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Abstract
WebAssembly (Wasm) is a next-generation portable compi-
lation target for deploying applications written in high-level
languages on the web. In order to protect their memory
from untrusted code, web browser engines confine the exe-
cution of compiled Wasm programs in a memory-safe sand-
box. Unfortunately, classic memory-safety vulnerabilities
(e.g., buffer overflows and use-after-free) can still corrupt
the memory within the sandbox and allow Wasm code to
mount severe attacks. To prevent these attacks, we study a
class of secure compilers that eliminate (different kinds of)
memory safety violations. Following a rigorous approach,
we discuss memory safety in terms of hypersafety properties,
which let us identify suitable secure compilation critera for
memory-safety-preserving compilers. We conjecture that,
barring some restrictions at module boundaries, the exist-
ing security mechanisms of Wasm may suffice to enforce
memory-safety preservation, in the short term. In the long
term, we observe that certain features proposed in the design
of a memory-safe variant of Wasm could allow compilers to
lift these restrictions and enforce relaxed forms of memory
safety.

1 Introduction
WebAssembly (Wasm) has gained traction as the new portable
compilation target language for deploying on the web ap-
plications written in high-level languages like C, C++, and
Rust. Fruit of an unprecedented collaboration between four
major browser vendors, Wasm ensures that even buggy or
malicious code downloaded from untrusted sources can be
executed safely in a web browser [15]. To enforce security,
Wasm programs are validated (type-checked) first and then
executed inside a sandbox that isolates untrusted code from
the browser. Memory safety is key to the isolation mecha-
nism of the sandboxed execution environment: well-typed
programs cannot corrupt the memory outside the sandbox
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(e.g., the Javascript virtual machine). Unfortunately, Wasm
is still far from secure: buffer overflows and use-after-free
can still corrupt the memory of a program within the sand-
box, opening the door to attacks like cross-site scripting
and remote code execution [21]. The presence of memory
vulnerabilities in Wasm thwarts the strenuous efforts de-
voted into securing unsafe languages like C [5, 20, 22, 23, 27]
and developing resource-aware memory-safe languages like
Rust [17, 18]. Current compilers (e.g., Emscripten) do not
attempt to protect compiled programs from Wasm-level at-
tackers exploiting well-known memory vulnerabilities. Fol-
lowing the principled tradition of secure compilation [1, 4, 26],
we propose to strengthen the Wasm compilation chain with
a provably secure memory-safety-preserving compiler.
Fortunately, several aspects of Wasm promote rigorous

reasoning and help us in our study. In particular, Wasm (1)
has a (mostly) deterministic formal semantics that rules out
undefined behaviour and (2) is type-safe [15]. The specifica-
tion of Wasm has even been mechanized and verified [29].
Furthermore, the existing security mechanisms of Wasm re-
duce the attack surface available to target level attackers and
thus simplify the job of our secure compiler. Wasm features
structured control-flow and separates code and data memory
segments, which, in combination, enforce coarse-grained
control-flow integrity [2, 3] removing by construction classic
stack-smashing and return-oriented programming attacks.
In addition, Wasm provides state and memory encapsulation
through modules, which represent natural boundaries where
to enforce security [15].
Assuming some degree of freedom when setting mod-

ule boundaries, we believe that a secure compiler could
reuse the existing mechanisms of Wasm to enforce mem-
ory safety at the target level, in the short term. However,
this approach rests on a strong assumption, namely that the
compiler has direct control over how code gets compart-
mentalized. As this may not always be the case, and thus
for a long-term solution, we draw inspiration from Mem-
ory Safe WebAssembly (MS-Wasm), a recent design proposal
for extending Wasm with hardware-supported progressive
memory-safety capabilities [11]. A secure compiler relying
on MS-Wasm language-level support for memory-safety en-
forcement could allow looser module boundaries.
In the rest of this short paper, we discuss what notions

of memory safety we wish to enforce and how to formally ex-
press them as (hyper)properties.1 Then, we outlineMS-Wasm
1Properties are defined over single runs of a program, while hyperproperties
involve multiple runs [7].
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and argue that it is a suitable target candidate for secure com-
pilation. Finally, we discuss which secure compilation crite-
rion to use when preserving memory safety to MS-Wasm.

2 Memory Safety as a (Hyper)Property
Establishing rigorous security guarantees for our compiler
requires a formal definition of memory safety, an intuitive
notion that has been surprisingly hard to pin down [16].
The exact definition of memory safety has important rami-
fications for our work because it determines what class of
security properties our compiler has to preserve and thus
what protection mechanisms are needed [4].

Previous works on safe variants of C [5, 20, 22, 23, 27]
treat memory safety as a simple safety property enforce-
able by reference monitors [28] that detect specific mem-
ory violations (e.g., accessing freed memory or an array
out-of-bounds). Seeking a definition that trascends bad be-
haviours, Azevedo de Amorim et al. [6] associate memory
safety with reasoning principles about state akin to non-
inteferference [14]. Since non-interference relates pairs of
executions, their definition ascribes memory safety to the
class of 2-hypersafety [7], which is arguably harder to pre-
serve robustly than safety [4, 25].
Here, we consider a notion of memory safety based on

color tags, inspired by a line of work onmicro-policies for tag-
based security monitors [8, 10]. Briefly, memory locations
and pointers are tagged with colors and a memory violation
occurs when a pointer accesses memory tagged with a dif-
ferent color. Unlike the definitions of the works mentioned
above, this safety property is trace-based and agnostic to
the specific semantics of the languages involved and their
syntax—the trace only contains memory relevant actions (i.e.,
memory allocation, free, read and write). Furthermore, this
definition let us study various relaxation of memory safety
that could describe precisely the progressive guarantees of
MS-Wasm, including spatial, (relaxed) temporal safety2 and
pointer integrity, as well as novel properties that considers
only data integrity.3

3 Memory Safe WebAssembly
Memory Safe WebAssembly (MS-Wasm) is an extension of
Wasm designed to capture sufficient metadata about pointers
and memory regions to enforce memory safety efficiently,
levereging dedicated hardware. In particular, MS-Wasm pro-
motes a progressive enforcement of memory safety, i.e., de-
pending on application-specific security-performance trade-
offs and what particular hardware is available, the same
abstractions can enforce “weaker” forms of memory safety.

2Relaxed temporal safety allows memory accesses through dangling point-
ers as long as the memory pointed to has not been reallocated [11].
3To reduce the overhead of enforcing memory-safety, some tools support
modes that check only memory writes [12, 13, 19].

The core features of MS-Wasm design are segment memo-
ries, i.e., linearly addressable, zero-initialized, manually man-
aged extents of memory, and handles, i.e., possibly-corrupted
(forged) pointers enriched with bounds metadata. To enforce
memory safety, MS-Wasm restricts the interaction between
segments and memories appropriately (e.g., only handlers
can access segments, provided that they point within their
bounds).
In order to use MS-Wasm as a target language in our se-

cure compilation chain, we have to first formalize its design
and semantics. Then, using variations of our trace-based
definition of memory safety from above, we intend to prove
its progressive memory-safety guarantees involving spatial,
relaxed temporal safety, and pointer integrity, and establish
their relative strengths. With the help of MS-Wasm abstrac-
tions, we are then going to design a class of secure compilers
that preserve clearly-defined notions of memory safety.

4 Secure Compilation to MS-Wasm
To establish the security guarantees of our compilers, we
prove that they attain a secure compilation criterion. Then,
to further clarify their security guarantees, we consider gen-
eral compilation criteria that preserve whole classes of se-
curity properties (including memory-safety), instead of us-
ing an ad-hoc criterion. Given that we can express mem-
ory safety as a safety property as well as a 2-hypersafety
property, we adopt two of the robust compilation criteria
proposed by Abate et al. [4], namely Robust Safety Prop-
erty Preservation (RSP) and Robust 2-Hypersafety Preservation
(R2HSP). Intuitively, these criteria require compilers to pre-
serve (hyper)properties of source programs even when they
are compiled and linked with arbitrary target code, thus pro-
tecting robustly against all active target-level attackers. In
practice, equivalent property-free characterizations simplify
significantly the proofs of robust criteria preservation [4].
Specifically, for any compiled program and target context
triggering a bad behaviour, we have to find a corresponding
source-level context that produces the same bad behaviour.
To reconstruct suitable source-level contexts systematically,
we can apply known proof techniques based on backtransla-
tion [4, 9, 24, 25].

The proofs of RSP and R2HSP differmainly over the kind of
bad behaviours involved, which are determined by the prop-
erties that they preserve (safety and 2-hypersafety). Since
safety is a simple property, bad behaviours are just finite
traces (prefixes) in RSP. In R2HSP, bad behaviours consist of
pair of prefixes because 2-hypersafety is just a generalization
of safety to a 2-hyperproperty [7]. By including all memory-
relevant actions in our traces, we gain confidence that the
criteria above characterizes correctly the class of memory-
safety-preserving compilers that we intend to study.
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