
Memory Safety Preservation for WebAssembly
Marco Vassena

CISPA Helmholz Center for Information Security
Marco Patrignani
Stanford University

CISPA Helmholz Center for Information Security

Abstract
WebAssembly (Wasm) is a next-generation portable compi-
lation target for deploying applications written in high-level
languages on the web. In order to protect their memory
from untrusted code, web browser engines confine the exe-
cution of compiled Wasm programs in a memory-safe sand-
box. Unfortunately, classic memory-safety vulnerabilities
(e.g., buffer overflows and use-after-free) can still corrupt
the memory within the sandbox and allow Wasm code to
mount severe attacks. To prevent these attacks, we study a
class of secure compilers that eliminate (different kinds of)
memory safety violations. Following a rigorous approach,
we discuss memory safety in terms of hypersafety properties,
which let us identify suitable secure compilation critera for
memory-safety-preserving compilers. We conjecture that,
barring some restrictions at module boundaries, the exist-
ing security mechanisms of Wasm may suffice to enforce
memory-safety preservation, in the short term. In the long
term, we observe that certain features proposed in the design
of a memory-safe variant of Wasm could allow compilers to
lift these restrictions and enforce relaxed forms of memory
safety.

1 Introduction
WebAssembly (Wasm) has gained traction as the new portable
compilation target language for deploying on the web ap-
plications written in high-level languages like C, C++, and
Rust. Fruit of an unprecedented collaboration between four
major browser vendors, Wasm ensures that even buggy or
malicious code downloaded from untrusted sources can be
executed safely in a web browser [15]. To enforce security,
Wasm programs are validated (type-checked) first and then
executed inside a sandbox that isolates untrusted code from
the browser. Memory safety is key to the isolation mecha-
nism of the sandboxed execution environment: well-typed
programs cannot corrupt the memory outside the sandbox

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

(e.g., the Javascript virtual machine). Unfortunately, Wasm
is still far from secure: buffer overflows and use-after-free
can still corrupt the memory of a program within the sand-
box, opening the door to attacks like cross-site scripting
and remote code execution [21]. The presence of memory
vulnerabilities in Wasm thwarts the strenuous efforts de-
voted into securing unsafe languages like C [5, 20, 22, 23, 27]
and developing resource-aware memory-safe languages like
Rust [17, 18]. Current compilers (e.g., Emscripten) do not
attempt to protect compiled programs from Wasm-level at-
tackers exploiting well-known memory vulnerabilities. Fol-
lowing the principled tradition of secure compilation [1, 4, 26],
we propose to strengthen the Wasm compilation chain with
a provably secure memory-safety-preserving compiler.
Fortunately, several aspects of Wasm promote rigorous

reasoning and help us in our study. In particular, Wasm (1)
has a (mostly) deterministic formal semantics that rules out
undefined behaviour and (2) is type-safe [15]. The specifica-
tion of Wasm has even been mechanized and verified [29].
Furthermore, the existing security mechanisms of Wasm re-
duce the attack surface available to target level attackers and
thus simplify the job of our secure compiler. Wasm features
structured control-flow and separates code and data memory
segments, which, in combination, enforce coarse-grained
control-flow integrity [2, 3] removing by construction classic
stack-smashing and return-oriented programming attacks.
In addition, Wasm provides state and memory encapsulation
through modules, which represent natural boundaries where
to enforce security [15].
Assuming some degree of freedom when setting mod-

ule boundaries, we believe that a secure compiler could
reuse the existing mechanisms of Wasm to enforce mem-
ory safety at the target level, in the short term. However,
this approach rests on a strong assumption, namely that the
compiler has direct control over how code gets compart-
mentalized. As this may not always be the case, and thus
for a long-term solution, we draw inspiration from Mem-
ory Safe WebAssembly (MS-Wasm), a recent design proposal
for extending Wasm with hardware-supported progressive
memory-safety capabilities [11]. A secure compiler relying
on MS-Wasm language-level support for memory-safety en-
forcement could allow looser module boundaries.
In the rest of this short paper, we discuss what notions

of memory safety we wish to enforce and how to formally ex-
press them as (hyper)properties.1 Then, we outlineMS-Wasm
1Properties are defined over single runs of a program, while hyperproperties
involve multiple runs [7].

https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference’17, July 2017, Washington, DC, USA Marco Vassena and Marco Patrignani

and argue that it is a suitable target candidate for secure com-
pilation. Finally, we discuss which secure compilation crite-
rion to use when preserving memory safety to MS-Wasm.

2 Memory Safety as a (Hyper)Property
Establishing rigorous security guarantees for our compiler
requires a formal definition of memory safety, an intuitive
notion that has been surprisingly hard to pin down [16].
The exact definition of memory safety has important rami-
fications for our work because it determines what class of
security properties our compiler has to preserve and thus
what protection mechanisms are needed [4].

Previous works on safe variants of C [5, 20, 22, 23, 27]
treat memory safety as a simple safety property enforce-
able by reference monitors [28] that detect specific mem-
ory violations (e.g., accessing freed memory or an array
out-of-bounds). Seeking a definition that trascends bad be-
haviours, Azevedo de Amorim et al. [6] associate memory
safety with reasoning principles about state akin to non-
inteferference [14]. Since non-interference relates pairs of
executions, their definition ascribes memory safety to the
class of 2-hypersafety [7], which is arguably harder to pre-
serve robustly than safety [4, 25].
Here, we consider a notion of memory safety based on

color tags, inspired by a line of work onmicro-policies for tag-
based security monitors [8, 10]. Briefly, memory locations
and pointers are tagged with colors and a memory violation
occurs when a pointer accesses memory tagged with a dif-
ferent color. Unlike the definitions of the works mentioned
above, this safety property is trace-based and agnostic to
the specific semantics of the languages involved and their
syntax—the trace only contains memory relevant actions (i.e.,
memory allocation, free, read and write). Furthermore, this
definition let us study various relaxation of memory safety
that could describe precisely the progressive guarantees of
MS-Wasm, including spatial, (relaxed) temporal safety2 and
pointer integrity, as well as novel properties that considers
only data integrity.3

3 Memory Safe WebAssembly
Memory Safe WebAssembly (MS-Wasm) is an extension of
Wasm designed to capture sufficient metadata about pointers
and memory regions to enforce memory safety efficiently,
levereging dedicated hardware. In particular, MS-Wasm pro-
motes a progressive enforcement of memory safety, i.e., de-
pending on application-specific security-performance trade-
offs and what particular hardware is available, the same
abstractions can enforce “weaker” forms of memory safety.

2Relaxed temporal safety allows memory accesses through dangling point-
ers as long as the memory pointed to has not been reallocated [11].
3To reduce the overhead of enforcing memory-safety, some tools support
modes that check only memory writes [12, 13, 19].

The core features of MS-Wasm design are segment memo-
ries, i.e., linearly addressable, zero-initialized, manually man-
aged extents of memory, and handles, i.e., possibly-corrupted
(forged) pointers enriched with bounds metadata. To enforce
memory safety, MS-Wasm restricts the interaction between
segments and memories appropriately (e.g., only handlers
can access segments, provided that they point within their
bounds).
In order to use MS-Wasm as a target language in our se-

cure compilation chain, we have to first formalize its design
and semantics. Then, using variations of our trace-based
definition of memory safety from above, we intend to prove
its progressive memory-safety guarantees involving spatial,
relaxed temporal safety, and pointer integrity, and establish
their relative strengths. With the help of MS-Wasm abstrac-
tions, we are then going to design a class of secure compilers
that preserve clearly-defined notions of memory safety.

4 Secure Compilation to MS-Wasm
To establish the security guarantees of our compilers, we
prove that they attain a secure compilation criterion. Then,
to further clarify their security guarantees, we consider gen-
eral compilation criteria that preserve whole classes of se-
curity properties (including memory-safety), instead of us-
ing an ad-hoc criterion. Given that we can express mem-
ory safety as a safety property as well as a 2-hypersafety
property, we adopt two of the robust compilation criteria
proposed by Abate et al. [4], namely Robust Safety Prop-
erty Preservation (RSP) and Robust 2-Hypersafety Preservation
(R2HSP). Intuitively, these criteria require compilers to pre-
serve (hyper)properties of source programs even when they
are compiled and linked with arbitrary target code, thus pro-
tecting robustly against all active target-level attackers. In
practice, equivalent property-free characterizations simplify
significantly the proofs of robust criteria preservation [4].
Specifically, for any compiled program and target context
triggering a bad behaviour, we have to find a corresponding
source-level context that produces the same bad behaviour.
To reconstruct suitable source-level contexts systematically,
we can apply known proof techniques based on backtransla-
tion [4, 9, 24, 25].

The proofs of RSP and R2HSP differmainly over the kind of
bad behaviours involved, which are determined by the prop-
erties that they preserve (safety and 2-hypersafety). Since
safety is a simple property, bad behaviours are just finite
traces (prefixes) in RSP. In R2HSP, bad behaviours consist of
pair of prefixes because 2-hypersafety is just a generalization
of safety to a 2-hyperproperty [7]. By including all memory-
relevant actions in our traces, we gain confidence that the
criteria above characterizes correctly the class of memory-
safety-preserving compilers that we intend to study.



Memory Safety Preservation for WebAssembly Conference’17, July 2017, Washington, DC, USA

Acknowledgements: This work was partially supported by
the German Federal Ministry of Education and Research (BMBF)
through funding for the CISPA-Stanford Center for Cybersecurity
(FKZ: 13N1S0762).

References
[1] Martín Abadi and Gordon D. Plotkin. On protection by layout random-

ization. ACM Trans. Inf. Syst. Secur., 15(2):8:1–8:29, July 2012. ISSN
1094-9224. doi: 10.1145/2240276.2240279. URL http://doi.acm.org/10.
1145/2240276.2240279.

[2] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. A theory
of secure control flow. In Proceedings of the 7th International Conference
on Formal Methods and Software Engineering, ICFEM’05, pages 111–
124, Berlin, Heidelberg, 2005. Springer-Verlag. ISBN 3-540-29797-9,
978-3-540-29797-0. doi: 10.1007/11576280_9. URL http://dx.doi.org/10.
1007/11576280_9.

[3] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-
flow integrity principles, implementations, and applications. ACM
Trans. Inf. Syst. Secur., 13(1):4:1–4:40, November 2009. ISSN 1094-9224.
doi: 10.1145/1609956.1609960. URL http://doi.acm.org/10.1145/1609956.
1609960.

[4] Carmine Abate, Roberto Blanco, Deepak Garg, Cătălin Hriţcu, Marco
Patrignani, and Jérémy Thibault. Journey beyond full abstraction:
Exploring robust property preservation for secure compilation. In
2019 IEEE 32th Computer Security Foundations Symposium, CSF 2019,
June 2019.

[5] Pieter Agten, Bart Jacobs, and Frank Piessens. Sound modular verifica-
tion of c code executing in an unverified context. In Proceedings of the
42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’15, pages 581–594, New York, NY, USA,
2015. ACM. ISBN 978-1-4503-3300-9. doi: 10.1145/2676726.2676972.
URL http://doi.acm.org/10.1145/2676726.2676972.

[6] Arthur Azevedo de Amorim, Cătălin HriŢcu, and Benjamin C. Pierce.
The meaning of memory safety. In Lujo Bauer and Ralf Küsters, editors,
Principles of Security and Trust, pages 79–105, Cham, 2018. Springer
International Publishing. ISBN 978-3-319-89722-6.

[7] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Jour-
nal of Computer Security, 18(6):1157–1210, 2010. doi: 10.3233/
JCS-2009-0393. URL https://www.cs.cornell.edu/~clarkson/papers/
clarkson_hyperproperties_journal.pdf.

[8] A. A. d. Amorim, M. Dénès, N. Giannarakis, C. Hritcu, B. C. Pierce,
A. Spector-Zabusky, and A. Tolmach. Micro-policies: Formally verified,
tag-based security monitors. In 2015 IEEE Symposium on Security and
Privacy, pages 813–830, May 2015. doi: 10.1109/SP.2015.55.

[9] Dominique Devriese, Marco Patrignani, and Frank Piessens. Fully-
abstract compilation by approximate back-translation. In 43nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, 2016.

[10] Udit Dhawan, Catalin Hritcu, Raphael Rubin, Nikos Vasilakis, Silviu
Chiricescu, Jonathan M. Smith, Thomas F. Knight, Jr., Benjamin C.
Pierce, and Andre DeHon. Architectural support for software-defined
metadata processing. In Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’15, pages 487–502, New York, NY, USA,
2015. ACM. ISBN 978-1-4503-2835-7. doi: 10.1145/2694344.2694383.
URL http://doi.acm.org/10.1145/2694344.2694383.

[11] Craig Disselkoen, John Renner, Conrad Watt, Tal Garfinkel, Amit Levy,
and Deian Stefan. Position paper: Progressive memory safety for
webassembly. In Proceedings of the 8th International Workshop on
Hardware and Architectural Support for Security and Privacy, HASP
’19, pages 4:1–4:8, New York, NY, USA, 2019. ACM. ISBN 978-1-4503-
7226-8. doi: 10.1145/3337167.3337171. URL http://doi.acm.org/10.1145/
3337167.3337171.

[12] Gregory J. Duck and Roland H. C. Yap. Heap bounds protection with
low fat pointers. In Proceedings of the 25th International Conference on
Compiler Construction, CC 2016, pages 132–142, New York, NY, USA,
2016. ACM. ISBN 978-1-4503-4241-4. doi: 10.1145/2892208.2892212.
URL http://doi.acm.org/10.1145/2892208.2892212.

[13] Gregory J. Duck, Roland H. C. Yap, and Lorenzo Cavallaro.
Stack bounds protection with low fat pointers. In 24th
Annual Network and Distributed System Security Symposium,
NDSS 2017, San Diego, California, USA, February 26 - March
1, 2017, 2017. URL https://www.ndss-symposium.org/ndss2017/
ndss-2017-programme/stack-object-protection-low-fat-pointers/.

[14] J. A. Goguen and J. Meseguer. Security policies and security models.
In 1982 IEEE Symposium on Security and Privacy, pages 11–11, April
1982. doi: 10.1109/SP.1982.10014.

[15] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer,
Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and
JF Bastien. Bringing the web up to speed with webassembly. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, pages 185–200, New
York, NY, USA, 2017. ACM. ISBN 978-1-4503-4988-8. doi: 10.1145/
3062341.3062363. URL http://doi.acm.org/10.1145/3062341.3062363.

[16] Michael Hicks. What is memory safety? http://www.pl-enthusiast.
net/2014/07/21/memory-safety/, 2014. Accessed: 2019-10-16.

[17] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
Rustbelt: Securing the foundations of the rust programming language.
Proc. ACM Program. Lang., 2(POPL):66:1–66:34, December 2017. ISSN
2475-1421. doi: 10.1145/3158154. URL http://doi.acm.org/10.1145/
3158154.

[18] Nicholas D. Matsakis and Felix S. Klock, II. The rust language. In Pro-
ceedings of the 2014 ACM SIGAda Annual Conference on High Integrity
Language Technology, HILT ’14, pages 103–104, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-3217-0. doi: 10.1145/2663171.2663188.
URL http://doi.acm.org/10.1145/2663171.2663188.

[19] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. Softbound: Highly compatible and complete spatial mem-
ory safety for c. SIGPLAN Not., 44(6):245–258, June 2009. ISSN 0362-
1340. doi: 10.1145/1543135.1542504. URL http://doi.acm.org/10.1145/
1543135.1542504.

[20] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. Cets: Compiler enforced temporal safety for c. SIGPLAN
Not., 45(8):31–40, June 2010. ISSN 0362-1340. doi: 10.1145/1837855.
1806657. URL http://doi.acm.org/10.1145/1837855.1806657.

[21] NCC Group Whitepaper. https://i.blackhat.com/us-18/Thu-August-9/
us-18-Lukasiewicz-WebAssembly-A-New-World-of-Native_
Exploits-On-The-Web-wp.pdf, 2018. Accessed: 2019-10-11.

[22] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and
Westley Weimer. Ccured: Type-safe retrofitting of legacy software.
ACM Trans. Program. Lang. Syst., 27(3):477–526, May 2005. ISSN 0164-
0925. doi: 10.1145/1065887.1065892. URL http://doi.acm.org/10.1145/
1065887.1065892.

[23] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and
Westley Weimer. Ccured: Type-safe retrofitting of legacy software.
ACM Trans. Program. Lang. Syst., 27(3):477–526, May 2005. ISSN 0164-
0925. doi: 10.1145/1065887.1065892. URL http://doi.acm.org/10.1145/
1065887.1065892.

[24] Max S. New,William J. Bowman, and Amal Ahmed. Fully abstract com-
pilation via universal embedding. In 21st ACM SIGPLAN International
Conference on Functional Programming, ICFP, pages 103–116, 2016. doi:
10.1145/2951913.2951941. URL https://www.williamjbowman.com/
resources/fabcc-paper.pdf.

[25] Marco Patrignani and Deepak Garg. Robustly Safe Compilation. In
Programming Languages and Systems - 28th European Symposium on
Programming, ESOP 2019, ESOP’19, 2019.

http://doi.acm.org/10.1145/2240276.2240279
http://doi.acm.org/10.1145/2240276.2240279
http://dx.doi.org/10.1007/11576280_9
http://dx.doi.org/10.1007/11576280_9
http://doi.acm.org/10.1145/1609956.1609960
http://doi.acm.org/10.1145/1609956.1609960
http://doi.acm.org/10.1145/2676726.2676972
https://www.cs.cornell.edu/~clarkson/papers/clarkson_hyperproperties_journal.pdf
https://www.cs.cornell.edu/~clarkson/papers/clarkson_hyperproperties_journal.pdf
http://doi.acm.org/10.1145/2694344.2694383
http://doi.acm.org/10.1145/3337167.3337171
http://doi.acm.org/10.1145/3337167.3337171
http://doi.acm.org/10.1145/2892208.2892212
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/stack-object-protection-low-fat-pointers/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/stack-object-protection-low-fat-pointers/
http://doi.acm.org/10.1145/3062341.3062363
http://www.pl-enthusiast.net/2014/07/21/memory-safety/
http://www.pl-enthusiast.net/2014/07/21/memory-safety/
http://doi.acm.org/10.1145/3158154
http://doi.acm.org/10.1145/3158154
http://doi.acm.org/10.1145/2663171.2663188
http://doi.acm.org/10.1145/1543135.1542504
http://doi.acm.org/10.1145/1543135.1542504
http://doi.acm.org/10.1145/1837855.1806657
https://i.blackhat.com/us-18/Thu-August-9/us-18-Lukasiewicz-WebAssembly-A-New-World-of-Native_Exploits-On-The-Web-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Lukasiewicz-WebAssembly-A-New-World-of-Native_Exploits-On-The-Web-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Lukasiewicz-WebAssembly-A-New-World-of-Native_Exploits-On-The-Web-wp.pdf
http://doi.acm.org/10.1145/1065887.1065892
http://doi.acm.org/10.1145/1065887.1065892
http://doi.acm.org/10.1145/1065887.1065892
http://doi.acm.org/10.1145/1065887.1065892
https://www.williamjbowman.com/resources/fabcc-paper.pdf
https://www.williamjbowman.com/resources/fabcc-paper.pdf


Conference’17, July 2017, Washington, DC, USA Marco Vassena and Marco Patrignani

[26] Marco Patrignani, Amal Ahmed, and Dave Clarke. Formal approaches
to secure compilation a survey of fully abstract compilation and related
work. ACM Comput. Surv., 51(6):125:1–125:36, January 2019. doi:
10.1145/3280984. URL https://doi.org/10.1145/3280984.

[27] Andrew Ruef, Leonidas Lampropoulos, Ian Sweet, David Tarditi, and
Michael Hicks. Achieving safety incrementally with checked c. In
Principles of Security and Trust, pages 76–98, Cham, 2019. Springer
International Publishing. ISBN 978-3-030-17138-4.

[28] Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst.
Secur., 3(1):30–50, February 2000. ISSN 1094-9224. doi: 10.1145/353323.
353382. URL http://doi.acm.org/10.1145/353323.353382.

[29] Conrad Watt. Mechanising and verifying the webassembly specifica-
tion. In Proceedings of the 7th ACM SIGPLAN International Conference
on Certified Programs and Proofs, CPP 2018, pages 53–65, New York,
NY, USA, 2018. ACM. ISBN 978-1-4503-5586-5. doi: 10.1145/3167082.
URL http://doi.acm.org/10.1145/3167082.

https://doi.org/10.1145/3280984
http://doi.acm.org/10.1145/353323.353382
http://doi.acm.org/10.1145/3167082

	Abstract
	1 Introduction
	2 Memory Safety as a (Hyper)Property
	3 Memory Safe WebAssembly
	4 Secure Compilation to MS-Wasm
	References

