Specification

In Agda it is inconvenient and cumbersome to reason about algorithms
directly. Firstly proofs are non-reusable, because they are completely tai-
lored on specific algorithms. Secondly, goals are reduced only following the
exact same steps of the algorithm, which leads to overly long and repeti-
tive proofs. This style of reasoning is tiresome, inopportune and obfuscates
proofs.

It is preferable, instead, to reason in terms of specifications, which can be
expressed idiomatically in a data type indexed by inputs and outputs of
the algorithm. The advantages of this approach are threefold. Firstly it
requires to define the specifications clearly and precisely. Furthermore it
fosters reasoning in terms of high-level properties, abstracting from im-
plementation specific details. Secondly it encourages proof reuse, because
theorems will be valid for all the algorithms that satisfy the same specifi-
cations. Thirdly it allows much easier and intuitive proofs by induction,
since it becomes possible to pattern match directly on the specification
data type.

This is a general technique that can be employed in similar situations,
furthermore it is lightweight because it only requires to show that the
algorithm satisfies the specifications set. This approach, sometimes called
the graph of the function [8] has been widely employed in this project with
positive results, for example in 3.2.3, 3.3.1.

43

3.1.4 Naming Conventions

The following naming conventions will be consistently used in the rest of
the thesis.

• a b c : Set

• as bs cs : List Set

• α β γ : F as a are called nodes

• xs ys zs : DList as

• u v w z : Val as bs are called values

• f g h : u ~> v are called edits, transformations or operations.

3.2 Basics

This section defines the core concepts of the model. Section 3.2.1 intro-
duces the generic, type-safe representation of data types employed in the
model; sections 3.2.2 and 3.2.3 extend the work of Lempsink et al. on
type-safe diff and edit scripts [36]. Then section 3.2.4 explains the global
alignment strategy deployed and formalizes the merging rules for edits.
Lastly sections 3.2.5 and 3.2.6 further elaborate on merging by extending
it to edit scripts.

3.2.1 Heterogeneous Rose Trees

Since the ultimate purpose of this work is to detect changes in data types,
a generic suitable representation is needed. Algebraic data types are iso-
morphic to ordered heterogeneous typed trees, in which labeled nodes cor-
respond to constructors and their children to their fields.

The mutually recursive data types DTree and DList are defined as fol-
lows:

data DTree : Set -> Set where
Node : F as a -> DList as -> DTree a

data DList : List Set -> Set where
[] : DList []

∷ : DTree x -> DList xs -> DList (x ∷ xs)

44

A tree of type DTree a represents a value of type a; a list of trees of type
DList as represents a list of DTree whose types are determined by as. The
term F as a represents a constructor of an algebraic data type of type a
that takes arguments of types as

The DTree encoding is well-typed by construction, because in the signa-
ture of Node, the same index as is shared by F as a and DList as, therefore
representing a well-typed application of a constructor to arguments of the
correct type.

Example Consider a data type that represents arithmetic expressions:

data Expr : Set where
One : Expr
Add : Expr -> Expr -> Expr

Its constructors are represented by the following data type1:

data F : List Set -> Set -> Set where
One : F [] Expr
Add : F (Expr ∷ Expr ∷ []) Expr

The value Add One One is encoded as the following tree:

two :: DTree Expr
two = Node Add (Node One [] ∷ Node One [] ∷ [])

For simplicity the data type F is kept abstract using a postulate. Further-
more some basic functions to manipulate it are assumed 2.

postulate F : List Set -> Set -> Set
postulate _=?=_ : (α : F as a) (β : F bs b) -> Dec (α ≡ β)
postulate eq? : F as a -> F bs b -> Dec (a ≡ b)

Note that it is possible to explicitly implement these features in a type-safe
family for closed families of mutually recursive data types, as Lempsink
et al. did [36], specifically using modules parametrized by the family of
mutually recursive types. I have decided to avoid this encoding to simplify
the model.

1As shown in this example Agda allows to overload constructors. It should always
be clear from the context to which type they refer.

2The function =?= actually requires heterogeneous equality, because the two nodes
have different types.

45

Utility Functions The signature of two DList utility functions are re-
ported here. Their implementation is straightforward and omitted.

+++ : DList as -> DList bs -> DList (as ++ bs)
dsplit : ∀ {{as bs}} -> DList (as ++ bs) -> DList as × DList bs

The first function appends two DList, while the second function, inverse of
the first, splits a list in two parts. In the latter function the lists as and
bs are passed as instance arguments, a special type of implicit arguments
that is automatically resolved at call-sites [19].

3.2.2 Edit Script

An edit script is a list of edit operations that transform the source object
into the target object.

Single operations are defined over values, which denote the presence or
absence of a node.

data Val : List Set -> List Set -> Set where
⊥ : Val [] []
⟨_⟩ : F as a -> Val as [a]

The data type is indexed by two lists that respectively contain the types
of the fields of a node and its resulting type. Empty values do not store a
node, hence their lists are both empty. These two indexes are needed to
stack edits in a type safe manner.

The edit operations considered in the model are a superset of the edit
operations normally found in GNU diff edit scripts and in that of Lempsink
[36]. An edit operation is indexed over two values, which are respectively
the source and the target of the transformation.

data _~>_ : Val as bs -> Val cs ds -> Set where
Nop : ⊥ ~> ⊥
Del : (α : F as a) -> ⟨ α ⟩ ~> ⊥
Ins : (α : F as a) -> ⊥ ~> ⟨ α ⟩
Upd : (α : F as a) (β : F bs a) -> ⟨ α ⟩ ~> ⟨ β ⟩

The Nop edit is a no-operation that does nothing at all; the Del α and Ins
α edits represent respectively the deletion and the insertion of the node
α, and as such the target of the former and the source of latter are ⊥.
Lastly Upd α β denotes the update of the node α to β, which concretely
represents changing a constructor. Note that when α ≅ β the update is
simply a copy.

46

An edit script collects a finite number of edit operations, while preserving
type-safety.

data ES : List Set -> List Set -> Set where
[] : ES [] []
:: : {v : Val as bs} {w : Val cs ds} ->

v ~> w -> ES (as ++ xs) (cs ++ ys) -> ES (bs ++ xs) (ds ++ ys)

Type Safety In the second constructor the prefixes as and cs match the
input types of v and w. In the resulting type as and cs are replaced with
bs and cs, which are the output types of v and w.

Source and Target object An edit script of type ES xs ys contains the
edits that transform a DList xs, called source, in a DList ys, called target.
The source function ⟪ e ⟫ computes the source of the source of the edit
script e:

⟪_⟫ : ES as bs -> DList as
⟪ [] ⟫ = []
⟪ Nop ∷ e ⟫ = ⟪ e ⟫
⟪ Del α ∷ e ⟫ with dsplit ⟪ e ⟫
... | ds₁ , ds₂ = Node α ds₁ ∷ ds₂
⟪ Ins α ∷ e ⟫ = ⟪ e ⟫
⟪ Upd α β ∷ e ⟫ with dsplit ⟪ e ⟫
... | ds₁ , ds₂ = Node α ds₁ ∷ ds₂

Analogously the target function ⟦ e ⟧ computes its target object:

⟦_⟧ : ES as bs -> DList bs
⟦ [] ⟧ = []
⟦ Nop ∷ e ⟧ = ⟦ e ⟧
⟦ Del α ∷ e ⟧ = ⟦ e ⟧
⟦ Upd α β ∷ e ⟧ with dsplit ⟦ e ⟧
... | ds₁ , ds₂ = Node β ds₁ ∷ ds₂
⟦ Ins α ∷ e ⟧ with dsplit ⟦ e ⟧
... | ds₁ , ds₂ = Node α ds₁ ∷ ds₂

Edit scripts manipulate lists of trees rather than single trees, because some
operations inherently produce lists of trees [36]. For instance Del α in ⟦_⟧
deletes the node α leaving the list of its children, and similarly for Ins α in
⟪_⟫.

47

3.2.3 Diff

The data type Diff xs ys e is indexed over the source list xs and the target
list ys and the edit script e, and represents the proof that e transforms
xs in ys. The two lists are used as stacks, from which arguments for edit
operations are popped and results are pushed.

data Diff : DList as -> DList bs -> ES as bs -> Set₁ where
End : Diff [] [] []
Nop : Diff xs ys e -> Diff xs ys (Nop ∷ e)
Del : (α : F as a) -> Diff (xs₁ +++ xs₂) ys e -> Diff (Node α xs₁ ∷ xs₂) ys (Del α ∷ e)
Ins : (α : F as a) -> Diff xs (ys₁ +++ ys₂) e -> Diff xs (Node α ys₁ ∷ ys₂) (Ins α ∷ e)
Upd : (α : F as a) (β : F bs a) -> Diff (xs₁ +++ xs₂) (ys₁ +++ ys₂) e

-> Diff (Node α xs₁ ∷ xs₂) (Node β ys₁ ∷ ys₂) (Upd α β ∷ e)

The base rule End states that the empty edit script transforms the empty
source list in the empty target list. Every other rule, one for each edit,
appends a different edit to the edit script index and affect the input and
target lists accordingly to their semantics: Del consumes the source list, Ins
consumes the target list, Upd consumes both and Nop consumes none.

The following result links edit scripts, diff and source and target ob-
ject.

mkDiff : (e : ES as bs) -> Diff ⟪ e ⟫ ⟦ e ⟧ e

An edit script can be turned into a Diff object in which the source and
target objects are given respectively by ⟪ e ⟫ and ⟦ e ⟧. The function is
defined by induction on the edit script.

Conversely the following theorems show the correspondence between sources
and targets of Diff and e.

mkDiff⟪_⟫ : Diff xs ys e -> xs ≡ ⟪ e ⟫
mkDiff⟦_⟧ : Diff xs ys e -> ys ≡ ⟦ e ⟧

The proofs are by induction on Diff xs ys e.

It is now evident that Diff xs ys e and Diff ⟪ e ⟫ ⟦ e ⟧ e are equivalent rep-
resentations, hence in other proofs it is possible to freely choose the most
convenient. For instance pattern matching directly on terms whose type
include the expressions ⟪ e ⟫ or ⟦ e ⟧, is usually not possible, because the
function application in the indices prevents unification. It is more con-
venient to introduce the term Diff xs ys e and set xs and ys in the terms,
enabling case analysis. Lastly, using these equalities and exploiting rewrit-
ing techniques, it is possible to restore the original and more involved
statement. See section 3.4.4 for an example.

48

3.2.4 Merge

The technique devised to merge edits is to apply the three-way merge
strategy on values. Informally the three-way merge algorithm compares
correspondent sections of two files and of their common ancestor. When
the sections of the two files disagree, the version of the ancestor is taken
into account. If all of them are different a conflict is detected, otherwise
the version that changed from the common ancestor is chosen.

To put this strategy on a formal footing a number of auxiliary definitions
are needed. For example it is essential to define precisely the meaning of
corresponding sections.

Aligned Two edit operations are aligned if they share the same source
value. Two aligned edits contain at most three distinct values: one com-
mon source and two, possibly different, targets, which are treated as corre-
sponding sections. Since the type of an edit uniquely determines its value,
enforcing the alignment of two edits is as simple as setting the same source
value in their types: no additional data type is required.

Merging is an operation defined over two aligned edits: either it fails rais-
ing a conflict, or succeeds producing an edit that comprises both. The
following data type represents a successful merge.

data _⊔_↧_ : v ~> a -> v ~> b -> v ~> c -> Set where
Id₁ : (f : v ~> v) (g : v ~> w) -> f ⊔ g ↧ g
Id₂ : (f : v ~> w) (g : v ~> v) -> f ⊔ g ↧ f
Idem : (f : v ~> w) -> f ⊔ f ↧ f

A value of type f ⊔ g ↧ h is the proof that merging f with g succeeds
producing the edit h. Each constructor represents a distinct axiom that
explains why the merge is possible and determines the merged edit. The
rules Id₁ and Id₂ apply when respectively the first and the second transfor-
mation is an identity edit. Accordingly to the three-way merge algorithm,
when the source node is unchanged in one edit, the other edit is chosen.
The fact that merging is an idempotent operation motivates the third rule
Idem. It accounts especially for false-positive conflicts and applies when
the same edit is performed independently.

Note that this definition is particularly effective because it is minimal and
concise, for instance it does not mention specific edits, yet complete, since
it can represent all the true specific merges.

Conflicts are represented by the following data type, indexed by a source
value and two target values.

49

data Conflict : (u : Val as bs) (v : Val cs ds) (w : Val es fs) -> Set where
UpdUpd : (α : F as a) (β : F bs a) (γ : F cs a) -> Conflict ⟨ α ⟩ ⟨ β ⟩ ⟨ γ ⟩
DelUpd : (α : F as a) (β : F bs a) -> Conflict ⟨ α ⟩ ⊥ ⟨ β ⟩
UpdDel : (α : F as a) (β : F bs a) -> Conflict ⟨ α ⟩ ⟨ β ⟩ ⊥
InsIns : (α : F as a) (β : F bs b) -> Conflict ⊥ ⟨ α ⟩ ⟨ β ⟩

Conflicts given by InsIns and UpdUpd correspond to conflicting insertions
and updates which resemble to some extent the conflicts in the original
diff₃. Those given by UpdDel and DelUpd are entirely new and stem from
the fact that these two edits are in general non mergeable.

Two incompatible edits give rise to a conflict as described by the next data
type:

data _⊔_↥_ : (v ~> w) -> (v ~> z) -> Conflict v w z -> Set where
InsIns : (f : ⊥ ~> ⟨ α ⟩) (g : ⊥ ~> ⟨ β ⟩) (α≠β : ¬ (α ⋍ β))

-> f ⊔ g ↥ InsIns α β
UpdUpd : (f : ⟨ α ⟩ ~> ⟨ β ⟩) (g : ⟨ α ⟩ ~> ⟨ γ ⟩) (α≠β : ¬ (α ⋍ β))

(α≠γ : ¬ (α ⋍ γ)) (β≠γ : ¬ (β ⋍ γ))
-> f ⊔ g ↥ UpdUpd α β γ

UpdDel : (f : ⟨ α ⟩ ~> ⟨ β ⟩) (g : ⟨ α ⟩ ~> ⊥) (α≠β : ¬ (α ⋍ β))
-> f ⊔ g ↥ UpdDel α β

DelUpd : (f : ⟨ α ⟩ ~> ⊥) (g : ⟨ α ⟩ ~> ⟨ β ⟩) (α≠β : ¬ (α ⋍ β))
-> f ⊔ g ↥ DelUpd α β

Each constructor includes additionally inequality proofs, essential to make
⊔↧_ and _⊔_↥_ exclusive. Inequality is logically encoded in Agda as
negated equality: the type ¬ P is a synonym for P -> ⊥, where ⊥ is the
constructorless data type, which corresponds to falsity under the Curry-
Howard isomorphism [69]. Section 3.3.2 include theorems that explicitly
rely on them.

The binary operator ⊔ merges two aligned edits. For every pair of edits f
and g, it either finds a suitable edit h and provide a proof that f ⊔ g ↧ h,
or detects a conflict c, with a proof that f ⊔ g ↥ c.

⊔ : (f : u ~> v) (g : u ~> w) -> (∃ λ c -> f ⊔ g ↥ c) ⊎ (∃ λ h -> f ⊔ g ↧ h)

Table 3.1 schematically outlines its implementation.

3.2.5 Diff3

The definition of alignment can be naturally extended to edit scripts. Two
edit scripts are aligned if all their edits are pairwise aligned. The type e₁
⋎ e₂ denotes total alignment:

50

f : u ~> v g : u ~> w f ⊔ g
Nop g Id₁ Nop g

Upd α α g Id₁ (Upd α α) g
f Nop Id₂ f Nop
f Upd α α Id₂ f (Upd α α)

Del α Del α Idem (Del α)
Del α Upd α β DelUpd (Del α) (Upd α β) α≠β

Upd α β Del α UpdDel (Upd α β) (Del α) α≠β
Ins α Ins α Idem (Ins α)
Ins α Ins β InsIns (Ins α) (Ins β) α≠β

Upd α β Upd α β Idem (Upd α β)
Upd α β Upd α γ UpdUpd (Upd α β) (Upd α γ) α≠β α≠γ β≠γ)

Table 3.1: Implementation of ⊔. f ⊔ g ↥ c, f ⊔ g ↧ h.

data _⋎_ : ES as bs -> ES as cs -> Set where
nil : [] ⋎ []
cons : (f : u ~> v) (g : u ~> w) -> e₁ ⋎ e₂ -> f ∷ e₁ ⋎ g ∷ e₂

Merging can also be lifted to edit scripts in a similar fashion: it consists
in merging each of their aligned edits pointwise.

However, since single merges can fail, the merged edit script may contain
conflicts, hence a variant of ES is introduced:

data ES₃ : List Set -> Set where
[] : ES₃ []
∷ : {u : Val as bs} -> u ~> v -> ES₃ (as ++ xs) -> ES₃ (bs ++ xs)
∷c : {u : Val as bs} -> (c : Conflict u v w) -> ES₃ (as ++ xs) -> ES₃ (bs ++ xs)

The data type ES₃, contrary to ES, is index over only the input type list,
and preserves type-safety only with respect to it. It also contains one
additional constructor to include conflicts.

The rules that specify how aligned edit scripts are merged to produce an
ES₃, form the following data type:

data _⇓_ : e₁ ⋎ e₂ -> ES₃ xs -> Set where
nil : nil ⇓ []
merge : f ⊔ g ↧ h -> p ⇓ e₃ -> (cons f g p) ⇓ (h ∷ e₃)
conflict : f ⊔ g ↥ c -> p ⇓ e₃ -> (cons f g p) ⇓ (c ∷c e₃)

The data type is indexed over the global alignment proof object The fol-
lowing type synonym is used instead for greater clarity:

Diff₃ : (e₁ : ES xs ys) (e₂ : ES xs zs) {{p : e₁ ⋎ e₂}} -> ES₃ xs -> Set

51

Diff₃ _ _ {{p}} e₃ = p ⇓ e₃

The type Diff₃ e₁ e₂ e₃ is the proof that e₃ is the edit script produced
by merging e₁ and e₂. The alignment condition is left implicit using an
instance argument.

3.2.6 Merged3

Some of the properties discussed in sections 3.4.2 and 3.4.4 are restricted
only to successful Diff₃. This section presents the corresponding specifica-
tions.

Definition A Diff₃ is considered successful if the merged edit script does
not contain any conflict and it is well-typed. In fact a script of type ES₃
as is by-construction well-typed with respect to the source list as, but it
may not with respect to the output list.

data Merged₃ : ES xs ys -> ES xs zs -> ES xs ws -> Set where
nil : Merged₃ [] [] []
cons : f ⊔ g ↧ h -> Merged₃ e₁ e₂ e₃ -> Merged₃ (f ∷ e₁) (g ∷ e₂) (h ∷ e₃)

Note that in Merged₃ the third index is of type ES, instead of ES₃ as in Diff₃.
It is important to point out that the absence of conflicts does not imply
that an edit script is well-typed. For example the following edit script is
ill-typed:

badExpr :: ES []
badExpr = Ins Add ∷ Ins One :: []

The script produces an ill-typed tree, because Add is applied to only one
expression.

The typing judgment e ⇒ as states that the edit script e is well typed and
produces a DList as. The typing rules are straightforward:

[] ⇒ []
f : v ~> w w : Val cs ds e ⇒ cs ++ ys

f ∷ e ⇒ (ds ++ ys)
A trivial inference algorithm can be easily deduced from the typing rules.
Moreover note that the conflict cons constructor (∷c) is not mentioned in
the typing rules, therefore edit scripts containing conflicts are ill-typed.

Edit scripts of type ES₃ can be converted to ES, if they are well typed:

⌜_⌝ : (e : ES₃ xs) -> {{q : e ⇒ ys }}-> ES xs ys

52

The following theorems show that Merged₃ is equivalent to Diff₃ whose
merged edit script is well-typed.

Merged₃-suf : Diff₃ e₁ e₂ e₃ -> e₃ ⇒ ws -> Merged₃ e₁ e₂ ⌜ e₃ ⌝
Merged₃-nec : Diff₃ e₁ e₂ e₃' -> Merged₃ e₁ e₂ e₃ -> e₃' ⇒ ws -> e₃ ≡ ⌜ e₃' ⌝

Discussion It is worth pointing out that, contrary to textual tools, the
merger described in this thesis can fail not only with value related conflicts,
but also producing an ill-typed term. The choice of indexes for Merged₃ is
non trivial and already poses some interesting question:

data Merged₃ : ES as bs -> ES as cs -> ES as ? -> Set where

What type list should be put instead of the question mark? Clearly when
bs ≡ cs, the list bs is a good choice. However this assumption is too re-
strictive, because at some point the edit scripts may have different output
types, but still there might exist a most general type. A possible alter-
native would be to choose an asymmetric signature, so that the merged
script always shares the output list with the first script.

data Merged₃ : ES as bs -> ES as cs -> ES as bs -> Set where

Crucially also this choice is not satisfactory, because there could be merges
(Id₁), that follow the second script and its types, which would clash with
this choice. As a result there is no optimal a priori choice of type that
would not be somehow restrictive. Therefore a completely unrelated type
ws is given as output type and a merged edit script must be typechecked
to actually compute it, if one exists.

3.2.7 Summary

This section has introduced the fundamental definitions of the formal
model. Section 3.2.1 shows an encoding of algebraic data types as het-
erogeneous rose trees, i.e. a combination of DTree and DList, whose nodes
correspond to data type constructors. The edit script data type ES xs ys is
a well-typed list of edits, which transform a source object, a DList xs given
by ⟪ e ⟫, in a DList ys given by ⟦ e ⟧. The specifications of the diff algo-
rithm are given by the Diff x y e data type, which is proved to be in a one
to one relationship with Diff ⟪ e ⟫ ⟦ e ⟧ e. Section 3.2.4 defines the notion
of aligned edit scripts, for which a consistent merge semantics is given. It
consists of two data types: f ⊔ g ↧ h denotes a successful merge resulting
in the edit h, while f ⊔ g ↥ c denotes two irreconcilable edits that raise a
conflict. The binary operator ⊔ merges two aligned edit, producing either
of the two proofs. After extending the alignment conditions to whole edit

53

scripts (e₁ ⋎ e₂) the specifications of the diff3 algorithm are given in terms
of the Diff₃ e₁ e₂ e₃ data type. The result of diff3 is of type ES₃ xs, a variant
of the previous edit script that may contain conflicts and that is type safe
only with respect to the input list. Lastly the Merged₃ e₁ e₂ e₃ type refines
Diff₃ e₁ e₂ e₃ restricting e₃ to be conflictless and well-typed with respect to
the output list.

3.3 Algorithms

This section presents the algorithms diff and diff3 and proves that they
satisfy the specifications embodied respectively by Diff and Diff₃.

3.3.1 Diff

A diff algorithm takes as input two objects and outputs an edit script that
reports the differences between them. It is convenient to model the edit
script as a list of instructions that transform the the first object, named
source, into the second, named target, applying edit operations to their
nodes. Furthermore diff finds a minimal length edit script, or equivalently
the longest common subsequence of its inputs [5, 30]. Conventionally edit
scripts employ only delete, insert and copy operations, however the model
presented here slightly deviates, therefore an appropriate cost function is
defined.

cost : ES as bs -> ℕ
cost (Nop ∷ e) = 1 + cost e
cost (Del α ∷ e) = 1 + cost e
cost (Ins α ∷ e) = 1 + cost e
cost (Upd α β ∷ e) = distance α β + cost e
cost [] = 0

The edit Nop has weight one, even though it has no operational effect,
because it does increase the length of an edit script. In other words for
any edit script that contains some Nop an equivalent script with smaller
cost can be obtained by removing each Nop edit. The function distance
weights the difference between two nodes and it is expected to be a metric
on the set of nodes.

54

Metric A metric on a set A is a function d : (A × A) → R such that
∀x, y, z ∈ A:

d(x, y) ≥ 0 (non-negativity)
d(x, y) = 0 ⇔ x = y (coincidence axiom)
d(x, y) = d(y, x) (symmetry)
d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

A reasonable choice for distance is the discrete distance:

d(x, y) =

{
0 if x = y

1 otherwise

The binary operator _⨅_ returns the edit script that minimizes cost. Its
implementation is straightforward and thus omitted.

⨅ : ES as bs -> ES as bs -> ES as bs

The algorithm proceeds as follows:

diff : DList as -> DList bs -> ES as bs
diff [] [] = []
diff [] (Node β ys₁ ∷ ys₂) = Ins β ∷ diff [] (ys₁ +++ ys₂)
diff (Node α xs₁ ∷ xs₂) [] = Del α ∷ diff (xs₁ +++ xs₂) []
diff (Node α xs₁ ∷ xs₂) (Node β ys₁ ∷ ys₂) with eq? α β
... | yes refl = Del α ∷ diff (xs₁ +++ xs₂) (Node β ys₁ ∷ ys₂)

⨅ Ins β ∷ diff (Node α xs₁ ∷ xs₂) (ys₁ +++ ys₂)
⨅ Upd α β ∷ diff (xs₁ +++ xs₂) (ys₁ +++ ys₂)

... | no a≠b = Del α ∷ diff (xs₁ +++ xs₂) (Node β ys₁ ∷ ys₂)
⨅ Ins β ∷ diff (Node α xs₁ ∷ xs₂) (ys₁ +++ ys₂)

When one of the input list is empty the other is consumed by applying
repeatedly either the Ins or Del edit to the nodes left. When both are non
empty there are three alternatives. Either the input node can be consumed
by Del, or the output node can be consumed by Ins, or, if the two nodes have
the same type, the first can be mapped into the second by Upd. Among
these options, the best script is selected using the ⨅ operator. Note that
the Nop edit is never used because it does not consume neither of the two
lists: no progress can be made with it.

The algorithm implemented in this way is very inefficient, because it con-
tains several recursive calls that perform the same sub-computations mul-
tiple times. The algorithm can be made practical with memoization [36],
however the focus here is on correctness, rather than computational com-
plexity, therefore the simpler version will be used.

55

Technical remark Agda is a total language and therefore requires all
the functions to terminate. Since termination is in general undecidable,
Agda’s termination checker accepts only structural recursion, which safely
guarantees termination. In this case diff is rejected as possibly non-terminating,
because it is not structurally recursive due to the presence of +++ in the
arguments. In the actual model, to overcome this limitation, the func-
tion has been adjusted to include an additional parameter, which is an
upper-bound on the number of nodes contained in the source and target
lists.

size : DList as -> ℕ
size [] = 0
size (Node α xs ∷ ys) = 1 + size xs + size ys

sdiff : {n : ℕ} (xs : DList as) (ys : DList bs) -> size xs + size ys ≤ n -> ES as bs

The implementation of sdiff (sized diff) is the same, but recursive calls
are structurally recursive on the upper-bound proof object. Minor lem-
mas that show that size distributes over +++ are needed to prove that
the number of nodes yet to be processed is strictly decreasing in the last
case.

The function diff then simply calls sdiff using an appropriate upper bound.

diff : DList as -> DList bs -> ES as bs
diff xs ys = sdiff {n = size xs + size ys} xs ys (≤-refl (size xs + size ys))

The function ≤-refl states that the relation ≤ is reflexive, i.e. for any n it
follows that n ≤ n. The proof is by induction on n.

Sufficient The lemma used to relate Diff xs ys e and diff xs ys e is the
following:

Diff-suf : ∀ (xs : DList as) (ys : DList bs) -> Diff xs ys (diff xs ys)

Since diff simply calls sdiff the actual proof is by induction on the upper-
bound and closely follows its structure. The proof is not particularly in-
teresting and therefore omitted.

The theorem intuitively holds because any edit script e that maps xs into
ys satisfies Diff xs ys e. The diff algorithm computes one of them and in
particular the one with minimal length. However note that Diff xs ys e
does not imply that that e ≡ diff xs ys, because it does not force e to be
of minimal length. Choosing a weaker specification was an aware design
decision: all the properties considered in the model hold regardless of the
fact that the scripts are optimal. The advantage of this choice is that

56

at any time it is possible to change the diff algorithm and the relative
properties would still be valid. For example an heuristic that quickly finds
a suboptimal edit script may be employed to meet certain performance
requirements.

Discussion To minimize the cost function, the diff algorithm strives to
match equal nodes, because they have the least distance, similarly to what
happens in common diff algorithms [36]. An update involving different
nodes is preferred to the equivalent insert and consecutive deletion. This
crucial aspect will be explained in section 3.3.2. The no-operation is never
preferred, because it consumes neither the source or the target object, but
increases the cost of an edit-script. The reason behind introducing this
superfluous edit operation will be clarified in 3.3.2.

3.3.2 Diff3

This section introduces the diff₃ algorithm used to compare three objects,
one of which is considered a previous common version of the other two.
Similarly to GNU diff3, the algorithm takes as input three objects and
outputs an edit script that combines the changes between them. Likewise
the algorithm does not operate on the objects directly, but rather calls the
diff subroutine twice to detected the changes from the common version to
the others. It then merges the two edit scripts so obtained to produce an
edit script that combines both.

The core function is merge₃ which combines two aligned edit scripts, ap-
plying the ⨆ operator to each pair of aligned edits.

merge₃ : {e₁ : ES as bs} {e₂ : ES as cs} -> e₁ ⋎ e₂ -> ES₃ as
merge₃ nil = []
merge₃ (cons f g p) with f ⨆ g
merge₃ (cons f g p) | inj₁ (c , _) = c ∷c merge₃ p
merge₃ (cons f g p) | inj₂ (h , _) = h ∷ merge₃ p

To improve readability the following entry point for merge₃ is defined:

⨆₃ (e₁ : ES as bs) (e₂ : ES as cs) {{p : e₁ ⋎ e₂} -> ES₃ as
⨆₃ _ _ {{p}} = merge₃ p

Sufficient The next result shows that ⨆₃ satisfies the specifications set
by Diff₃.

57

Diff₃-suf : {e₁ : ES as bs} {e₂ : ES as cs} (p : e₁ ⋎ e₂) -> Diff₃ e₁ e₂ (e₁ ⨆₃ e₂)

The proof follows immediately by induction on e₁ ⋎ e₂.

Complete The following theorem proves that the algorithm is complete
with respect to the specification, i.e. that for any triplet of edit scripts e₁
e₂ e₃ that satisfies the Diff₃ specifications, the merged edit script e₃ is the
result of e₁ ⨆₃ e₂.

The proof is short, but interesting, therefore it will be reported in full.

Diff₃-nec : Diff₃ e₁ e₂ e₃ -> e₃ ≡ e₁ ⨆₃ e₂
Diff₃-nec nil = refl
Diff₃-nec (merge {f = f} {g = g} m q) with f ⨆ g
Diff₃-nec (merge m q) | inj₁ (c , u) = ⊥-elim (mergeConflictExclusive m u)
Diff₃-nec (merge m q) | inj₂ (h' , m') with mergeDeterministic m m'
Diff₃-nec (merge m q) | inj₂ (h' , m') | refl = cong (_∷_ h') (Diff₃-nec q)
Diff₃-nec (conflict {f = f} {g = g} u q) with f ⨆ g
Diff₃-nec (conflict u q) | inj₁ (c , u') with conflictDeterministic u u'
Diff₃-nec (conflict u q) | inj₁ (c , u') | refl = cong (_∷c_ c) (Diff₃-nec q)
Diff₃-nec (conflict u q) | inj₂ (h , m) = ⊥-elim (mergeConflictExclusive m u)

The proof is by induction on Diff₃ e₁ e₂ e₃. The equivalence is immediate in
the base case , when both e₁ and e₂ are empty edit script (nil). In the first
recursive case (merge), there are two aligned edits f and g that are merged
in h, since m has type f ⊔ g ↧ h. The goal is the equivalence h ∷ e₃ ≡ (f
∷ e₁) ⨆₃ (g ∷ e₂). By inductive hypothesis (Diff₃-nec q), it follows that e₃
≡ e₁ ⨆ e₂, so the only proof obligation left is to show that f ⨆ g ≡ h. By
case analysis, either f ⨆ g fails raising a conflict or it succeeds producing
a merged edit h'. The first case is discharged by contradiction: merges
and conflicts are mutually exclusive. The second case requires to show
that the proofs m : f ⊔ g ↧ h and m' : f ⊔ g ↧ h' imply that h ≡ h'. This
follows from the property that ⊔ is deterministic [6], i.e. same inputs lead
to same outputs. A similar line of reasoning applies in the second recursive
case (conflict), in which conflicts determinism is used instead.

The lemmas used in the proof are reported here for completeness.

Mutual exclusion The lemma mergeConflictExclusive asserts that two
aligned edits are exclusively conflicting or reconcilable.

mergeConflictExclusive : f ⊔ g ↧ h -> ¬ (f ⊔ g ↥ c)
mergeConflictExclusive (Id₁ f g) (UpdUpd .f .g α≠β α≠γ β≠γ) = α≠β refl
mergeConflictExclusive (Id₁ f g) (UpdDel .f .g α≠β) = α≠β refl
mergeConflictExclusive (Id₂ f g) (UpdUpd .f .g α≠β α≠γ β≠γ) = α≠γ refl

58

mergeConflictExclusive (Id₂ f g) (DelUpd .f .g α≠β) = α≠β refl
mergeConflictExclusive (Idem f) (InsIns f f α≠β) = α≠β refl
mergeConflictExclusive (Idem f) (UpdUpd f f α≠β α≠γ β≠γ) = β≠γ refl

The proof is by contradiction. Since ¬ (f ⊔ g ↥ c) is short for f ⊔ g ↥ c ->
⊥, one additional parameter of type f ⊔ g ↥ c is included. From f ⊔ g ↧
h and f ⊔ g ↥ c, falsity (⊥) has to be produced.

Case analysis on the two terms leads to incongruent conclusions. Let
us examine the first one as an example, the others follow from similar
considerations. The term UpdUpd f g α≠β α≠γ β≠γ asserts that f has type ⟨
α ⟩ ~> ⟨ β ⟩ for some nodes α and β. Moreover the term α≠β claims that
¬ (α ⋍ β), or equivalently α ⋍ β -> ⊥. In the term Id₁ f g, the edit f has
type v ~> v for any value v. Since these terms have types f ⊔ g ↧ h and f
⊔ g ↥ c, their edits f are the same, hence their types are unified, assigning
the most general type ⟨ α ⟩ ~> ⟨ α ⟩ to f. As a consequence β is actually α,
then α≠β has type α ⋍ α -> ⊥. By reflexivity (refl), α ⋍ α for any α, then
applying α≠β to it produces ⊥.

Determinism Even though the ⊔ operator is a binary function, in the
data types f ⊔ g ↧ h and f ⊔ g ↥ c, the symbol ⊔ is just a part of their
identifiers, and as such as nothing to do with the ⊔ operator. These data
types merely represents ternary relations over their indexes and may or
may not be functional. This property has to proved for each of them.

The structure of the proof is standard and requires to show that for any
pair of triplets (x, y, z1) and (x, y, z2) satisfying the relation, it follows that
z1 = z2.

mergeDeterministic : f ⊔ g ↧ h₁ -> f ⊔ g ↧ h₂ -> h₁ ≡ h₂
mergeDeterministic (Id₁ f g) (Id₁ .f .g) = refl
mergeDeterministic (Id₁ f g) (Id₂ .f .g) = edit-≡ g f
mergeDeterministic (Id₁ f .f) (Idem .f) = refl
mergeDeterministic (Id₂ f g) (Id₁ .f .g) = edit-≡ f g
mergeDeterministic (Id₂ f g) (Id₂ .f .g) = refl
mergeDeterministic (Id₂ f .f) (Idem .f) = refl
mergeDeterministic (Idem f) (Id₁ .f .f) = refl
mergeDeterministic (Idem f) (Id₂ .f .f) = refl
mergeDeterministic (Idem f) (Idem .f) = refl

The proof follows almost directly from case analysis on the two arguments.
It is immediate when either the two constructors is Idem, because it implies
that f ≡ g ≡ h, and when the two constructors are the same (Id₁ and Id₁,
Id₂ and Id₂). In the spurious cases left (Id₁ and Id₂), the goal is to show that

59

f ≡ g given that they both have type v ~> v. The following lemma shows
that two identity edits that shares the same value are indeed equal.

edit-≡ : (f g : v ~> v) -> f ≡ g
edit-≡ Nop Nop = refl
edit-≡ (Upd α .α) (Upd .α .α) = refl

The proof for f ⊔ g ↥ c follows directly from case analysis on the argu-
ments:

conflictDeterministic : f ⊔ g ↥ c₁ -> f ⊔ g ↥ c₂ -> c₁ ≡ c₂
conflictDeterministic (InsIns f g α≠β) (InsIns .f .g α≠β₁) = refl
conflictDeterministic (UpdUpd f g α≠β α≠γ β≠γ) (UpdUpd .f .g α≠β₁ α≠γ₁ β≠γ₁) = refl
conflictDeterministic (UpdDel f g α≠β) (UpdDel .f .g α≠β₁) = refl
conflictDeterministic (DelUpd f g α≠β) (DelUpd .f .g α≠β₁) = refl

In order to use the ⨆₃ operator previously defined, an alignment proof e₁
⋎ e₂ is needed. If two edit scripts share the same source object, they both
will include edits that process its nodes. Furthermore, since edit scripts
work in a depth first order, these edits will be found in each of the two edit
scripts in the same order. Unfortunately this is not enough to conclude
that the two edit scripts are completely aligned, since inserts may occur
at any point.

Nevertheless it is possible to realign the two edit scripts, inserting a finite
number of Nop edits. It is important to emphasize that, an edit script
extended in this way does not affect its semantics with respect to the
source and target function. Intuitively this is correct, since the Nop edit
has no effect at all in those functions. The following preliminary definitions
put this property on a formal footing.

Extension The statement e₁ ⊴ e₂ means that e₂ extends e₁ introducing
a finite number of Nop edits.

data _⊴_ : ES as bs -> ES as bs -> Set where
stop : [] ⊴ []
cons : (f : v ~> w) -> e₁ ⊴ e₂ -> f ∷ e₁ ⊴ f ∷ e₂
nop : e₁ ⊴ e₂ -> e₁ ⊴ Nop ∷ e₂

The following lemmas show that the extended script is indistinguishable
from the original one, with respect to the source and target function.

⊴-⟪_⟫ : e₁ ⊴ e₂ -> ⟪ e₁ ⟫ ≡ ⟪ e₂ ⟫
⊴-⟦_⟧ : e₁ ⊴ e₂ -> ⟦ e₁ ⟧ ≡ ⟦ e₂ ⟧

The proofs are by induction on e₁ ⊴ e₂ and rely on the fact that Nop affect
neither ⟪_⟫ nor ⟦_⟧.

60

The relation e₁ ~ e₂ asserts that there are extensions of e₁ and e₂, which
are aligned.

data _~_ (e₁ : ES as bs) (e₂ : ES as cs) : Set where
Align : e₁ ⊴ e₁' -> e₂ ⊴ e₂' -> e₁' ⋎ e₂' -> e₁ ~ e₂

It is possible to show that such extensions exist for any e₁ and e₂ originated
from the same source.

Diff⋎ : Diff as bs e₁ -> Diff as cs e₂ -> e₁ ~ e₂

The function is defined by induction on the two arguments, but, because
of the number of uninteresting cases, it is lengthy and therefore omit-
ted.

Diff3 Now it is possible to provide the conventional diff₃ interface, in
which the second object is considered the old common version:

diff₃ : DList bs -> DList as -> DList cs -> ES₃ as
diff₃ ys xs zs with Diff⋎ (Diff-suf xs ys) (Diff-suf xs zs)
diff₃ ys xs zs | Align _ _ p = merge₃ p

The diff algorithm is called implicitly by Diff-suf; the edit scripts so obtained
are aligned via extension using Diff⋎, from which the alignment proof p is
extracted and used to finally merge the scripts with merge₃. Note that the
call to Diff⋎ is valid because Diff-suc is invoked with the same xs as first
argument.

3.4 Formal Properties

In this section we will study some properties of the algorithms presented.
As pointed out in 3.1.3, the properties will be proved using the specifi-
cations of the algorithms, rather than the algorithms themselves, so that
the proofs will be simpler and furthermore valid for any algorithm satis-
fying those specifications. The advantages gained with these additional
properties are evident: the model becomes stronger, more reliable and
predictable.

3.4.1 Conflicts

In order to safely reason about complex merging operations, the necessary
and sufficient conditions required to trigger a conflict are pinpointed.

61

Firstly, some auxiliary definitions will be introduced.

data _∈c_ : Conflict u v w -> ES₃ xs -> Set₁ where
here : (c : Conflict u v w) -> c ∈c (c ∷c e)
there : c ∈c e -> c ∈c f ∷ e
therec : (c' : Conflict u' v' w') -> c ∈c e -> c ∈c (c' ∷c e)

The type c ∈c e denotes that some conflict c is present in the edit script
e.

Given Diff₃ e₁ e₂ e₃ this section aims to find the sufficient and necessary
conditions on e₁ and e₂, or more concisely on e₁ ⋎ e₂, such that c ∈c e₃.
Since conflicts are triggered by incompatible aligned edits and more specif-
ically depend on the three values they involve, a data type to refer to them
is needed:

data Map⋎ (u : Val as bs) (v : Val cs ds) (w : Val es fs)
: e₁ ⋎ e₂ -> Set where

here : (f : u ~> v) (g : u ~> w) -> Map⋎ u v w (cons f g p)
cons : (f : u' ~> v') (g : u' ~> w') -> Map⋎ u v w p -> Map⋎ u v w (cons f g p)

Note that Map⋎ u v w p is parametric in the values u, v and w.

A better looking syntax is introduced with a type synonym, mainly to
leave the alignment proof implicit, but also to rearrange the order of the
parameters and indexes, since in declarations parameters always precede
indexes.

,⊢_~>[_,_] : (e₁ : ES xs ys) (e₂ : ES xs zs) {{p : e₁ ⋎ e₂}} ->
(u : Val as bs) (v : Val cs ds) (w : Val es fs) -> Set

,⊢_~>[_,_] e₁ e₂ {{p}} u v w = Map⋎ u v w p

The statement e₁ , e₂ ⊢ u ~>[v , w] means that, given e₁ and e₂, their
aligned source value u is mapped respectively to v in e₁ and to w in e₂.

The minimal conditions for the presence of conflicts are represented by:

data Failure (p : e₁ ⋎ e₂) : Conflict u v w -> Set where
InsIns : (α : F as a) (β : F bs b) -> e₁ , e₂ ⊢ ⊥ ~>[⟨ α ⟩ , ⟨ β ⟩] ->

(α≠β : ¬ (α ⋍ β)) -> Failure p (InsIns α β)
UpdUpd : (α : F as a) (β : F bs a) (γ : F cs a) ->

e₁ , e₂ ⊢ ⟨ α ⟩ ~>[⟨ β ⟩ , ⟨ γ ⟩] ->
(α≠β : ¬(α ⋍ β)) (α≠γ : ¬ (α ⋍ γ)) (β≠γ : ¬(β ⋍ γ)) ->
Failure p (UpdUpd α β γ)

UpdDel : (α : F as a) (β : F bs a) -> e₁ , e₂ ⊢ ⟨ α ⟩ ~>[⟨ β ⟩ , ⊥] ->
(α≠β : ¬(α ⋍ β)) -> Failure p (UpdDel α β)

62

DelUpd : (α : F as a) (β : F bs a) -> e₁ , e₂ ⊢ ⟨ α ⟩ ~>[⊥ , ⟨ β ⟩] ->
(α≠β : ¬(α ⋍ β)) -> Failure p (DelUpd α β)

A value of type Failure p c denotes that in p there are two aligned edits that
are incompatible and will trigger the conflict c. Few observations are in
order. Firstly Failure is parametric on p of type e₁ ⋎ e₂, which brings into
scope e₁, e₂ and the alignment proof p demanded implicitly by e₁ , e₂ ⊢
u ~>[v , w]. Secondly the conflict c is instead an index, since it must be
instantiated properly with a different conflict by each constructor. Lastly
the inequalities and the conflicting edits specified by each constructor are
consistent with those from f ⊔ g ↥ c, just lifted to edit scripts.

Once more a type synonym is used for readability:

,↥_ : (e₁ : ES xs ys) (e₂ : ES xs zs) {{p : e₁ ⋎ e₂}} -> Conflict u v w -> Set
,↥_ e₁ e₂ {{p}} c = Failure p c

Necessary The following theorem asserts that if e₃ merges e₁ and e₂
and c ∈c e₃, then it follows that e₁ ,e₂ ↥ c.

conflict-nec : c ∈c e₃ -> Diff₃ e₁ e₂ e₃ -> e₁ , e₂ ↥ c

The proof is by straightforward induction and thus omitted.

Sufficiency The converse theorem is slightly more involved. The proof
is also by induction, but some of the base cases requires further inspection
to be discharged by contradiction. The structure is the same for each kind
of conflict, therefore only the proof for one of them is listed here.

conflict-suf : e₁ , e₂ ↥ c -> Diff₃ e₁ e₂ e₃ -> c ∈c e₃
conflict-suf (InsIns α .α (here y .y) α≠β) (merge (Idem .y) d) = ⊥-elim (α≠β refl)
conflict-suf (InsIns α β (here x y) α≠β) (conflict (InsIns .x .y α≠β₁) d)

= here (InsIns α β)
conflict-suf (InsIns α β (cons x y q) α≠β) (merge m d)

= there _ (conflict-suf (InsIns α β q α≠β) d)
conflict-suf (InsIns α β (cons x y q) α≠β) (conflict u d)

= therec _ (conflict-suf (InsIns α β q α≠β) d)

The e₁ , e₂ ↥ c data type only reveals the kind of conflict involved, there-
fore the argument e₁ , e₂ ⊢ u ~>[v , w] is further inspected. The cons
constructor is stripped in the recursive calls and the appropriate there
constructor is chosen depending on the value of Diff₃, in particular there
in conjunction with merge and therec with conflict. Both conflict and merge
show up in the base cases, but only the former is expected. The presence
of the latter is bogus: a conflict should occur, yet merge is reported. Two

63

inserts can only be merged if they insert the same node α, but this con-
tradicts α≠β, the proof stored in e₁ , e₂ ↥ c, which asserts that they are in
fact different.

3.4.2 Safety

This section introduces some safety requirements for the Diff and Diff₃ data
type, which act as sanity checks. Firstly some preliminaries definitions are
given, which are then used to state and prove these properties.

Membership The type α ∈ ts denotes that the node α is present in the
list of trees ts.

data _∈_ : ∀ {ys xs a} -> F xs a -> DList ys -> Set where
here : (α : F as a) -> α ∈ Node α ts₁ ∷ ts₂
there : α ∈ ts₁ +++ ts₂ -> α ∈ Node β ts₁ ∷ ts₂

A similar data type denotes membership of an edit in a script.

data _∈e_ : v ~> w -> ES xs ys -> Set where
here : (f : v ~> w) -> f ∈e f ∷ e
there : (g : w ~> z) -> f ∈e e -> f ∈e g ∷ e

The following wrapper data type will be often used for the safety proper-
ties. The judgment e ⊢e u ~> v means that in e the value u is mapped to
v.

data _⊢e_~>_ (e : ES xs ys) : Val as bs -> Val cs ds -> Set where
Nop : Nop ∈e e -> e ⊢e ⊥ ~> ⊥
Del : (α : F as a) -> Del α ∈e e -> e ⊢e ⟨ α ⟩ ~> ⊥
Ins : (α : F as a) -> Ins α ∈e e -> e ⊢e ⊥ ~> ⟨ α ⟩
Upd : (α : F as a) (β : F bs a) -> Upd α β ∈e e -> e ⊢e ⟨ α ⟩ ~> ⟨ β ⟩

Core Properties By induction it is possible to relate membership proofs
on edit scripts with those about lists of trees.

∈-⟦⟧ : {f : v ~> ⟨ α ⟩} -> f ∈e e -> α ∈ ⟦ e ⟧
∈-⟪⟫ : {f : ⟨ α ⟩ ~> v} -> f ∈e e -> α ∈ ⟪ e ⟫

It is easy to restrict the edits only to those with, respectively, a target and
a source node, giving an appropriate type to the edit f.

These functions are also used to draw the same conclusions with the judg-
ment type:

64

targetOrigin : e ⊢e v ~> ⟨ α ⟩ -> α ∈ ⟦ e ⟧
targetOrigin (Upd α β x) = ∈-⟦⟧ x
targetOrigin (Ins α x) = ∈-⟦⟧ x

sourceOrigin : e ⊢e ⟨ α ⟩ ~> v -> α ∈ ⟪ e ⟫
sourceOrigin (Upd α β x) = ∈-⟪⟫ x
sourceOrigin (Del α x) = ∈-⟪⟫ x

Diff Safety These properties are specific to the edit script data type and
the source and target functions. Furthermore, since Diff x y e is equivalent
to Diff ⟪ e ⟫ ⟦ e ⟧ e, as showed in section 3.2.3, also Diff shares the same
properties.

noTargetMadeUp : e ⊢e v ~> ⟨ α ⟩ -> Diff x y e -> α ∈ y
noTargetMadeUp p q rewrite mkDiff⟦ q ⟧ = targetOrigin p

noSourceMadeUp : e ⊢e ⟨ α ⟩ ~> v -> Diff x y e -> α ∈ x
noSourceMadeUp p q rewrite mkDiff⟪ q ⟫ = sourceOrigin p

These propositions assert that any target and source node in a script
comes, respectively, from the target and source object diffed by the edit
script itself.

The converse proposition states that a node α that belongs to the target
(source) object, is to be found as target (source) value in some edit in the
script that converts the former to the latter.

noSourceErase : Diff x y e -> α ∈ x -> ∃ (λ v -> e ⊢e ⟨ α ⟩ ~> v)
noTargetErase : Diff x y e -> α ∈ y -> ∃ (λ v -> e ⊢e v ~> ⟨ α ⟩)

The proof is on induction on its arguments. Note that these proofs would
be much more cumbersome, if stated directly on ⟦ e ⟧ and ⟪ e ⟫.

Diff3 Safety The safety properties just discussed extend naturally to
edits in the Diff₃ data type. Specifically an edit present in one of the input
edit scripts will be found in the merged edit script, given that it does
perform a change and that the output script does not contain conflicts. The
first requirement is needed because identity edits can be silently ignored
in the merge semantics given by f ⊔ g ↧ h, with the constructors Id₁ and
Id₂. On the other hand the second prerequisite is essential, because Diff₃ is
persistent, i.e. it refuses to back out incompatible edits and instead triggers
an appropriate conflict. Before stating more formally the theorem, some
simple auxiliary data types are introduced.

65

Firstly an edit does perform a change if it is not the identity edit, or, in
other words if the source and the target values are different.

data Change (f : v ~> w) : Set where
IsChange : (v≠w : ¬ (v ≃ w)) -> Change f

Secondly the absence of conflicts in a script is guaranteed by the following
data type, that does not have any constructor that adds a conflict to the
index.

data NoCnf : ES₃ as -> Set where
[] : NoCnf []
∷ : (f : v ~> w) -> NoCnf e -> NoCnf (f ∷ e)

The theorem is firstly proved considering an edit present in the first input
script (f ∈e e₁). The result type f ∈₃ e₃ proves the presence of the edit f
in the merged script e₃. It corresponds to f ∈ e, presented in 3.4.2, just
indexed over a script of type ES₃ as instead of one of type ES as bs.

noBackOutChanges₁ : Change f -> Diff₃ e₁ e₂ e₃ -> f ∈e e₁ -> NoCnf e₃ -> f ∈₃ e₃

The theorem is proved by induction on f ∈e e₁ and Diff₃ e₁ e₂ e₃.

The same theorem holds for edits that belong to the second edit.

noBackOutChanges₂ : Change f -> Diff₃ e₁ e₂ e₃ -> f ∈e e₂ -> NoCnf e₃ -> f ∈₃ e₃
noBackOutChanges₂ c d p q = noBackOutChanges₁ c (⇓-sym d q) p q

This is actually a corollary of the previous theorem, since Diff₃ is symmetric
in absence of conflicts.

⇓-sym : p ⇓ e₃ -> NoCnf e₃ -> (⋎-sym p) ⇓ e₃
⇓-sym nil _ = nil
⇓-sym (merge m p) (h ∷ q) = merge (↧-sym m) (⇓-sym p q)
⇓-sym (conflict u p) ()

Note that this is not the case, when e₃ does contain some conflicts, because
the Conflict data type is asymmetric.

The converse theorem asserts that any given edit in the merged script,
comes from one of the input scripts.

noEditMadeUp : f ∈₃ e₃ -> Diff₃ e₁ e₂ e₃ -> f ∈e e₁ ⊎ f ∈e e₂
noEditMadeUp (here f) (merge (Id₁ g .f) d) = inj₂ (here f)
noEditMadeUp (here f) (merge (Id₂ .f g) d) = inj₁ (here f)
noEditMadeUp (here f) (merge (Idem .f) d) = inj₁ (here f)
noEditMadeUp (there g p) (merge m d)

= S.map (there _) (there _) (noEditMadeUp p d)

66

noEditMadeUp (therec c p) (conflict u d)
= S.map (there _) (there _) (noEditMadeUp p d)

The last safety property states that a successful Merged₃ produces an edit
script, whose output type is a subset of the output types of the input
scripts.

The following data type defines precisely such relation:

data _⊆_,_ : List Set -> List Set -> List Set -> Set where
stop : [] ⊆ [] , []
cons₁ : xs ⊆ ys , zs -> y ∷ xs ⊆ y ∷ ys , zs
cons₂ : xs ⊆ ys , zs -> z ∷ xs ⊆ ys , z ∷ zs
cons₁₂ : xs ⊆ ys , zs -> x ∷ xs ⊆ x ∷ ys , x ∷ zs
drop₁ : xs ⊆ ys , zs -> xs ⊆ y ∷ ys , zs
drop₂ : xs ⊆ ys , zs -> xs ⊆ ys , z ∷ zs

The type xs ⊆ ys , zs denotes that the list xs is a subset of the union of ys
and zs. This is obvious in the basic constructor stop, when all the lists are
empty. The invariant maintained by the cons constructors is that, for any
three lists xs, ys and zs that satisfy this property, whenever an element is
added to xs it must be added also to either ys by cons₁, or to zs by cons₂,
or both by cons₁₂. Any element can be freely inserted in ys or zs with drop₁
and drop₂.

The edits stored in a script are applied to the the source and target objects,
traversing their nodes in a depth-first order. The function typesOf collects
in a list the types of the internal nodes in the same order.

typesOf : DList xs -> List Set
typesOf [] = []
typesOf (Node {a = a} α ts₁ ∷ ts₂) = a ∷ typesOf ts₁ ++ typesOf ts₂

The lemma theorem mixOf asserts that, upon a successful merge, the types
of the target object of the merged script is a subset of the types of the
target objects of the two input edits.

mixOf : Merged₃ e₁ e₂ e₃ -> typesOf ⟦ e₃ ⟧ ⊆ typesOf ⟦ e₁ ⟧ , typesOf ⟦ e₂ ⟧

Section 3.2.6 explains that output list of e₃ cannot be computed in advance
from the indexes of e₁ and e₂, therefore in the definition of Merged₃ it is
existentially quantified. This result gives a more precise statement finding
a relation between the output types of the three edit scripts. Foster et
al. proves a stronger property, namely that the synchronization preserves
the schema of the originals revisions [22]. That result cannot be proved
in this context because the two indexes are not plain types, but are list
of types, that are used in a stack-like fashion and are essential to enforce

67

type-safety.

3.4.3 Maximality

Another important property discussed in this section is maximality [22],
which guarantees that all the changes from both the scripts are included
in the merged script in a Diff₃ run.

The type Maximal e₁ e₂ e₃ asserts that the script e₃ includes all the changing
edits from e₁ and e₂, thus they form a maximal triplet.

data Maximal : ES xs ys -> ES xs zs -> ES₃ xs -> Set where
Nil : Maximal [] [] []
Id₁ : (f : v ~> v) (g : v ~> w) -> Maximal e₁ e₂ e₃

-> Maximal (f ∷ e₁) (g ∷ e₂) (g ∷ e₃)
Id₂ : (f : v ~> w) (g : v ~> v) -> Maximal e₁ e₂ e₃

-> Maximal (f ∷ e₁) (g ∷ e₂) (f ∷ e₃)
Idem : (f : u ~> v) -> Maximal e₁ e₂ e₃ -> Maximal (f ∷ e₁) (f ∷ e₂) (f ∷ e₃)

The constructor Nil is correct because all the three scripts are the same,
thus they form a maximal triplet. The constructor Idem reasonably adds
the same edit f to each script e₁, e₂ and e₃, that form a maximal triplet,
thus preserving it. The presence of the other two constructors is explained
because the merged script must retain the changes from the input scripts,
in order to be maximal. It is then fine to ignore identity edits, since they
do not perform any change.

The following theorem shows that a Diff₃ run that triggers no conflict is
maximal.

Diff₃-maximal : Diff₃ e₁ e₂ e₃ -> NoCnf e₃ -> Maximal e₁ e₂ e₃
Diff₃-maximal nil [] = Nil
Diff₃-maximal (merge (Id₁ f g) p) (.g ∷ q) = Id₁ f g (Diff₃-maximal p q)
Diff₃-maximal (merge (Id₂ f g) p) (.f ∷ q) = Id₂ f g (Diff₃-maximal p q)
Diff₃-maximal (merge (Idem f) p) (.f ∷ q) = Idem f (Diff₃-maximal p q)

The proof is straightforward, since the constructors Id₁, Id₂ and Idem of
Maximal e₁ e₂ e₃ correspond exactly to those of f ⊔ g ↧ h. In particular
note that, after pattern matching on the latter, h gets always instantiated
with either f or g.

68

3.4.4 Structural Invariants

The last property discussed in this section concerns the ordering of the
nodes. An edit script transforms lists of trees, traversing and processing
their nodes in depth-first order. It represents a mapping from the source
to the target, in which nodes of the source are embedded in nodes of the
target. The property central to this section is that the embedding preserves
the depth-first ordering of the source and target nodes. However nodes are
not only mapped (updated) from the source to the target, but they may
also be inserted, or removed. Therefore the embedding-preserving property
has to be adjusted to take these transformations into account.

This section is structured as follows. Firstly the depth-first ordering on
trees is formally defined and a similar relation is defined over edit scripts.
Secondly the equivalence between these relations is proved. Lastly the
proof that the same property holds for successful merges is presented.

Depth-First ordering A pre-order depth-first traversal consists of firstly
visiting the current node, then traversing recursively its subtrees from the
leftmost to the rightmost. The traversal induces an ordering on the nodes,
so that those that are visited sooner come before those that are processed
later. Since the edit scripts manipulate list of trees, instead of single
trees, also the definitions about ordering relations will be adjusted accord-
ingly.

The type ts ⊢ α ⊏ β denotes that, in the list of trees ts, the node α comes
before the node β, according to the depth first traversal.

data _⊢_⊏_ : DList xs -> F as a -> F bs b -> Set where
here : (α : F as a) -> β ∈ (ts₁ +++ ts₂) -> Node α ts₁ ∷ ts₂ ⊢ α ⊏ β
there : ts₁ +++ ts₂ ⊢ α ⊏ β -> Node γ ts₁ ∷ ts₂ ⊢ α ⊏ β

The list is used as a stack of trees containing the nodes to be visited. In the
base constructor here, the node α is pushed on the stack and thus comes
before any node β, that belongs to the stack of nodes yet to be processed.
The recursive constructor there adds a node γ to a list of trees, in which
α already comes before β. Note that the top elements of the stack (ts₁)
are popped and combined to construct a new tree, rooted respectively in
α and γ, which is then pushed on the stack. In this way it is possible to
extend the stack node by node, retaining type-safety.

Edits ordering The next data type defines a similar relation for edit
scripts. The type e ⊢e f ⊏ g asserts that in the script e, the edit f precedes
the edit g.

69

data _⊢e_⊏_ : ES xs ys -> u ~> v -> w ~> z -> Set where
here : (f : w ~> z) -> g ∈e e -> f ∷ e ⊢e f ⊏ g
there : (h : s ~> t) -> e ⊢e f ⊏ g -> h ∷ e ⊢e f ⊏ g

The following lemma shows that the order of two edits is reflected in the
source trees in the order of their source nodes.

⟪⟫-⊏ : (f : ⟨ α ⟩ ~> v) (g : ⟨ β ⟩ ~> w) -> e ⊢e f ⊏ g -> ⟪ e ⟫ ⊢ α ⊏ β

Note that the type of the two edits guarantees that they have a source
node. The proof is by induction over e ⊢e f ⊏ g.

A symmetric result is proved for ⟦_⟧:

⟦⟧-⊏ : (f : v ~> ⟨ α ⟩) (g : w ~> ⟨ β ⟩) -> e ⊢e f ⊏ g -> ⟦ e ⟧ ⊢ α ⊏ β

The converse lemma cannot be defined so easily. It would have the signa-
ture:

⊏-⟪⟫ : ⟪ e ⟫ ⊢ α ⊏ β -> ∃ λ (f : ⟨ α ⟩ ~> v) (g : ⟨ β ⟩ ~> w) -> e ⊢e f ⊏ g

The problem is that it is not possible to pattern match on ⟪ e ⟫ ⊢ α ⊏ β
because of the function application ⟪ e ⟫ in its type. The Diff data type
can remedy, abstracting over that. Furthermore the explicit existential
quantification is avoided introducing two auxiliary data types.

data _⊢s_⊏_ (e : ES xs ys) (α : F as a) (β : F bs b) : Set where
source-⊏ : {f : ⟨ α ⟩ ~> v} {g : ⟨ β ⟩ ~> w} -> e ⊢e f ⊏ g -> e ⊢s α ⊏ β

data _⊢t_⊏_ (e : ES xs ys) (α : F as a) (β : F bs b) : Set where
target-⊏ : {f : v ~> ⟨ α ⟩} {g : w ~> ⟨ β ⟩} -> e ⊢e f ⊏ g -> e ⊢t α ⊏ β

The type e ⊢s α ⊏ β asserts that in e there are two edits f and g, whose
source nodes are respectively α and β, such that f precedes g in e. Similarly
the type e ⊢t α ⊏ β asserts that in e there are two edits f and g, whose
target nodes are respectively α and β, such that f precedes g in e.

Note that both the new types are parametric over the edit script and the
two nodes. Indeed they simply wrap the e ⊢e f ⊏ g and qualify the edits
f and g with appropriate source and target values.

The following two lemmas use the Diff data type to convert the first relation
to the second.

diff-⊏s : Diff x y e -> x ⊢ α ⊏ β -> e ⊢s α ⊏ β
diff-⊏t : Diff x y e -> y ⊢ α ⊏ β -> e ⊢t α ⊏ β

The proof is by induction on the ⊏ relation and Diff, which eventually
proves the presence of α in x and an associated edit in e (Del or Upd in
the first lemma, Ins or Upd in the second). The safety properties discussed

70

in 3.4.2, specifically two variants of noSourceErase and noTargetErase), are
used to show the presence of an appropriate edit involving β in the tail of
the script.

Order-preserving embedding All the necessary pieces are now avail-
able to prove the final theorem, which states that the edit script data type
preserves the depth-first order, in the source and target objects.

The theorem is split in two, the first considering only the ordering of the
source object, and the second only the target.

The first one states that, given an edit script e, if in its source object a
node α comes before some node β, then one of the following holds:

• α is deleted in e;

• β is deleted in e;

• There are two nodes γ and φ, such that the node α is mapped to γ,
the node β is mapped to φ in e and in the target object, the node γ
comes before φ

The type e ↦ α ⊏ β denotes that e is a (source) order-preserving embed-
ding:

data _↦_⊏_ (e : ES xs ys) (α : F as a) (β : F bs b) : Set where
Del₁ : e ⊢e ⟨ α ⟩ ~> ⊥ -> e ↦ α ⊏ β
Del₂ : e ⊢e ⟨ β ⟩ ~> ⊥ -> e ↦ α ⊏ β
Map₂ : e ⊢e ⟨ α ⟩ ~> ⟨ γ ⟩ -> e ⊢e ⟨ β ⟩ ~> ⟨ φ ⟩

-> ⟦ e ⟧ ⊢ γ ⊏ φ -> e ↦ α ⊏ β

The proof exploits a number of results previously discussed, therefore it is
reported in full:

preserve-↦ : ⟪ e ⟫ ⊢ α ⊏ β -> e ↦ α ⊏ β
preserve-↦ {e = e} p with diff-⊏s (mkDiff e) p
preserve-↦ p | source-⊏ {f = Del α} x = Del₁ (Del α (⊏e-∈₁ x))
preserve-↦ p | source-⊏ {f = Upd _ _} {Del β} x = Del₂ (Del β (⊏e-∈₂ x))
preserve-↦ p | source-⊏ {f = Upd α γ} {Upd β φ} x

= Map₂ (Upd α γ (⊏e-∈₁ x)) (Upd β φ (⊏e-∈₂ x)) (⟦⟧-⊏ (Upd α γ) (Upd β φ) x)

By the lemma diff-⊏s, it follows that e ⊢s α ⊏ β, i.e. there are two edits f
and g with source nodes respectively α and β. The definition of e ⊢s α ⊏ β
restricts the type of f and g to be ⟨ α ⟩ ~> v and ⟨ β ⟩ ~> w, therefore the
only possible edits with these types are Del α, Del β, Upd α γ and Upd β φ
for some nodes γ and φ, which are correctly reported by pattern matching.
When either of them is a delete, one of the Del constructors applies, when

71

both are updates the Map₂ is used. The following lemmas are used to
convert the relation e ⊢e f ⊏ g in f ∈e e and g ∈e e. The proofs are by
straightforward induction and thus omitted.

⊏e-∈₁ : e ⊢e f ⊏ g -> f ∈e e
⊏e-∈₂ : e ⊢e f ⊏ g -> g ∈e e

The second theorem is symmetrical to the first and thus it will be briefly
sketched. It states that, given an edit script e, if in its target object a node
α comes before some node β, then one of the following holds:

• α is inserted in e;

• β is inserted in e;

• There are two nodes γ and φ, such that the node γ is mapped to α,
the node φ is mapped to β in e and in the source object, the node γ
comes before φ

The type e ↦ α ⊏ β denotes that e is a (target) order-preserving embed-
ding:

data _↤_⊏_ (e : ES xs ys) (α : F as a) (β : F bs b) : Set where
Ins₁ : e ⊢e ⊥ ~> ⟨ α ⟩ -> e ↤ α ⊏ β
Ins₂ : e ⊢e ⊥ ~> ⟨ β ⟩ -> e ↤ α ⊏ β
Map₂ : e ⊢e ⟨ γ ⟩ ~> ⟨ α ⟩ -> e ⊢e ⟨ φ ⟩ ~> ⟨ β ⟩

-> ⟪ e ⟫ ⊢ γ ⊏ φ -> e ↤ α ⊏ β

The proof follows the same structure as preserve-↦ and will not be dis-
cussed any further.

preserve-↤ : ⟦ e ⟧ ⊢ α ⊏ β -> e ↤ α ⊏ β

Corollary The next corollaries assert that Diff is order-preserving. They
rely on the fact that Diff x y e is equivalent to Diff ⟦ e ⟧ ⟪ e ⟫ e.

Diff↦ : Diff x y e -> x ⊢ α ⊏ β -> e ↦ α ⊏ β
Diff↦ d p rewrite mkDiff⟪ d ⟫ = preserve-↦ p

Diff↤ : Diff x y e -> y ⊢ α ⊏ β -> e ↤ α ⊏ β
Diff↤ d p rewrite mkDiff⟦ d ⟧ = preserve-↤ p

Merged3 Also successful merges retain the order-preserving property,
i.e. the order of the edits in the input scripts is preserved. In the specifica-
tions of Diff₃, the input edits are not rearranged, but rather merged point-
wise, keeping the original order in the new script, hence intuitively this
property ought to hold. Nevertheless identity edits might be dropped from

72

the merged script, according to the semantics of f ⊔ g ↧ h, consequently
the theorem states that successful merges are order-preserving with re-
spect to change edits. Note also that successful merges do not trigger any
conflict, which would also break this property.

diff3-⊏₁ : Change f -> Change g -> e₁ ⊢e f ⊏ g -> Merged₃ e₁ e₂ e₃ -> e₃ ⊢e f ⊏ g
diff3-⊏₁ (IsChange v≠w) c₂ (here f o) (cons (Id₁ .f g) q) = ⊥-elim (v≠w refl)
diff3-⊏₁ c₁ c₂ (here f x) (cons (Id₂ .f g) q)

= here f (noBackOutChangesMerged₁ c₂ q x)
diff3-⊏₁ c₁ c₂ (here f x) (cons (Idem .f) q)

= here f (noBackOutChangesMerged₁ c₂ q x)
diff3-⊏₁ c₁ c₂ (there a p) (cons m q) = there _ (diff3-⊏₁ c₁ c₂ p q)

The proof of this theorem is by induction on e₁ ⊢e f ⊏ g. The need for the
Change f is obvious in the first case, where the merge proof reveals that f is
identity and therefore it would be discarded in favour of g in the merged
script. This case is ruled out by contradiction, thanks to this additional
piece of information. The auxiliary lemma noBackOutChangesMerged₁ is a
corollary of noBackOutChanges₁ discussed in 3.4.2.

noBackOutChangesMerged₁ : Change f -> Merged₃ e₁ e₂ e₃ -> f ∈e e₁ -> f ∈e e₃

Obviously Merged₃ e₁ e₂ e₃ is a subset of Diff₃ e₁ e₂ e₃, because it restricts
e₃ to be well-typed and conflictless, therefore the corollary follows directly
from this inclusion.

Of course Merged₃ e₁ e₂ e₃ is order-preserving also with respect to the edits
of the second script, since it is symmetric.

diff3-⊏₂ : Change f -> Change g -> e₂ ⊢e f ⊏ g -> Merged₃ e₁ e₂ e₃ -> e₃ ⊢e f ⊏ g
diff3-⊏₂ c₁ c₂ p d = diff3-⊏₁ c₁ c₂ p (Merged₃-sym d)

The lemma Merged₃-sym swaps the two input scripts.

Merged₃-sym : Merged₃ e₁ e₂ e₃ -> Merged₃ e₂ e₁ e₃
Merged₃-sym nil = nil
Merged₃-sym (cons m d) = cons (↧-sym m) (Merged₃-sym d)

The final corollary asserts that Merged₃ e₁ e₂ e₃ is order-preserving also
with respect to the original source object.

Merged₃↦ : Diff x y e₁ -> Diff x z e₂ -> Merged₃ e₁ e₂ e₃ -> x ⊢ α ⊏ β -> e₃ ↦ α ⊏ β
Merged₃↦ {e₃ = e₃} d₁ d₂ d₃ p rewrite

trans mkDiff⟪ d₁ ⟫ Merged₃⟪ d₃ ⟫ = Diff↦ (mkDiff e₃) p

The corollary holds because mkDiff⟪ d₁ ⟫ implies that x ≡ ⟪ e₁ ⟫ and from
Merged₃⟪ d₃ ⟫ it follows that ⟪ e₁ ⟫ ≡ ⟪ e₃ ⟫.

73

3.5 Conclusion

The main contributions of this thesis are:

• A data type generic diff algorithm for structured data that employs
insert, delete, update edits and global alignment.

• A state-based, three-way, persistent diff3 algorithm.

• A formal model to reason about diffing and merging.

In addition a number of results have been mechanically verified using the
model, with the Agda proof assistant.

• The necessary and sufficient conditions for the presence of conflicts
have been pinpointed.

• Some safety properties, which ensure the basic correctness of the
algorithms, have been established and proved.

• The diff3 algorithm is maximal.

• The algorithms preserve some well-defined structural invariants,
such as order-preservation.

3.5.1 Related Work

The great number of publications shows that there is an increased interest
in the topics of change detection and merge. There are several tools that
target structured data, with a particular focus on the XML format, such
as LaDiff [15], MH-Diff [14] and 3DM [66, 37, 38]. Peters gives a compre-
hensive survey of them and others [50]. Synchronizers represent another
closely related field. Relevant examples include Unison, a file synchronizer
[4, 54]; Harmony, a synchronizer for heterogeneous data [53, 22] by Pierce
et al. and an algebra for file synchronization [55]. Lastly there are many
mergers tailored for software artifacts [70, 2]. Mens gives a comprehensive
survey of this field[45].

Ordered and Unordered The merger discussed in this thesis is dif-
ferent from all of these, because, contrary to XML and file-systems, the
tree-structured objects handled are actually data types, therefore they are
strongly typed entities. Being typed, the trees are inherently ordered, while
XML trees could also be unordered. However there is a connection between

74

types and schemas, which Foster et al. consider essential for synchroniza-
tion [22]. Indeed their synchronizer preserves structural invariants, exploit-
ing schemas to identify specific conflicts, named schema domain conflicts.
Similarly in this work a merge is considered successful only if it is well-
typed 3.2.6. Chawathe et al. assume that nodes have unique identifiers
[15], which greatly simplifies the change detection phase. However this
assumption is too simplistic: data format do not usually mark their con-
tent and even XML trees may or may not have identifiers in their nodes.
The algorithms discussed in this thesis do not rely on unique identifiers,
even though they could be adapted straightforwardly to take advantage of
them.

Alignment and Data Structures The alignment strategy used to
match parts in two versions plays a central role in the quality of merges.

Khanna et al. explain that GNU diff3 aligns lines computing stable and
unstable chunks from the longest common subsequences between the base
and the two new versions, obtained by the diff subroutine [30]. Overlap-
ping equal lines are matched and fused in stable chunks, leaving possibly
conflicting chunks between them. This technique works well in practice be-
cause (in software artifacts) lines are mostly unique and it is restricted to a
simple, flat, linear structure. Nevertheless this approach would most likely
give poor results for trees. Firstly chunks intuitively align flat data like
lists, but they would oddly flatten vertical, structured data like trees. Sec-
ondly the implicit assumption that basic values are mostly unique might
not hold for certain data formats and therefore it would misalign their
content. Therefore the diff discussed in this thesis strives to match single
nodes, computing an embedding of the original tree into the other; further-
more it respects their structured nature preserving the relative order of the
nodes, in the depth first order traversal, as shown in section 3.4.4. This is
achieved by generalizing the copy edit to update and retaining the intu-
itive three-way merge technique for aligned edits. The merger presented in
this thesis employs a global strategy that produces an optimal alignment,
minimizing an appropriate cost model. Conversely Foster et al. choose
a local strategy, that associates subtrees by name [22]. Chawathe and
Molina reduce the change detection problem to a problem of computing a
minimum-cost edge cover of a bipartite graph [15]. They remark that for
structured data this problem is NP-hard, therefore they develop an heuris-
tic that consists in pruning the graph induced by two trees following a set
of pruning rules and then further discard edges to find a minimal edge
cover. From the edge cover an edit script can be mechanically derived,
however they do not discuss changes merge in their work.

75

Data Structures Data structures are implemented as algebraic data
types, that have always the form of structured ordered trees regardless of
the fact that may represent unordered collections such as sets and records.
Since the alignment strategy is strongly influenced by the actual shape of
the trees, these class of objects will be badly matched and will be poorly
merged, probably raising unnecessary conflicts. Foster’s synchronizer han-
dles sets and records correctly, but just because their algorithm is schema-
driven and internally handles schema keys as sets [22]. On the other hand
it performs poorly for lists, because it naively aligns lists by absolute po-
sitions, due to the local alignment strategy used. For example merging o
= [Liz; Jo], a = [Jo] and b = [Liz; Joanna] surprisingly produces [Jo; Joanna],
instead of [Joanna], which is correctly reported by the merger presented
here.

Edit operations The set of edits considered in the change detection
phase plays a fundamental role when merging changes. The edits gener-
ated by GNU diff include only insert, delete and copy, which in this thesis
has been broadened to update as explained previously. Lindholm includes
also the edit move in his synchronizer [37], like Chawathe [15, 14], who
additionally introduces also the glue edit that fuses two trees. Lindholm
however copy consists of copying multiple nodes [37]. Since node sharing is
not explicit this operation could easily produce surprising results, because
it could match unrelated nodes. In XML this is mitigated since large sec-
tions of text are likely unique, but in our context it is in general an invalid
assumption. Move is quite a controversial edit. It can be expressed in
the model presented in this thesis by delete and insert, just like in Ram-
sey’s [55], however this sequence of edits might easily clash with possible
updates in the other version, raising unnecessary conflicts. Crucially tree
rearrangements might not be recognized as a natural edit in certain data
formats, but they could for others. For example in a table filled with num-
bers it would look odd to describe changes in few numbers using moves,
but it is perfectly reasonable to do it for rows shuffling. Lindholm takes
into account the context, made of a node’s parent, predecessor and succes-
sor, in order to improve the precision in the change detection phase with
respect to the move edit [37], however he also remarks that there are few
exceptions. It is challenging to craft an alignment strategy that includes
the move edit, while keeping its semantics concise and clear, especially in
presence of multiple weight parameters, such as in the cost model defined
by Chawathe [14]. Furthermore mode edits would weaken the guarantees
about the structural invariants described in 3.4.4. Ramsey et al. remark
that the move operation complicate reasoning, but they suggest to expose
it to the user and translate it using delete and insert for reasons of perfor-

76

mance, retention of metadata and usability [55]. It is however questionable
whether this translation preserves the original meaning.

Formal Model The proliferation of commercial and research file syn-
chronizers and mergers have yielded the need for a formal study of their
semantics. Unison [54] is an example of a file synchronizer automacally
derived from a formal model [4]. Similarly Harmony is a schema-based
synchronization framework [53], whose formal properties have been stud-
ied extensively [22] and have inspired the analysis conducted in section
3.4. Ramsey and Csirmaz proposes an algebraic approach to file synchro-
nization [55]. Differently from this thesis, Unison [4] and Harmony [22],
their model is operation-based, rather than state-based, which enables an
automatic conflict resolution phase named reconcilation. Nevertheless the
sequence of operations performed at each replica is computed in the up-
date detection phase at each replica comparing the current version with
the archive, i.e. the last synchronized version. It is worth pointing out that
this phase is greatly simplified by the presence of metadata in filesystems,
which helps to disambiguate during the alignment phase and facilitates the
change detection phase. They propose a large proof system for a simple
filesystem algebra, that is proved to be sound and complete for it. The
model is based on a relation between sequences of commands that ensures
that a sequence safely approximates another and conflictless synchroniza-
tion is possible if there is a sequence at least as good as both. Even though
the algebra is intuitive, the proof system is quite large and far from concise,
to the point that it requires automatic techniques to prove it sound. They
claim that reasoning with algebraic laws is more convenient that reasoning
directly with the mathematical formulation of the filesystem, however it
looks like this approach is unlikely to scale, since a simple model made of
five operations requires about fifty laws to be equivalently described alge-
braically. The combinatorical explosion is due to the fact that laws relate
the effect of sequencing two operations. Ramsey’s algebraic approach is
interesting, but it relies too much in a clear detection of the operations
performed, which for structured data is much more blurry. The 3DM tool
devised by Lindholm does not include a mechanically verified model and
moreover the general merge rules have been derived analyzing the expected
result of use cases [37]. His change model is based on content and struc-
tural change. The changes in each version are combined into a change
set and can be merged only if the set is consistent, i.e. unambiguously
determine at most one parent, predecessor and successor for each node.
Conflicts are divided in core conflicts and optional conflicts and are overall
consistent with those listed in 3.2.4, except for the delete/edit conflict,
which is optional, whereas in this thesis is not. It is not explained under

77

which circumstances these changes could be considered compatible. The
lack of a formal model raises some doubts about the properties claimed
for the merge. First of all the merge is considered symmetric, but later it
is admitted that appends of nodes originated from different trees may be
accepted in either order. This kind of implementation details are actually
relevant from the user point of view and have so far fostered the need for
formal, unambiguous models. In this thesis inserts compete for matching
positions and may trigger conflicts if incompatible. Secondly the fourth
merge rule explicitly requires that changes in either versions to be included
in the merged tree, however the fact that updates in deleted trees are op-
tionally considered conflicts contradicts this rule and weaken the property
about preservation of edits.

3.5.2 Future Work

This thesis raises several research questions, which ought to be addressed
in future works.

Comparison with other tools Even though GNU diff3 is currently
the most widespread merger used for software artifacts, only recently the
algorithm has been put on a formal footing by Khanna et al. in [30].
It would be interesting to compare it to the algorithm proposed here and
particularly analyze the connection between the conflicts detected by each.
It is natural to wonder whether there is any relation between the class of
conflicts that they target.

Furthermore since there is an increased interest in these topics, as wit-
nessed by the great number of publications, a general framework to com-
pare properly different tools with similar characteristics should be devised.
Specifically it should be possible to determine whether they have the same
expressive power and conflict detection capabilities.

Ancestor successor order Section 3.4.4 shows that the depth-first or-
der of the nodes in the source object are preserved in the target object,
and also in the merged object, in case of a successful merge. These prop-
erties give to the users some indication about the relative position of the
nodes in the merged object, however an even stronger property could be
enforced. In fact since the data diffed and merged is structured as trees, it
would be natural to preserve also the ancestor-successor relationship be-
tween nodes. From the user point of view, this relation is certainly clearer
and likely more meaningful than the previous one and moreover it fits

78

nicely with the idea of preserving the structure of the objects. Note that
this property is stronger and implies the structural invariant discussed in
3.4.4. The edit script data type compares source and target tree, flatten-
ing them according to the depth-first order, therefore erasing any vertical
relation between their nodes. Consequently the edit script data type is
responsible for enforcing the relations between nodes, hence its definition
needs to be adjusted to retain the ancestor-successor relationship between
nodes.

Hook for data structures As discussed previously tree matching, diff-
ing and merging is inappropriate for algebraic data types that represent
unordered data structures. The model presented here could be easily ad-
justed to allow the definition of specific diffing and merging semantics for
certain class of data types.

Move edit and Contexts It would be interesting to optionally extend
the model to include move edits, since rearrangements of nodes is common
for certain formats such as XML and HTML. As Ramsey remarks, this
would likely complicate the formal model and its properties, but it would
certainly improve the user experience and the merging capabilities. The
idea of node contexts described by Lindholm [66] ought to be investigated
further especially in presence of a move edit. It particularly fits nicely
in this setting, not only because it corresponds to Huet’s Zipper data
structure [26] and McBride’s derivative [43], but also because it allows to
exploit the types of the parent, ancestor and successor nodes to align data
correctly, producing well-typed trees. Contexts could also be effectively
employed in the second part of the alignment phase, in which inserts are
aligned with either other inserts, or purposely added no-operations. In
fact this naive approach could have a negative impact, in presence of many
inserts because too simplistic. In particular contexts could guide this stage,
inserting nodes only in valid positions.

79

Chapter 4

Haskell Implementation

This chapter presents the Haskell implementation of the diff and diff₃ al-
gorithms discussed in 3.

Motivation

Even though Agda’s type system is sophisticated, it is still a research
prototype and its compiler is still rather immature and does not produce
efficient code. Consequently a more mature programming language has
been chosen to provide a practical implementation of the algorithms stud-
ied in this thesis. Haskell, a general-purpose, strongly typed, purely func-
tional programming language [25, 40] has been used for this purpose. Even
though full-fledged dependent types are not available, the Glasgow Haskell
Compiler (GHC) [23], the current state-of-the-art, optimizing compiler for
Haskell, provides several extensions to the type system, which allow to
partially simulate dependently typed programming. The implementation
discussed in this chapter relies heavily on them, in particular on Gen-
eralized Algebraic Data Types (GADT) [52, 51, 59] and Type Families
[13, 12, 58, 60, 33], and was developed using the latest stable release of
GHC, version 7.8.3. The shortcomings of the implementation with respect
to the formal model, developed instead in a dependently typed language,
will be pointed out.

4.1 Basics

This section presents the basic data types and type classes used in the
algorithms section.

80

4.1.1 Type Manipulation

Proxy Programs that inspect and manipulate types need specific data
types and functions, whose main role is to fix types and ultimately drive
type inference, rather than storing and computing values. For example
the data type Proxy a is a poly-kinded proxy type that has only one non-
bottom value, namely Proxy, and it is usually used to specify types in
signatures.

data Proxy t = Proxy

Type Equality In the formal model a decidable type equality opera-
tor was assumed in the diff algorithm and extensively used to type check
merged edit script. Such an operator is provided by the library Typable
[34]:

eqT :: (Typeable a, Typeable b) => Maybe (a :~: b)

The class Typeable includes the method typeRep, that given a proxy type
produce a unique type representation for it. The function eqT compares
the type representations and if they are equals manufactures an equality
proof, using unsafe operations. The implementation is then safe under the
assumptions that the type representations generated are unique. Instances
of the class Typable can be automatically generated for any data type and,
to further increase the safety of the library, manual instances of Typeable
are rejected. Type representations include hash fingerprints which are
generated accessing GHC internal representations of data.

For convenience the following auxiliary function will be used to compare
types:

tyEq :: (Typeable a, Typeable b) => Proxy a -> Proxy b -> Maybe (a :~: b)
tyEq _ _ = eqT

4.1.2 Universe

The type class Diff a denotes that the type a can be diffed.

class Typeable a => Diff a where
type FamilyOf a :: [*] -> * -> *
(=?=) :: F xs a -> F ys a -> Maybe (xs :~: ys)
distance :: F xs a -> F ys a -> Double
argsTy :: F xs a -> TList xs
toDTree :: a -> DTree a

81

fromDTree :: DTree a -> a
string :: F xs a -> String

The associated type FamilyOf a is to be instantiated with the concrete data
type that represents the constructors of a. It corresponds to the postulated
data type F of kind List Set -> Set -> Set assumed in the formal model in
3.2.1. For ease of explanation and to keep the implementation consistent
with the formal model, the following type synonym is used:

type F xs a = (FamilyOf a) xs a

A value of type F as a represents a concrete constructor of a that takes ar-
guments of types determined by as. The first method =?= tests for equal-
ity between nodes, analogously to the operator described in the formal
model, except with a less refined signature. The second method distance
assigns a numeric distance between constructors of the same type. It is
expected to satisfy the metric axioms listed in 3.3.1. The method argsTy
reifies the types of the arguments of a constructor and are needed to type
check merged edit scripts. The methods toDTree and fromDTree are used to
convert raw data types to a well-typed generic tree representation and the
other way around. Lastly the method string returns a string representation
of a constructor and it is used exclusively to interact with the user.

In addition the auxiliary function decEq tests whether two constructors
belong to the same type.

decEq :: (Diff a, Diff b) => F xs a -> F ys b -> Maybe (a :~: b)
decEq _ _ = tyEq Proxy Proxy

4.1.3 Typed List

The algorithms manipulate several different kind of typed list, which are
all small variation of the heterogeneous list HList introduced in 2.1.2. This
section defines them and explains their role.

TList The type TList as represents a list of types as each of them be-
longing to the family Typeable.

data TList as where
TNil :: TList []
TCons :: Typeable a => Proxy a -> TList as -> TList (a : as)

The presence of the proxy is to conveniently manipulate the type later
on.

82

An appropriate TList can be automatically built for lists of types known
at compile time, in a similar manner to what happens for SList with
KnownSList, as described in 2.1.2.

class KnownTList as where
tlist :: TList as

The only two generic instances are:

instance KnownTList '[] where
tlist = TNil

instance (Typeable a, KnownTList as) => KnownTList (a : as) where
tlist = TCons Proxy tlist

This technique exploits the automatic instance resolution that happens
while type-checking, to progressively build the desired TList. In the second
instance the type checker infer the expected type Proxy a for Proxy and
the recursive call to tlist is justified by the constraint KnownTList as in the
context. The constraint Typeable a is instead required by the constructor
TCons.

It is also entirely straightforward to provide an instance for the type class
Reify, which converts a TList as into the corresponding singleton type SList
as, introduced in 2.1.2.

instance Reify TList where
toSList TNil = SNil
toSList (TCons _ t) = SCons (toSList t)

DList The type DList as represents a list of DTree of types determined by
as. Their definition is entirely similar to the one given in the formal model,
except that it requires an instance of Diff for each type contained.

data DList xs where
DNil :: DList []
DCons :: Diff a => DTree a -> DList as -> DList (a : as)

data DTree a where
Node :: F as a -> DList as -> DTree a

The data type DTree a is a type safe representation of an algebraic data
type of type a, where the term of type F as a is a reifyed witness of a
constructor of a.

83

4.2 Diff

This section describes the implementation of the diff algorithm presented
in section 3.2.3 and the related data types.

4.2.1 Edit Script

The edit script data type described in 3.2.2 consists in a well-typed list of
edits of type u ~> v, each of them encoding the change made with their
source and target values. That definition is particularly elegant because
it isolates the actual set of edits from the conditions required to stack
them in a type-safe manner. They are embedded in the cons constructor
signature and consist in expecting the input types of the edit to match
the prefix of the type lists of the rest of the edit script. Remarkably these
rules are the same regardless of the concrete edit at hand, which makes it
possible to separate the two data types. This modular representation is
unfortunately not possible in the current version of GHC for two reasons.
Firstly GADTs are unpromotable, i.e. it is not possible index a GADT
by another GADT, which prevents the edit data type to be indexed by
values. As Yorgey et. al explain in [71], this feature would require kind
equality and kind coercions, which would dramatically complicate type
equivalence. Secondly not even indexing edits directly by their input and
output type lists would completely solve the issue:

data Edit as bs cs ds where
Ins :: F as a -> Edit [] [] as [a]
Del :: F as a -> Edit as [a] [] []
Upd :: F as a -> F bs a -> Edit as [a] bs [a]

data Edits xs ys where
ENil :: Edits [] []
ECons :: Edit as bs cs ds -> Edits (as :++: xs) (cs :++: ys)

-> Edits (bs :++: xs) (ds :++: ys)

The definition of Edits is rejected because the type parameters xs and ys
are ambiguous. The problem is that in general it is not possible to invert
type families, therefore the type checker refuses to find suitable parameters
xs and ys, to solve unification problems such as zs = as :++: xs, for some
given zs. This issue could be resolved including two singleton lists SList
xs and SList ys in ECons, which would however slightly obfuscate the code.
Note that this is not an issue in Agda data types because parameters
must all be declared either as implicit or explicit arguments and hence are

84

always available, which is the essence of the fix proposed using singleton
lists.

To sidestep all these limitations the edit script data type have been defined
similarly to that of Lempsink et al. in [36], collapsing edits and edit script
into a single data type and introducing specific constructors for each kind
of edit. Note that this definition completely preserves type safety, but it
is only more repetitive.

data ES xs ys where
End :: ES [] []
Ins :: Diff a => F xs a -> ES ys (xs :++: zs) -> ES ys (a ': zs)
Del :: Diff a => F xs a -> ES (xs :++: ys) zs -> ES (a ': ys) zs
Upd :: Diff a => F xs a -> F ys a -> ES (xs :++: zs) (ys :++: ws)

-> ES (a ': zs) (a ': ws)

4.2.2 Memoization

The diff algorithm described in 3.3.1 is inefficient because the same sub-
computations are recomputed multiple times. An equivalent, but more
efficient, version can be achieved using memoization, i.e. storing the re-
sult of subcomputations in a lookup-table, encoded by the following data
type:

data EST xs ys where
NN :: ES [] [] -> EST [] []
NC :: Diff b => F xs b -> ES [] (b : ys)

-> EST [] (xs :++: ys)
-> EST [] (b : ys)

CN :: Diff a => F xs a -> ES (a : ys) []
-> EST (xs :++: ys) []
-> EST (a : ys) []

CC :: (Diff a, Diff b) => F xs a -> F ys b
-> ES (a : zs) (b ': ws)
-> EST (a : zs) (ys :++: ws)
-> EST (xs :++: zs) (b : ws)
-> EST (xs :++: zs) (ys :++: ws)
-> EST (a : zs) (b : ws)

A table of type EST xs ys contains an edit script of minimal cost of type
ES xs ys, and the subtables corresponding to its tail, obtained by placing
either an insert, a delete, or an update edit. The table is partitioned in four
groups depending on the fact that the source and target list is empty or
not. Specifically NN contains the only edit script in which both of them are

85

empty, in CN and NC the target and source lists are respectively empty and
hence contain only one subtable, lastly in CC the lists are both non-empty.
The edit script contained in a table can be easily retrieved:

getDiff :: EST xs ys -> ES xs ys
getDiff (NN e) = e
getDiff (NC _ e _) = e
getDiff (CN _ e _) = e
getDiff (CC _ _ e _ _ _) = e

The function diffT builds a memoization table recursively:

diffT :: DList xs -> DList ys -> EST xs ys
diffT DNil DNil = NN End
diffT (DCons (Node a as) xs) DNil = CN a (Del a (getDiff d)) d

where d = diffT (dappend as xs) DNil
diffT DNil (DCons (Node b bs) ys) = NC b (Ins b (getDiff i)) i

where i = diffT DNil (dappend bs ys)
diffT (DCons (Node a as) xs) (DCons (Node b bs) ys) = CC a b (best a b i d u) i d u

where u = diffT (dappend as xs) (dappend bs ys)
i = extendI a xs u
d = extendD b ys u

The only interesting case is the last one, in which both the input lists are
non-empty. Firstly note there is only one recursive call to diffT, which
is well-founded because both the input lists are consumed removing the
nodes a and b. From the table so obtained, the alternative tables in which
a is inserted or b is deleted are obtained using the functions extendI and
extendD. Among these three options, the script with minimal cost is chosen
by the function best.

best :: (Diff a, Diff b)
=> f as a -> f bs b
-> EST (a : xs) (bs :++: ys)
-> EST (as :++: xs) (b : ys)
-> EST (as :++: xs) (bs :++: ys)
-> ES (a : xs) (b : ys)

best f g i d c =
case decEq f g of

Just Refl -> Upd f g (getDiff c) & a & b
Nothing -> a & b

where a = Del f (getDiff d)
b = Ins g (getDiff i)

Both nodes can be consumed by an update only if they have the same type,
which is tested by the decEq function. The other alternatives, which are

86

always possible, consists of deleting the first node or inserting the second.
Note that the source and target lists of the three tables are the same of
their edit script, hence the scripts produced are all well-typed.

The binary operator & selects the edit script with minimal cost:

(&) :: ES xs ys -> ES xs ys -> ES xs ys
x & y = if cost x <= cost y then x else y

The function cost computes the score of an edit script, according to the
cost model described in 3.3.1.

cost :: ES xs ys -> Double
cost End = 0
cost (Ins x xs) = 1 + cost xs
cost (Del x xs) = 1 + cost xs
cost (Upd f g xs) = distance f g + cost xs

Of course the cost function inefficiently recomputes the cost of an edit
script multiple times. It is entirely straightforward to adjust the edit
script data type or the memoization table to store also the score of each
edit script. I have decided to omit this optimization from the presentation
in order to keep it clear and focused on the type related issues, which are
more interesting and challenging.

The function extendI use an auxiliary intermediate data type DES used
to existentially quantify the portion of the table that needs to be ex-
tended.

data DES a xs ys where
DES :: F zs a -> ES (a : xs) ys -> EST (zs :++: xs) ys -> DES a xs ys

If the source list is non-empty, then it is possible to produce such a data
type.

extractD :: EST (a : xs) ys -> DES a xs ys
extractD (CN g e i) = DES g e i
extractD (CC f g e _ i _) = DES f e i

Note that the type a : xs in the target list restrict the possible values of
EST only to those listed.

Finally extendI is defined as follows:

extendI :: Diff a => F xs a -> DList ys -> EST zs (xs :++: ys) -> EST zs (a ': ys)
extendI f _ i@(NN e) = NC f (Ins f e) i
extendI f _ i@(NC _ e _) = NC f (Ins f e) i
extendI f _ i@(CN _ _ _) =

case extractD i of

87

DES g e c -> CC g f (best g f i d c) i d c
where d = extendI f ⊥ c

extendI f _ i@(CC _ _ e _ _ _) =
case extractD i of

DES g e c -> CC g f (best g f i d c) i d c
where d = extendD f ⊥ c

First of all the second argument of type DList ys is never inspected and
it is introduced only to avoid the ambiguity problem discussed previously.
Extending the target list does not affect the source list, hence the tables NC
and CC keep the same constructor. On the other hand when the target list
is empty, in the NN and CN case, the constructor is substituted respectively
by NC and CC. In the last two cases the function extractD is used to extract
the appropriate node g, edit script e and table c, needed to compute the
recursive extension d and lastly select the table with minimal cost.

The function extendD is analogous and thus omitted.

4.2.3 Algorithm

Using all the constructs defined previously, the conventional interface of
GNU diff can be easily made available to the user:

gdiff :: (Diff a, Diff b) => a -> b -> ES '[a] '[b]
gdiff x y = getDiff (diffT dx dy)

where dx = DCons (toDTree x) DNil
dy = DCons (toDTree y) DNil

The inverse function patch, which computes the target object from the edit
script, is also part of the interface provided to the user.

patch :: ES xs ys -> DList ys
patch (Ins x e) = insert x (target e)
patch (Del x e) = target e
patch (Upd x y e) = insert y (target e)
patch End = DNil

The function insert pops the arguments of the constructor from the given
DList and builds a well-typed DTree which is then pushed on the list.

insert :: Diff a => F xs a -> DList (xs :++: ys) -> DList (a ': ys)
insert x ds = DCons (Node x ds1) ds2

where (ds1, ds2) = dsplit (reifyArgs x) ds

The function dsplit is entirely similar to the function dsplit described in
3.2.1, the first argument is a singleton type needed due to the strict phase

88

separation enforced in Haskell. The function reifyArgs retrieves the single-
ton type relative to its arguments.

reifyArgs :: Diff a => F xs a -> SList xs
reifyArgs = toSList . argsTy

4.2.4 Discussion and Related Work

The edit script data type and the memoization technique employed in the
diff algorithm presented in this section are largely inspired by the work on
type-safe diff by Lempsink [36]. As remarked in section 3.5.1, the update
edit used represents a generalization of the original copy edit, and has
been preferred because it improves the alignment of nodes, simplifying the
merging phase in the diff3 algorithm. The diff algorithm requires to write
some boilerplate code, about the same amount of that by Lempsink. In
particular for any type involved an instance of Diff have to be provided,
which requires to define a data type that encodes its constructors. The
code for most of the methods of Diff is entirely straightforward and can
be automatically generated using a preprocessor or a meta-programming
library such as Template Haskell [61]. Only the implementation of distance
is in general domain specific and it must adhere to certain axioms and thus
should be provided manually by the user.

Kind system The enrichment of the kind system proposed in [71] and
available from GHC 7.6 makes the data type definitions “well-kinded” and
reduce the additional machinery needed to deal with them. Specifically
using the DataKinds extension lists are automatically promoted and allows
to index the ES and DList data types with lists of types, whose kind is [
*]. Direct pattern match is possible and does not required additional
class constrains, such as IsList. Furthermore the kind system has been
enhanced so that the correct kind is automatically inferred, reducing the
number of kind annotations needed. Most of the time kinds annotations
are superfluous and some have been added exclusively for documentation
purposes. The memoization related functions have been greatly simplified
using auxiliary intermediate GADTs to existentially quantify variables,
as opposed to the continuation style employed by Lempsink, in which
functions take an higher rank function as an additional parameter. The
two approaches are roughly equally expressive, however direct style code is
much more readable and concise. As a result the implementation proposed
in this thesis requires less boilerplate code and it is closer to the Agda
version, showing how dependently typed programming is becoming more
and more natural in Haskell.

89

Change Detection The technique employed by Lempsink et al. in the
change detection phase for structured data is a variation of that proposed
by Lozano and Valiente to solve the Maximum Common Embedded Sub-
tree problem [39]. The input trees are flattened to a list of nodes according
to the depth-first perorder traversal and then the longest common subse-
quence of them is computed, similarly to what happens in GNU diff. The
algorithm proposed in this section follows a similar technique, with small
differences in the list data type processed in a stack like fashion.

HList vs DList In [36] the input list is an heterogeneous list, whose
raw types are progressively deconstructed exposing the reified constructor
and pushing its children on the stack. In this version instead the DTree
data type already contains the nodes of the root and its children. Due
to the lazy semantics of Haskell the two transformations should have ap-
proximately the same performance, however there are several advantages
in the encoding proposed in this thesis.

First of all in [36] constructors are compared implicitly, by trying to de-
construct a value of a raw type against the constructor at hand. This
is achieved using the partial method fields of type, adapted to our defi-
nitions, f as a -> a -> Maybe (HList as), which is included in the type class
Diff and it is used to implement the auxiliary function matchConstructor,
in the diff algorithm. In this version instead such method is requires as
a primitive, specifically in the operator =?= in the type class Family 4.1.2,
which explicitly tests for equality between nodes. It is much more concise
to test equality at once using the latter, rather than indirectly trying to
match the given constructor, with all the possible constructors of a given
type. In addition that method requires the additional type class Type that
provides a method constructors, which returns a list of all the constructors
of a given type. Secondly comparing the nodes directly does not require to
explicitly distinguish between concrete and abstract data types, as it hap-
pens in [36]. In summary the encoding provided by DList yields a minimal
and neat design that requires less boilerplate code, which is often source
of nasty bugs.

Patch The patch function described in [36] provides the same interface of
GNU patch and applies an edit script to the source object, encoded as an
heterogeneous list. The semantics of delete and consequently copy relies
on the partial function fields, which deconstructs the input value expecting
a certain specific constructor and fails ungracefully, if this is not the case.
As a matter of fact the edit script data type already contains enough
information to reconstruct both the source and target object. Section 4.2.3

90

and 3.2.2 show two total function that retrieve both from the edit script
alone. The formal model heavily relies on this property and the advantages
with respect to safety for a practical implementation are evident. Note that
the same could be achieved in [36] using exclusively the insert and apply
function.

Modularity The universe representation proposed by Lempsink et al.
in [36] handles families of mutually recursive data types. Specifically it
requires to collect in a unique data type all the constructors of each type
present in the family of mutually recursive data types at hand. This choice
of encoding does not support polymorphic data types, such as list, which
must be restricted to be monomorphic. As a result the same polymorphic
data type, instantiated differently, need separate labels in the represen-
tative family, resulting in code duplication. For example the type [[Int]]
would need the following universe:

data Table xs a where
Int' :: Int -> Table '[] Int

INil :: Table '[] [Int]
ICons :: Table '[Int, [Int]] [Int]

LNil :: Table '[] [[Int]]
LCons :: Table '[[Int], [[Int]]] [[Int]]

The universe representation is not polymorphic, hence two different wit-
nesses are needed for [] and (:) : INil and ICons for [Int], LNil and LConst for
[[Int]].

The encoding proposed in this thesis does not need to handle all the types
involved at once, but each instance and representation is given separately
per type. This approach support s polymorphic data types and it is mod-
ular, allowing code reuse. For example the same example would need only
one instance and one representative family for lists:

data ListF xs a where
Nil :: ListF '[] [a]
Cons :: ListF '[a , [a]] [a]

instance Diff a => Diff [a] where
type FamilyOf [a] = ListF

Given an instance for Diff Int an appropriate instance can be automatically
generated for [[Int]], reusing the polymorphic list instance twice. From Diff

91

Int, the instance Diff [Int] can be derived, which is then used to derive Diff
[[Int]].

data IntF xs a where
Int' :: Int -> IntF '[] Int

instance Diff Int where
type FamilyOf Int = IntF

See chapter/appendix 5 for a complete example.

4.3 Diff3

This section shows the Haskell implementation of the diff3 algorithm dis-
cussed in 3.3.2. The differences are minimal and the only remarkable dis-
tinction is that the implementation is less safe than the one proposed in
the formal model, because of the limitations of data type promotion.

4.3.1 Edit Script

The ES3 xs data type represents a merged edit script, whose source object
has type list xs and it is almost identical to the ES data type.

data ES3 xs where
Ins3 :: Diff a => F xs a -> ES3 ys -> ES3 ys
Del3 :: Diff a => F xs a -> ES3 (xs :++: ys) -> ES3 (a ': ys)
Upd3 :: Diff a => F xs a -> F ys a -> ES3 (xs :++: zs) -> ES3 (a ': zs)
Cnf3 :: VConflict -> ES3 xs -> ES3 ys
End3 :: ES3 '[]

The edit script is type safe only with respect to the source list for the
reasons listed in 3.2.5. It is convenient to retain this bit of type safety
because it simplifies the type checking phase, which then has to detect
type errors with respect to the output list only. The VConflict data type
denotes the presence of a conflict and corresponds to the Conflict data type
discussed in 3.2.4.

data VConflict where
InsIns :: (Diff a, Diff b) => F xs a -> F ys b -> VConflict
UpdDel :: Diff a => F xs a -> F ys a -> VConflict
DelUpd :: Diff a => F xs a -> F ys a -> VConflict
UpdUpd :: Diff a => F xs a -> F ys a -> F zs a -> VConflict

92

However since conflicts already produce an ill-typed edit script it has been
simplified not to include in its type any information about the values
involved.

4.3.2 Algorithm

The function merge3 merges the changes from two aligned edit scripts and
corresponds to that presented in 3.3.2.

type family (:++:) (xs :: [k]) (ys :: [k]) :: [k] where
'[] :++: ys = ys
(x ': xs) :++: ys = x ': (xs :++: ys)

Notably Haskell does not allow to promote GADTs [71], therefore it is
impossible to define a data type that ensures the alignment of two edit
scripts, such as e₁ ⋎ e₂. Consequently the alignment condition is checked
at run-time by the function aligned and the merge is aborted ungracefully
if this is not the case.

data HList (xs :: [*]) where
Nil :: HList '[]
Cons :: x -> HList xs -> HList (x ': xs)

For the same reason the merging conditions, described in the formal model
by f ⊔ g ↧ h, are checked directly comparing for equality the nodes in-
volved. The corresponding conditions have been added in form of a com-
ment to help the reader’s intuition. The Nop operations have been excluded
from the edit script data type and the effect of the extension discussed in
3.3.2 is achieved via pattern matching. In particular the Ins-Ins case is
matched first and in the remaining cases, in which only one of the two
edits is insert, the insert is just added to the merged script. In the formal
model this is equivalent to aligning Ins α with a dummy Nop operation,
which would produce the former upon merge.

4.3.3 Type Checking

In order to retrieve the merged target object, the edit script produced
by merge3 has to be type checked in order transform it into a well-typed
edit script. The algorithm implements the typing rules listed in 3.2.6 and
reports all the type errors detected in a script. The following data type
encodes the target type list inferred for an edit script.

data InferredType xs where
INil :: InferredType '[]

93

ICons :: (x :<: f) => Proxy x -> InferredType xs -> InferredType (x ': xs)
Top :: InferredType xs

Additionally the constructor Top denotes an arbitrary list of types and it
is assigned to edit scripts that are ill-typed or that contain a conflict. The
data type IES xs pairs together an edit script and its inferred type.

data IES xs where
IES :: InferredType ys -> ES xs ys -> IES xs

Note that the list of types ys must be existentially quantified, because it
is not possible to know in advance the resulting type, as was explained in
3.2.6.

Type errors Type errors are represented by the data type TypeError:

data TypeError where
TyErr :: ExpectedType xs -> InferredType ys -> TypeError

The type InferredType ys denotes the actual type found for some edit script,
while the data type ExpectedType xs is just a wrapper around TList xs:

newtype ExpectedType xs = ET (TList xs)

Type errors and value conflicts are all reported as conflicts while type
checking:

data Conflict = VConf VConflict
| TConf TypeError

Unification The second typing rule discussed in section 3.2.6 requires
to check whether the list of types xs expected as argument by some node
of type f xs a is a prefix of zs, the list of output types inferred for the edit
script at hand. The data type IsPrefixOf xs zs represents such a proof:

data IsPrefixOf xs zs where
Prefix :: InferredType ys -> Unify (xs :++: ys) zs -> IsPrefixOf xs zs

More precisely xs is a prefix of zs, if there is a suffix ys, possibly empty,
such that xs :++: ys equals to zs. The type Unify as bs denotes that the two
list of types as and bs can be unified.

data Unify as bs where
Same :: Unify as as
Failed :: Unify as bs

94

The second constructor Failed it is used to handle properly the super type
Top, which by assumption unifies with any type.

With these definitions in place it is straightforward to implement the func-
tion isPrefixOfTy, which checks whether some concrete list of types is a prefix
of the given inferred list:

isPrefixOfTy :: TList as -> InferredType bs -> Maybe (IsPrefixOf as bs)
isPrefixOfTy TNil s = Just (Prefix s Same)
isPrefixOfTy s Top = Just (Prefix Top Failed)
isPrefixOfTy (TCons _ _) INil = Nothing
isPrefixOfTy (TCons x s1) (ICons y s2) =

case (tyEq x y, isPrefixOfTy s1 s2) of
(Just Refl, Just (Prefix s Same)) -> Just (Prefix s Same)
(Just Refl, Just (Prefix s Failed)) -> Just (Prefix s Failed)
_ -> Nothing

The function is defined by induction on the two lists. In the first base
case it follows immediately that the empty list is the prefix of any list. In
the second case, any list unifies with Top by assumption, hence instead of
failing the unifier Failed is used. Note that without this constructor the
type checker would prevent us to produce a value of type IsPrefixOf. On
the other hand in the third base case a nonempty list cannot possibly
unify with the empty list, hence Nothing is returned. In the last recursive
case, in which both the lists are nonempty, the first types are compared
and isPrefixOfTy is called recursively on their tails. If a list is a prefix of
another, adding the same type to both the two lists preserves the property.
For this reason if the first tails is a prefix of the second and the two types
are equal the same suffix s is retained. Note that it is necessary to explicitly
pattern match on the unifier to convince the type checker of this property.
If these conditions are not met, a negative answer is reported in form of
Nothing.

Algorithm Since it is preferable to report at once all the conflicts found
in an edit script the type checker reports a list of conflicts and the converted
typed edit script, whose type have been inferred.

tyCheck :: Family f => ES3 xs -> ([Conflict], IES xs)
tyCheck End3 = ([], IES INil End)
tyCheck (Cnf3 c e) =

case tyCheck e of
(tyErr, IES ty e') -> (VConf c : tyErr, IES Top ⊥)

tyCheck (Del3 x e) =
case tyCheck e of

95

(tyErr, IES ty e') -> (tyErr, IES ty (Del x e'))
tyCheck (Ins3 x e) =

case tyCheck e of
(tyErr, IES ty e') ->

let xs = argsTy x in
case xs `isPrefixOfTy` ty of

Just (Prefix xsys Same) -> (tyErr, IES (ICons Proxy xsys) (Ins x e'))
Just (Prefix xsys Failed) -> (tyErr, IES (ICons Proxy xsys) (Ins x ⊥))
Nothing -> (TConf (TyErr (ET xs) ty) : tyErr, IES (ICons Proxy Top) (Ins x ⊥))

tyCheck (Upd3 x y e) =
case tyCheck e of

(tyErr, IES ty e') ->
let ys = argsTy y in
case ys `isPrefixOfTy` ty of

Just (Prefix yszs Same) -> (tyErr, IES (ICons Proxy yszs) (Upd x y e'))
Just (Prefix yszs Failed) -> (tyErr, IES (ICons Proxy yszs) (Upd x y ⊥))
Nothing -> (TConf (TyErr (ET ys) ty) : tyErr, IES (ICons Proxy Top) (Upd x y ⊥))

In the base case the empty edit script is converted to the corresponding
typed script, whose output type list is empty. The value related conflicts
are simply added to the list of conflicts and since there is no edit script
counterpart the converted edit script is filled with ⊥, i.e. undefined, and
assigned type Top. In the Del3 case no check is required, because only the
input list is affected by this edit and the ES3 data type is already well-
typed with respect to it. On the other hand converting the Ins3 x and
Upd3 x y edits requires to verify that the output type of the rest of the
edit script contain the types demanded respectively by the constructors x
and y. These types are extracted using argsTy and the auxiliary function
isPrefixOf is used to match them against ty, the type inferred for the rest of
the edit script, obtained by a recursive call to tyCheck. Once more pattern
matching on the unifier object is required to actually convince the type
checker. When the unification is vacuous, denoted by Failed, the converted
edit scrip is substituted with ⊥. Nevertheless, even in these circumstances,
part of the correct type is inferred and reported, so that further type errors,
independent from the previous ones, can still be detected.

Note that using ⊥ is safe because the converted edit script is never in-
spected in tyCheck and thus never evaluated according to Haskell’s lazy
semantics. The invariant maintained by tyCheck is that the inferred edit
script is fully defined only if no conflicts have been detected. Furthermore
in that case the inferred type does not contain Top. Therefore a safer inter-
face is provided by means of typeCheck, which returns either a non empty
list of conflicts or a well-type edit script.

96

typeCheck :: Family f => ES3 xs -> Either [Conflict] (WES xs)
typeCheck e =

case tyCheck e of
([] , IES ty e') -> Right $ WES (toTList ty) e'
(errs, _) -> Left errs

The data type WES stands for well-typed edit script, and it differs from IES
because the output type ys is stored as a TList, instead of InferredType and
therefore does not contain any Top type. Note that, even if a script is well-
typed, its output type list still needs to be existentially quantified.

data ES xs where
WES :: TList ys -> ES xs ys -> WES xs

Finally for user’s convenience the canonical diff3 interface is provided,
which expects three arguments, the second being the original version and
the first and the third being the new ones. Note that those must have
the same type, hence in this specific case the expected output type of the
edit script is known. In this function the converted edit script is there-
fore also type-checked against it and an appropriate conflict is reported
otherwise.

diff3 :: (Diff a, Diff b) => b -> a -> b -> Either [Conflict] (ES '[a] '[b])

4.4 Version Control System

This sections presents a prototype of a structure-aware version control sys-
tem that put the results presented previously into practice. The prototype
is not meant to be of production quality, but rather a proof of concept that
shows the applicability of the ideas discussed in this thesis.

4.4.1 Design

The design of the prototype is inspired by Git [11]. The repository is
modeled as directed acyclic graph (DAG), in which every node may have
at most two parents. The only node without parents is the root, which
contains the initial state; nodes with only one parent denote single com-
mits, while nodes with two parents are reserved for merges between two
branches. Each node in the graph is identified by the hash of the path
that goes from the root to it. Since the most common operations, e.g.
commit, branching and merging, are performed on the tip of a branch,

97

paths are stored backwards, so that these operations can be implemented
efficiently.

data Path a = Root a
| Node (Path a) Depth (Delta a)
| Merge (Path a) (Path a) Depth (Delta a)

To keep the prototype simple, objects under revision are restricted to keep
the same type a. Except the root, all nodes do not store a plain value,
but only a Delta, i.e. an edit script that contains the differences from the
previous version.

type Delta a = ES '[a] '[a]

In addition each non-root node stores its depth, i.e. the length of the
path that goes from the root to it. The depth of a path can be easily
retrieved:

depth :: Path a -> Depth
depth (Root _) = 0
depth (Node _ d _) = d
depth (Merge _ _ d _) = d

Paths have strictly increasing depths, therefore, in order to maintain this
invariant, the Path data type is kept abstract and smart constructors are
provided instead:

root :: a -> Path a
root = Root

node :: Path a -> Delta a -> Path a
node p = Node p (depth p + 1)

merge :: Path a -> Path a -> Delta a -> Path a
merge p1 p2 e = Merge p1 p2 (max (depth p1) (depth p2) + 1) e

Furthermore the current value of an object can reconstructed from the
path:

value :: Diff a => Path a -> a
value (Root x) = x
value (Node _ _ e) = patch e
value (Merge _ _ _ e) = patch e

Where patch is a type-restricted version of target which additionally con-
verts a DTree to a raw value. Its implementation is straightforward and
thus omitted.

98

patch :: Diff b => ES '[a] '[b] -> b

Since the target object can be retrieved directly from an edit script without
the need of the source object, computing the current value of a path does
not require patching all the previous deltas from the root.

4.4.2 Lowest Common Ancestor

The lowest common ancestor, henceforth LCA, of two nodes is the lowest
node, i.e. deepest from the root, that is an ancestor of both of them. In
a tree the LCA is unique, however in a DAG there could be more. In a
connected DAG, in which every node has at most two parents, there are at
most two lowest common ancestors for every node. This property is useful
when merging two branches and it is explained in more detail in 4.4.3.
The LCA is represented accordingly by the following data type:

data Lca a = One (Path a)
| Two (Path a) (Path a)

Furthermore to take advantage of the faster hash-based comparison for
paths, the wrapper HPath is used:

newtype HPath a = HPath {hpath :: Path a}

The appropriate Eq and Ord instances are assumed for it.

Two auxiliary functions are used to compute the LCA of two paths. Firstly
the function levels pairs all the subpaths of the given path by their depth
in descending order.

levels :: Hashable a => Path a -> [(Depth, Set (HPath a))]
levels r@(Root x)= [(0, singleton (HPath r))]
levels n@(Node p d _) = (d, singleton (HPath n)) : levels p
levels m@(Merge p1 p2 d _) = (d, singleton (HPath m)) : combine (levels p1) (levels p2)

Secondly the function combine merges two such lists, combining the paths
at the same depth. Note that due to the invariants discussed previously,
the list returned contains an element for each depth level from zero to the
depth of the input path.

combine :: Hashable a => [(Depth, Set (HPath a))] -> [(Depth, Set (HPath a))]
-> [(Depth, Set (HPath a))]

combine [] ds2 = ds2
combine ds1 [] = ds1
combine a@((d1,xs) : ds1) b@((d2,ys) : ds2) =

case compare d1 d2 of

99

LT -> (d2, ys) : combine a ds2
EQ -> (d1, xs `union` ys) : combine ds1 ds2
GT -> (d1, xs) : combine ds1 b

Finally the function lca computes the lowest common ancestor of two
paths.

lca :: Hashable a => Path a -> Path a -> Lca a
lca p1 p2 =

case find (not . null) (zipWith common ls1 ls2) of
Just s ->

case toList s of
[r] -> One (hpath r)
[r1 r2] -> Two (hpath r1) (hpath r2^^I)

where d = min (depth p1) (depth p2)
ls1 = dropWhile ((> d) . fst) (levels p1)
ls2 = dropWhile ((> d) . fst) (levels p2)
common (_, x) (_, y) = intersection x y

The lists ls1 and ls2 contain the subpaths of each of the two paths, starting
with the same common depth d. Since the level d is the minimum depth of
the two paths, the lowest common ancestor cannot be at any depth greater
than d, hence dropping elements greater than d is safe. Furthermore since
any path at a certain depth contains subpaths at every level lower than it, it
follows that ls1 and ls2 are aligned with respect to their depth. Exploiting
this property the subpaths at each level are combined by intersection,
finding thus the common ones. Since these are also in descending order,
the first non empty set contains the deepest, i.e. the lowest. The set
contains either one or two subpaths, which are then extracted and wrapped
in the right constructor. Haskell semantics ensure that the lists of subpath
and the list of common paths are produced and consumed lazily, therefore
avoiding to unnecessarily process the paths at lower depths.

4.4.3 Merge

The three-way merge algorithm merges two branches using the diff3 al-
gorithm, in which the two new versions are the latest in the branches,
while their LCA’s version is used as base. The LCA represents the best
choice because it is a common revision from which both the two branches
diverged and furthermore it is the lowest, therefore the closest to both of
them. However in some cases such as the criss-cross merge, there could
be two lowest common ancestors and neither of them is better than the
other.

100

Criss-cross merge The criss-cross merge occurs when there are two sep-
arate branches in which each branch progressively includes changes from
the other, as shown in the figure 4.1 Depending on the role of the branches
and the intended work-flow, this pattern can arise quite often.

For example imagine a repository in which there are two branches, the
main branch master and a development branch dev. The dev branch, after
adding some feature in commit 2, is synchronized with master, pulling
the changes made in 1. After solving any possible conflict, the merge is
committed in 4. Similarly the master branch is merged with dev, adding
the new feature from 2 and producing a new commit 3. In both these
merges the lowest common ancestor is the root 0, which is used as base
in the diff3 algorithm. The pattern repeats itself and now the nodes 3
and 4 must be merged: what node should be used as base? Crucially the
nodes 1 and 2 are both LCA, because they are ancestors of both of them
and they have the same depth, however none of them is better than the
other. Furthermore choosing arbitrarily one of them would raise bogus
conflicts, because the changes made in the other would not be taken into
account. Choosing an older, but unique ancestor is not satisfactory either.
In this case for example using node 0 as the candidate base would raise
the same conflicts encountered when merging 1 and 2, which were already
solved.

Figure 4.1: Example of criss-cross merge.

101

4.4.4 Recursive Three-Way Merge

The recursive three-way merge algorithm is an extension of the simple
three-way merge algorithm, that applies in these circumstances. When
two LCA are found, it builds a virtual lowest common ancestor applying
the three-way merge algorithm recursively on them. The virtual ancestor
is then used as a base in the diff3 algorithm. Since the number of nodes
in every path are finite the algorithm eventually terminates.

Example In the previous example, the nodes 3 and 4 have two LCA,
nodes 1 and 2, therefore the three-way merge is recursively applied to
them. Their LCA, node 0, is used as base to build a virtual ancestor 1-2,
which is finally used as base to merge the nodes 3 and 4.

The recursive three-way merge can be easily implemented as follows:

recursive3WayMerge :: (Hashable a, Diff a) => Path a -> Path a
-> Either [Conflict] (Path a)

recursive3WayMerge p q =
case lca p q of

One a -> mergeWithAncestor p a q
Two a b ->

case recursive3WayMerge a b of
Left err -> Left err
Right c -> mergeWithAncestor p c q

The function mergeWithAncestor merges two nodes applying the diff3 algo-
rithm. The arguments are expected in the same order as diff3, hence the
second Path is used as base.

mergeWithAncestor :: (Hashable a, Diff a) => Path a -> Path a -> Path a
-> Either [Conflict] (Path a)

mergeWithAncestor p a q =
case diff3 x o y of

Left err -> Left err
Right e -> Right (merge p q e)

where x = value p
o = value a
y = value q

102

4.4.5 Discussion

The prototype presented in this section lacks most of the features com-
monly expected in version control systems. For example they usually pro-
vide (graphical) user interface, record meta-data such as branches names
and time and date of commits and so on. They also communicate over the
network and serialize data and meta-data for persistence. Part of these
features mostly require a great deal of software engineering work and there-
fore have not been addressed in this project, nevertheless the prototype
have all the essential ingredients to perform revision control interactively,
including semi-automatic merge of revisions using the recursive three-way
merge algorithm.

File system Version control systems such as Git [11] and Mercurial [48]
do not track single objects, but a collection of files and directories. The
prototype discussed in this thesis is in principle able to correctly simulate
the same behaviour. In fact it is possible to model the portion of the file
system under revision as a mapping from paths to file contents. Providing
appropriate support for unordered collections such as maps, it would be
possible to instantiate the repository, as Path (Map FileName Content), which
would be initialized with the empty mapping. More research is needed
to properly handle arbitrary data types that mix structured, tree-liked
data types, with unordered collections. The problem does not concern the
alignment phase only, but it is also semantic. For instance it is reasonable
to expect that two maps are compared, diffing pointwise values mapped by
the same key and including the entries that are present in one, but not in
the other. However this approach would not handle properly changes made
exclusively to the keys, which could happen for example by renaming a file.
These questions can dramatically affect the behaviour of a structure-aware
version control system and ought to be investigated.

Semantics The model presented in chapter 3 is suitable for reasoning
about merging between branches according to the simple three-way merge
algorithm. Likewise it would be useful to extend it to consider more com-
plex merges, that require the recursive three-way merge. This extension
would require to model the repository directly and to formally define the
notion of lowest common ancestor. Furthermore the properties that were
only informally stated in this section could be formally proved.

103

Chapter 5

Example

This chapter summaries the contributions of this thesis with a concrete
fully worked-out example. It includes a precise definition of the format
examined, the code1 that implements in a unique specification both parser
and printer for it and the instances needed to diff and merge values of that
format. Examples of successful and unsuccessful merges are given.

5.0.1 Csv

The comma-separated values (CSV) format is used to store tabular data in
a file. Each line of text correspond to a row in the table, which is divided
in columns by comma characters. In each cell there is a single value, which
for simplicity it is assumed to be an integer number.

In Haskell a Csv table can be described as a list rows, each of which is a
list of integers:

type Row = [Int]
type Csv = [Row]

Csv Format The library developed in chapter 2 provides few combina-
tors, that are needed to describe this format.

newline :: Format c m Char '[]
newline = char '\n' <?> "lf new-line"

sepBy, sepBy1 :: Format c m i xs -> Format c m i '[] -> Format c m i (Map [] xs)
1In order to keep the code readable the closed format representation is used and

class constraints are omitted from signatures.

104

The formats sepBy and sepBy1 are standard combinators implemented in
terms of many. The format sepBy f s repeatedly recognize the format f zero
or more times, separated by the format recognized by s. Similarly sepBy1
f s succeeds only if f is recognized at least once.

Furthermore an appropriate integer format is assumed:

int :: Format c m Char '[Int]

With these pieces in place it is straightforward to describe the Csv format
as:

csvFormat :: Format c m Char '[Csv]
csvFormat = sepBy row newline

where row = sepBy1 int (char ',')

Choosing an appropriate parsing and printing backend, a csv parser and
printer are derived from csvFormat.

csvParser :: Parser Csv
csvParser = hHead <$> mkParser csvFormat

csvPrinter :: Csv -> Maybe String
csvPrinter = mkPrinter csvFormat . hsingleton

Csv Diff In order to concretely show the benefits of a structure-aware
algorithm for diffing and merging data, the unsatisfactory failure of GNU
diff is reported.

Imagine that a repository stores the following table:

1 2 3
4 5 6
7 8 9

Which is stored in a CSV file:

$ cat o.csv
1,2,3
4,5,6
7,8,9

Now suppose that two users, Alice and Bob, make the following changes:

alice$ cat o.csv
0,1,2,3
0,4,5,6
0,7,8,9

bob$ cat o.csv
1,2,3
4,5,9
7,8,15

105

A line-based merging algorithm such as GNU diff3 would report a conflict
in the second and third line, because Alice, Bob and the original version
are all different. The first line instead is merged correctly because only
Alice changed it.

Alice Original Bob Merged
0,1,2,3 1,2,3 1,2,3 0,1,2,3
0,4,5,6 4,5,6 4,5,9 7

0,7,8,9 7,8,9 7,8,15 7

Using a structure aware algorithm the two tables can be successfully
merged, producing the following table:

0 1 2 3
0 4 5 9
0 7 8 15

In order to merge the Csv data type, an appropriate instance for Diff is
needed. The two data types involved in Csv are lists and integers. For
both of them the library Typable already provide a suitable instance, hence
the superclass constraint of Diff is satisfied.

First of all we need to define a representative family for the constructors
of lists.

data ListF xs a where
Nil :: ListF '[] [a]
Cons :: ListF '[a, [a]] [a]

In the corresponding Diff instance, the type ListF is assigned to the associ-
ated type FamilyOf. The implementation of the other methods is straight-
forward:

instance Diff a => Diff [a] where
type FamilyOf [a] = ListF

Nil =?= Nil = Just Refl
Cons =?= Cons = Just Refl
_ =?= _ = Nothing

distance Nil Nil = 0
distance Cons Cons = 0
distance _ _ = 1

fromDTree (Node Nil DNil) = []
fromDTree (Node Cons (DCons x (DCons xs DNil))) = fromDTree x : fromDTree xs

106

toDTree [] = Node Nil DNil
toDTree (x:xs) = Node Cons ds

where ds = DCons (toDTree x) $ DCons (toDTree xs) DNil

argsTy Nil = tlist
argsTy Cons = tlist

string Nil = "[]"
string Cons = "(:)"

In the methods argsTy, after patter matching on the witness F xs a, the
arguments get into scope, and hence it is possible to automatically build
the required TList. Note that to fulfill this method and the embedding
fromDTree and toDTree, an instance of Diff a is needed, therefore its presence
in the instance context is not optional.

Similarly a representative family is defined for integers. Basic types and
abstract data types can be represented wrapping their value in a dummy
constructor.

data IntF xs a where
Int' :: Int -> IntF '[] Int

Likewise an appropriate Diff instance is defined for Int:

instance Diff Int where
type FamilyOf Int = IntF

(Int' x) =?= (Int' y) = if x == y then Just Refl else Nothing
distance (Int' x) (Int' y) = if x == y then 0 else 1

fromDTree (Node (Int' n) DNil) = n
toDTree n = Node (Int' n) DNil
argsTy (Int' _) = TNil
string (Int' i) = show i

Note that for consistency we have to compare the integer also in the
method =?=.

Suppose that the previous files have been successfully parsed using csvParser
and the raw csv table extracted:

c0, c1, c2 :: Csv
c0 = [[1,2,3],[4,5,6],[7,8,9]]
c1 = [[0,1,2,3],[0,4,5,6],[0,7,8,9]]
c2 = [[1,2,3], [4,5,9], [7,8,15]]

107

The library developed in chapter 4 includes an auxiliary function that
reconstructs the merged value when no conflicts are raised:

diff3Patch :: :: (Diff a, Diff b) => b -> a -> b -> Either [Conflict] b
diff3Patch x o y =

case diff3 x o y of
Left errs -> Left errs
Right e -> Right (patch e)

The two tables are successfully merged and produce the expected re-
sult:

*> diff3Patch c1 c0 c2
Right [[0,1,2,3],[0,4,5,9],[0,7,8,15]]

The merged table is extracted to c012 and printed back according to its
format specification:

*> putStrLn (printCsv c012)
0,1,2,3
0,4,5,9
0,7,8,15

In order to show a negative example, consider the following table:

*> diff3 c2 c0 c3
Left [VConf UpdUpd 6 9 18,VConf UpdUpd 9 15 30]

Merging c2 with c3, keeping as base c0, fails with the following con-
flicts:

*> diff3 c2 c0 c3
Left [VConf UpdUpd 6 9 18,VConf UpdUpd 9 15 30]

These are true conflicts: the sixth element of c0 (6) has been updated to
9 in c2 and to 18 in c3. Likewise the ninth element of c0 (9) has been
changed with 15 in c2 and with 30 in c3. These changes are incompatible
and therefore two conflicts are correctly reported.

108

Chapter 6

Conclusion

In this thesis I have analyzed the problem of structure-aware revision con-
trol, which aims to improve the quality of version control systems, by
exploiting the knowledge of how data is encoded in a file.

Firstly I have developed an EDSL for binary and text-based data formats,
which automatically derives inverse-by-construction parser and printer,
given a format description. Since a unique specification is given for each
format, this technique ensures that parsers and printers are always syn-
chronized, therefore ensuring round-trip behaviour. A format description
allows a version control system to access to the data contained in a file
and its structure, so that it can detect changes more precisely. In addition
after a merge, the data can be serialized back to a file according to its
format.

Secondly I have implemented a data-type generic diff and diff3 algorithm
in Haskell. Version control systems employ these algorithms to perform
their basic operations: diff tracks the history of changes made to some
data, while diff3 merges separate revisions. Generic programming tech-
niques are required, because it is unfeasible to implement specific versions
of these algorithms, due to the multitude of different data formats avail-
able. The data stored in a file is parsed producing a domain-specific data
type, which is then converted to the heterogeneous rose trees data type,
the generic representation employed in the diff and diff3 algorithms. The
algorithms have been embedded in a proof-of-concept structure-aware ver-
sion control system that shows the applicability of the theories studied in
this thesis.

Lastly I have developed a formal model in the Agda proof assistant, with
which I have studied the two algorithms and their formal properties. The
model provides an unambiguous specification of the algorithms and ac-

109

curately describe their semantics. In addition the properties proved are
a precious source of information, useful to interpret and further describe
their behaviour.

The contributions of this thesis can be summarized in:

• An EDSL for describing data formats that unifies parsing and print-
ing.

• A data type generic diff and diff3 algorithm.

• A formal model that describes the semantics of these algorithms.

• A proof-of-concept structure-aware version control system.

6.0.1 Related and Future Work

This thesis covers several related topics: invertible parsing and printing,
change detection and automatic merging of structured data and semantics
of version control systems and synchronizers. This is the first work of my
knowledge that has combined results from these studies in the develop-
ment of a proof-of-concept structure-aware version control system, that
employs data-type generic diff and diff3 algorithms, whose semantics has
been formalized in a proof assistant.

Semantics of Format Description Chapter 2 presents a promising
approach to parsing and printing unification, which aims to derive inverse-
by-construction parser and printer for a given format, using a format com-
binator library inspired by [56]. The central idea of the library is to define
a small core of basic combinators, that essentially correspond to those
of the Functor, Applicative and Alternative classes, which embody both the
parsing and printing semantics at once. Complex formats are described
combining the basic combinators just like it happens in parser combina-
tor libraries. The library assumes that the double semantics of each core
combinator is valid, i.e. each one inverts the other, and conjectures that
parsers and printer obtained by composing them will be therefore con-
sistent. However it is a fundamental open research question whether the
composition of valid formats does in fact produce a valid format. Section
2.2.6 already hinders this conjecture, since the inverse printer of a simple
parser, was actually non terminating. Nevertheless termination is usually
a thorny problem alone and in this setting it is further complicated by the
mix of inductive and coinductive definitions, typical of parser combinator
libraries. Danielsson develops a library of total parser combinators [16],
that ensure termination exploiting dependent types [16]. More specifically

110

both terminating parser and printer could be described introducing addi-
tional indexes that respectively mark infinite from finite parts of parsers
and printers. His work certainly represents an excellent starting point to
tackle the problem. This technique also forms the basis for another work
on correct-by-construction pretty printers [17]. Pretty-printers are indexed
by a grammar and their output is valid with respect to it. It seems possible
to combine these promising results to formally prove the correctness of a
format combinator library based on these ideas.

Move Edit The set of edits available to describe the changes between
two revisions is a crucial factor in the automatic merging capabilities of
a version control system. The more precise an edit script is, the less
likely it is to trigger a false conflict when merging. Rearrangements of
portions of texts occur often in certain data formats. For instance in
a web-page, sections may be moved around, or in a software artifact a
refactoring tool may reorder the list of methods in alphabetical order. All
these changes are currently detected by GNU diff and the diff presented in
this thesis as a series of inserts followed by deletes, which is just a rough
approximation. Other tools, like Lindholm’s 3DM [37], provide a move
edit, which appropriately represent these changes. It would be interesting
to include a move edit in the edit data type and study how contexts [26, 43]
can improve the alignment phase.

Semantics of Version Control The formal model presented in this
thesis specifically addresses the semantics of the data-type generic diff
and diff3 algorithms employed in a structure-aware version control sys-
tem. As such it gives the foundations to further investigate the semantics
of structure-aware version control systems. Swiestra and Löh study the
semantics of version control systems using separation logic in which oper-
ations are modeled using Hoare triples [65]. The operations are applied on
the internal model of the repository, a shared stated described with the the
preconditions and postconditions predicates, which represent respectively
the repository before and after each operation. The history of a repository
consists in a valid sequence of operations and branching is modeled with
a conditional statement. With their model they intend to give sensible
high-level specifications of a version control system, therefore they refrain
from giving any specific algorithm for change-detection and for merging
branches. I believe it would be interesting to embed the formal model de-
veloped in this thesis into a similar more general framework. In particular
the framework should explicitly represent branches and nodes, in order to
compute the lowest common ancestor that act as a base in the three-way
merge.

111

Swiestra and Löh begin their description considering firstly a single binary
file repository, then extend it to text files and lastly consider multiple
files and directories. For example they give a formal description of finite
mappings that encodes the file-system, the relative operations and their
semantics. Clearly the model becomes a little bit more involved with every
extension. The advantage of the data-type generic approach discussed in
this thesis is that these modifications are superfluous, as long as these data
structures can be transformed into the generic representation. Unfortu-
nately the algorithms proposed in this thesis work best with strongly struc-
tured data and have poor performances with unordered collections, such
as dictionaries. Properly diffing and merging unordered collections is an
interesting research question, with important practical ramifications that
should be investigated in future work. I expect that a complete satisfactory
semantics cannot be given generically, however sets and dictionaries are
probably the fundamental unordered collections, that are widespread in
data formats. It is worth pointing out that the complication with respect
to this class of data structures lies in the alignment phase and not in the
merging semantics. Currently the alignment is simplified by the fact that
trees are processed in depth first order. Equivalent unordered collections
can have multiple concrete representations, therefore this approach would
misalign nodes and most likely produce bogus conflicts.

112

Acknowledgments

I would like to thank my supervisor Dr. Wouter Swiestra for his guidance
and constant support throughout this project. Whenever I was stuck,
he could set me on the right track to a solution, clarifying my problems
and putting them in right words. My gratitude goes also to the Software
Technology group, whose professors have inspired me and taught me so
much in these two years. Their enthusiasm has sparkled in me the interest
for functional programming and programming languages technologies to
the point that I decided to pursue a PhD in these topics. I also gladly
remember the afternoons spent with the Software Technology reading club,
during which we were busy getting the most out of interesting papers and
in constructive discussions.

I would like to thank from the bottom of my heart my parents for sup-
porting me throughout my studies. None of this would have been possible
without you. Studying at Utrecht University is a great opportunity and
my only regret is that it would not let me see you, my sister Chiara, my
hopefully future brother-in-law Mattia and my grandmother Clara as often
as I wished. A special thanks goes to Laura for putting up with me in the
busiest moments and sharing with me this fantastic experience. There a re
so many great adventures we have lived in these two years and thanks to
you there is plenty of pictures to remember them all. I would like to thank
my friends from Utrecht: João Pizani, Philipp, Wout and João Alpuim. I
really had a great time with all of you and I hope we will keep in touch in
the next years. I would like to thank also my friends from Delft: Enrico,
Gherardo, Marco, Oana and Bronius. You are wonderful friends and I am
very lucky to have met you.

Lastly a special thanks goes to the Haskell Cafe and Agda mailing list for
their concrete help, without which I could have not completed this project.
These communities have provided me with very interesting insights and
answered to my very technical questions.

113

Bibliography

[1] Artem Alimarine, Sjaak Smetsers, Arjen van Weelden, Marko van
Eekelen, and Rinus Plasmeijer. There and back again: Arrows for
invertible programming. In Proceedings of the 2005 ACM SIGPLAN
Workshop on Haskell, Haskell ’05, pages 86–97, New York, NY, USA,
2005. ACM.

[2] Sven Apel, Jörg Liebig, Benjamin Brandl, Christian Lengauer, and
Christian Kästner. Semistructured merge: Rethinking merge in re-
vision control systems. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Soft-
ware Engineering, ESEC/FSE ’11, pages 190–200, New York, NY,
USA, 2011. ACM.

[3] Kenichi Asai. On typing delimited continuations: Three new solutions
to the printf problem. Higher Order Symbol. Comput., 22(3):275–291,
September 2009.

[4] S. Balasubramaniam and Benjamin C. Pierce. What is a file syn-
chronizer? In Proceedings of the 4th Annual ACM/IEEE Interna-
tional Conference on Mobile Computing and Networking, MobiCom
’98, pages 98–108, New York, NY, USA, 1998. ACM.

[5] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common
subsequence algorithms. In Proceedings of the Seventh International
Symposium on String Processing Information Retrieval (SPIRE’00),
SPIRE ’00, pages 39–, Washington, DC, USA, 2000. IEEE Computer
Society.

[6] Richard Bird and Oege de Moor. Algebra of Programming. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1997.

[7] Boomerang- library for invertible parsing and printing. https://
hackage.haskell.org/package/boomerang.

[8] Ana Bove. Another look at function domains. Electronic Notes in
Theoretical Computer Science, 249:61 – 74, 2009. Proceedings of the

114

https://hackage.haskell.org/package/boomerang
https://hackage.haskell.org/package/boomerang

25th Conference on Mathematical Foundations of Programming Se-
mantics (MFPS 2009).

[9] Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of agda — a
functional language with dependent types. In Proceedings of the 22Nd
International Conference on Theorem Proving in Higher Order Logics,
TPHOLs ’09, pages 73–78, Berlin, Heidelberg, 2009. Springer-Verlag.

[10] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. Finally tag-
less, partially evaluated: Tagless staged interpreters for simpler typed
languages. J. Funct. Program., 19(5):509–543, September 2009.

[11] Scott Chacon. Pro Git. Apress, Berkely, CA, USA, 1st edition, 2009.

[12] Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones.
Associated type synonyms. SIGPLAN Not., 40(9):241–253, Septem-
ber 2005.

[13] Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones, and
Simon Marlow. Associated types with class. In In POPL ’05: Proceed-
ings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 1–13. ACM Press, 2005.

[14] Sudarshan S. Chawathe and Hector Garcia-Molina. Meaningful
change detection in structured data. SIGMOD Rec., 26(2):26–37,
June 1997.

[15] Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina,
and Jennifer Widom. Change detection in hierarchically structured
information. SIGMOD Rec., 25(2):493–504, June 1996.

[16] Nils Anders Danielsson. Total parser combinators. In Proceedings
of the 15th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’10, pages 285–296, New York, NY, USA, 2010.
ACM.

[17] Nils Anders Danielsson. Correct-by-construction pretty-printing. In
Proceedings of the 2013 ACM SIGPLAN Workshop on Dependently-
typed Programming, DTP ’13, pages 1–12, New York, NY, USA, 2013.
ACM.

[18] Olivier Danvy. Functional unparsing. J. Funct. Program., 8(6):621–
625, November 1998.

[19] Dominique Devriese and Frank Piessens. On the bright side of type
classes: Instance arguments in agda. SIGPLAN Not., 46(9):143–155,
September 2011.

115

[20] Richard A. Eisenberg and Stephanie Weirich. Dependently typed pro-
gramming with singletons. SIGPLAN Not., 47(12):117–130, Septem-
ber 2012.

[21] Jeroen Fokker. Functional parsers. In Johan Jeuring and Erik Meijer,
editors, Advanced Functional Programming, volume 925 of Lecture
Notes in Computer Science, pages 1–23. Springer Berlin Heidelberg,
1995.

[22] J. Nathan Foster, Michael B. Greenwald, Christian Kirkegaard, Ben-
jamin C. Pierce, and Alan Schmitt. Exploiting schemas in data syn-
chronization. J. Comput. Syst. Sci., 73(4):669–689, June 2007.

[23] Glasgow Haskell Compiler - ghc. https://www.haskell.org/ghc/.

[24] Happy - the parser generator for haskell. https://www.haskell.org/
happy/.

[25] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler.
A history of haskell: Being lazy with class. In In Proceedings of the 3rd
ACM SIGPLAN Conference on History of Programming Languages
(HOPL-III, pages 1–55. ACM Press, 2007.

[26] Gérard Huet. The zipper. J. Funct. Program., 7(5):549–554, Septem-
ber 1997.

[27] John Hughes. The design of a pretty-printing library. In Advanced
Functional Programming, pages 53–96. Springer Verlag, 1995.

[28] Patrik Jansson and Johan Jeuring. Polytypic data conversion pro-
grams. Sci. Comput. Program., 43(1):35–75, April 2002.

[29] C. Stephen Johnson. “yacc—yet another compiler compiler”. Techni-
cal report, NJ: Bell Telephone Laboratories, 1975.

[30] Sanjeev Khanna, Keshav Kunal, and BenjaminC. Pierce. A formal
investigation of diff3. In V. Arvind and Sanjiva Prasad, editors,
FSTTCS 2007: Foundations of Software Technology and Theoreti-
cal Computer Science, volume 4855 of Lecture Notes in Computer
Science, pages 485–496. Springer Berlin Heidelberg, 2007.

[31] Oleg Kiselyov. Strongly typed heterogeneous collections. In In Haskell
’04: Proceedings of the ACM SIGPLAN workshop on Haskell, pages
96–107. ACM Press, 2004.

[32] Oleg Kiselyov. Typed tagless final interpreters. In Jeremy Gibbons,
editor, Generic and Indexed Programming, volume 7470 of Lecture
Notes in Computer Science, pages 130–174. Springer Berlin Heidel-
berg, 2012.

116

https://www.haskell.org/ghc/
https://www.haskell.org/happy/
https://www.haskell.org/happy/

[33] Oleg Kiselyov, Simon Peyton, and Jones Chung chieh Shan. Fun with
type functions version 2, 2009.

[34] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: A
practical design pattern for generic programming. SIGPLAN Not.,
38(3):26–37, January 2003.

[35] Daan Leijen. Parsec, a fast combinator parser. Technical report uu-
cs-2001-35, Institute of Information and Computing Sciences, Utrech-
tUniversity, 2001.

[36] Eelco Lempsink, Sean Leather, and Andres Löh. Type-safe diff for
families of datatypes. In Proceedings of the 2009 ACM SIGPLAN
Workshop on Generic Programming, WGP ’09, pages 61–72, New
York, NY, USA, 2009. ACM.

[37] Tancred Lindholm. A three-way merge for xml documents. In Proceed-
ings of the 2004 ACM Symposium on Document Engineering, DocEng
’04, pages 1–10, New York, NY, USA, 2004. ACM.

[38] Tancred Lindholm and Torsten Rueger. A fault-tolerant three-way
merge for xml and html, 2005.

[39] Antoni Lozano and Gabriel Valiente. On the maximum common em-
bedded subtree problem for ordered trees. In In C. Iliopoulos and T
Lecroq, editors, String Algorithmics, chapter 7. King’s College London
Publications, 2004.

[40] Simon Marlow. Haskell 2010 language report.

[41] Boespflug Mathieu. Functional pearl: Replaying the stack for parsing
and pretty printing. http://www.cs.mcgill.ca/~mboes/papers/cassette.
pdf, September 2012.

[42] Kazutaka Matsuda and Meng Wang. Flippr: A prettier invertible
printing system. In Proceedings of the 22Nd European Conference
on Programming Languages and Systems, ESOP’13, pages 101–120,
Berlin, Heidelberg, 2013. Springer-Verlag.

[43] Conor Mcbride. The derivative of a regular type is its type of one-hole
contexts (extended abstract), 2001.

[44] Conor Mcbride and Ross Paterson. Applicative programming with
effects. J. Funct. Program., 18(1):1–13, January 2008.

[45] T. Mens. A state-of-the-art survey on software merging. IEEE Trans.
Softw. Eng., 28(5):449–462, May 2002.

117

http://www.cs.mcgill.ca/~mboes/papers/cassette.pdf
http://www.cs.mcgill.ca/~mboes/papers/cassette.pdf

[46] Ulf Norell. Towards a practical programming language based on de-
pendent type theory. PhD thesis, Department of Computer Science
and Engineering, Chalmers University of Technology, SE-412 96 Göte-
borg, Sweden, September 2007.

[47] Ulf Norell. Dependently typed programming in agda. In Proceedings
of the 6th International Conference on Advanced Functional Program-
ming, AFP’08, pages 230–266, Berlin, Heidelberg, 2009. Springer-
Verlag.

[48] Bryan O’Sullivan. Mercurial - The Definitive Guide: Modern Software
for Collaboration. O’Reilly, 2009.

[49] Nicolas Oury and Wouter Swierstra. The power of pi. In Proceedings
of the 13th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’08, pages 39–50, New York, NY, USA, 2008.
ACM.

[50] Luuk Peters. Change detection in xml trees: a survey.

[51] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Geoffrey Washburn. Simple unification-based type inference for gadts.
SIGPLAN Not., 41(9):50–61, September 2006.

[52] Simon Peyton Jones, Geoffrey Washburn, and Stephanie Weirich.
Wobbly types: type inference for generalised algebraic data types.
Technical Report MS-CIS-05-26, University of Pennsylvania, Com-
puter and Information Science Department, Levine Hall, 3330 Walnut
Street, Philadelphia, Pennsylvania, 19104-6389, July 2004.

[53] Benjamin C. Pierce, Alan Schmitt, and Michael B. Greenwald. Bring-
ing Harmony to optimism: A synchronization framework for hetero-
geneous tree-structured data. Technical Report MS-CIS-03-42, Uni-
versity of Pennsylvania, 2003. Superseded by MS-CIS-05-02.

[54] Benjamin C. Pierce and Jérôme Vouillon. What’s in Unison? A for-
mal specification and reference implementation of a file synchronizer.
Technical Report MS-CIS-03-36, Dept. of Computer and Information
Science, University of Pennsylvania, 2004.

[55] Norman Ramsey and Elöd Csirmaz. An algebraic approach to file syn-
chronization. SIGSOFT Softw. Eng. Notes, 26(5):175–185, September
2001.

[56] Tillmann Rendel and Klaus Ostermann. Invertible syntax de-
scriptions: Unifying parsing and pretty printing. SIGPLAN Not.,
45(11):1–12, September 2010.

118

[57] David Roundy. Darcs: Distributed version management in haskell.
In Proceedings of the 2005 ACM SIGPLAN Workshop on Haskell,
Haskell ’05, pages 1–4, New York, NY, USA, 2005. ACM.

[58] Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Mar-
tin Sulzmann. Type checking with open type functions. SIGPLAN
Not., 43(9):51–62, September 2008.

[59] Tom Schrijvers, Simon Peyton Jones, Martin Sulzmann, and Dim-
itrios Vytiniotis. Complete and decidable type inference for gadts.
SIGPLAN Not., 44(9):341–352, August 2009.

[60] Tom Schrijvers, Martin Sulzmann, Simon Peyton Jones, and Manuel
Chakravarty. Towards open type functions for Haskell. In O. Chi-
til, editor, Implementation and Application of Functional Languages,,
pages 233–251. Computing Laboratory, University of Kent, 2007.

[61] Tim Sheard and Simon Peyton Jones. Template meta-programming
for haskell. SIGPLAN Not., 37(12):60–75, December 2002.

[62] S. doaitse Swierstra and Olaf Chitil. Linear, bounded, functional
pretty-printing. J. Funct. Program., 19(1):1–16, January 2009.

[63] S. Doaitse Swierstra and Luc Duponcheel. Deterministic, error-
correcting combinator parsers. In Advanced Functional Programming,
Second International School-Tutorial Text, pages 184–207, London,
UK, UK, 1996. Springer-Verlag.

[64] Wouter Swierstra. Data types à la carte. J. Funct. Program.,
18(4):423–436, July 2008.

[65] Wouter Swierstra and Andres Löh. The semantics of version control.
In Proceedings of the 2014 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming 38; Software,
Onward! ’14, pages 43–54, New York, NY, USA, 2014. ACM.

[66] Mervi Ranta Tancred Lindholm. A 3-way merging algorithm for syn-
chronizing ordered trees - the 3dm merging and differencing tool for
xml, 2001.

[67] P. Wadler and et al. The expression problem. Discussion on the
Java-Genericity mailing list, December 1998.

[68] Philip Wadler. A prettier printer. In Journal of Functional Program-
ming, pages 223–244. Palgrave Macmillan, 1998.

[69] Philip Wadler. Propositions as types, 2014.

119

[70] Bernhard Westfechtel. Structure-oriented merging of revisions of soft-
ware documents. In Proceedings of the 3rd International Workshop
on Software Configuration Management, SCM ’91, pages 68–79, New
York, NY, USA, 1991. ACM.

[71] Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Pey-
ton Jones, Dimitrios Vytiniotis, and José Pedro Magalhães. Giving
haskell a promotion. In Proceedings of the 8th ACM SIGPLAN Work-
shop on Types in Language Design and Implementation, TLDI ’12,
pages 53–66, New York, NY, USA, 2012. ACM.

120

	Introduction
	Description of the problem
	Research Questions
	Overview

	Format Representation
	Introduction
	Motivation
	Type List
	Partial Isomorphism

	Format
	Functor Format
	Applicative Format
	Alternative Format
	Token Format
	Example
	Kleene Operators

	Extensions
	Monadic Format
	Token and Stream
	Extensible Format
	Format Revised

	Conclusion
	Discussion
	Related and Future Work

	Formal Model
	Introduction
	Motivation
	Characteristics
	Reasoning by Specification
	Naming Conventions

	Basics
	Heterogeneous Rose Trees
	Edit Script
	Diff
	Merge
	Diff3
	Merged3
	Summary

	Algorithms
	Diff
	Diff3

	Formal Properties
	Conflicts
	Safety
	Maximality
	Structural Invariants

	Conclusion
	Related Work
	Future Work

	Haskell Implementation
	Basics
	Type Manipulation
	Universe
	Typed List

	Diff
	Edit Script
	Memoization
	Algorithm
	Discussion and Related Work

	Diff3
	Edit Script
	Algorithm
	Type Checking

	Version Control System
	Design
	Lowest Common Ancestor
	Merge
	Recursive Three-Way Merge
	Discussion

	Example
	Csv

	Conclusion
	Related and Future Work

